
Background Study for COMET Phase-I and II

Akira SATO Department of Physics, Osaka University on behalf of the COMET collaboration

International Workshop on Neutrino Factories, Super Beams and Beta Beams: NuFact2014 August 25-30, 2014, Glasgow, UK 25+5 min

µ-e Conversion Search

- Two experiments are going to start to search for the μ-e conversion process: COMET@J-PARC and Mu2e@FNAL.
- These are stopped muon experiments. When a μ^{-} in stopped in a material, ...

Beyond the SM

$$\mu^{-} + (A,Z) \rightarrow e^{-} + (A,Z)$$

$$\mu^{-}e$$

$$\mu^{-}$$

the lepton flavor is changed to μ-flavor to e-flavor. **Event signature :**

a single mono-energetic electron of 100MeV

in the SM + v masses

 μ -e conversion can be occur via v-mixing, but expected rate is well below the experimentally accessible range. Rate ~O(10⁻⁵⁴)

Discovery of the μ -e conversion is a clear evidence of new physics beyond the SM.

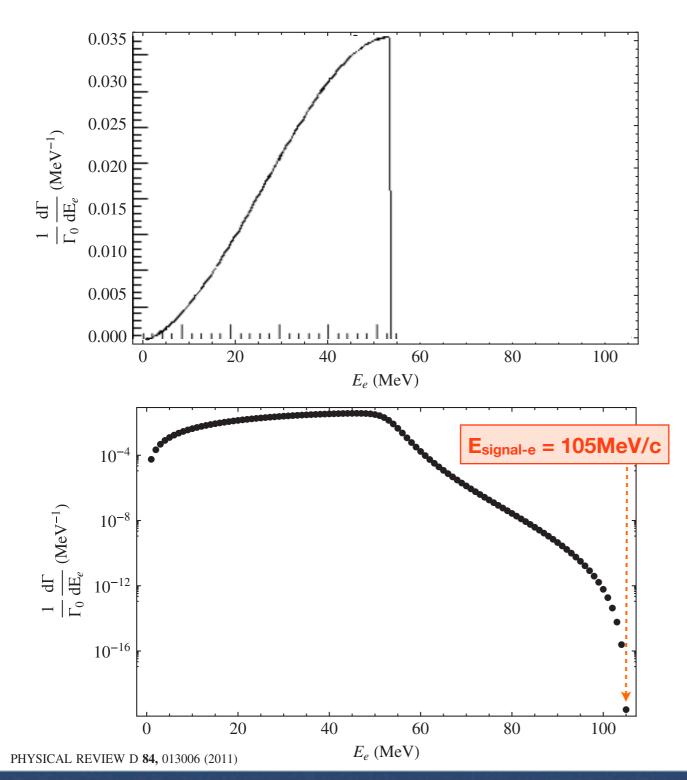
in the SM + new physics

A wide variety of proposed extensions to the SM predict observable μ -e conversion rate.

BG events for COMET

Intrinsic physics backgrounds		BGs from stopped muons at the stopping target	
1	Muon decay in orbit (DIO)		
2	Radiative muon capture (external)		
		High p resolution for signal e ⁻	
3	Radiative muon capture (internal)	•••	
4	Neutron emission after	* Thin stopping target	
	after muon capture	* Low mass electron tracker	
5	Charged particle emission		
	after muon capture		

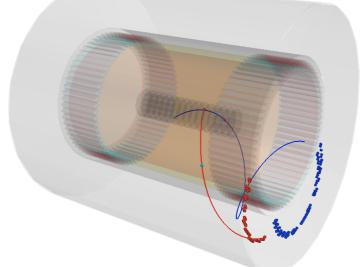
Beam related prompt/delayed backgrounds


6	Radiative pion capture (external)	$\pi^- + A \to \gamma + A', \ \gamma \to e^- + e^+$
7	Radiative pion capture (internal)	$\pi^- + A \to e^+ + e^- + A'$
8	Beam electrons	e^- scattering off a muon stopping target
9	Muon decay in flight	μ^- decays in flight to produce e^-
10	Pion decay in flight	π^- decays in flight to produce e^-
11	Other particles induced backgrounds	Other particles to produce <i>e</i> -
12	\overline{p} induced backgrounds	\overline{p} hits material to produce e^-

Other backgrounds

- 14 Cosmic-ray induced backgrounds
- 15 Room neutron induced backgrounds
- 16 False tracking

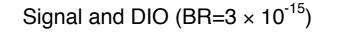
Muon Decay in Orbi

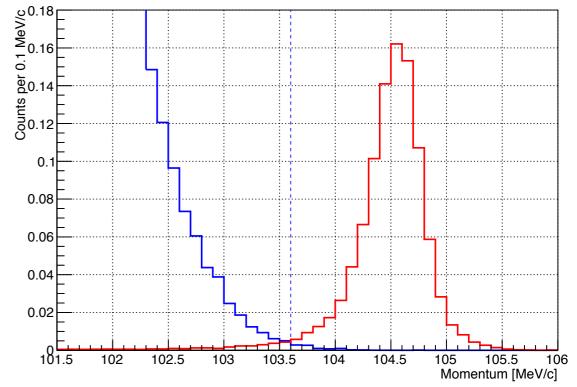

Normal muon decay in a bound state of a muonic atom

COMET Phase-I : CDC He gas based σ_p <200keV

100 Initial P (MeV/c)

80

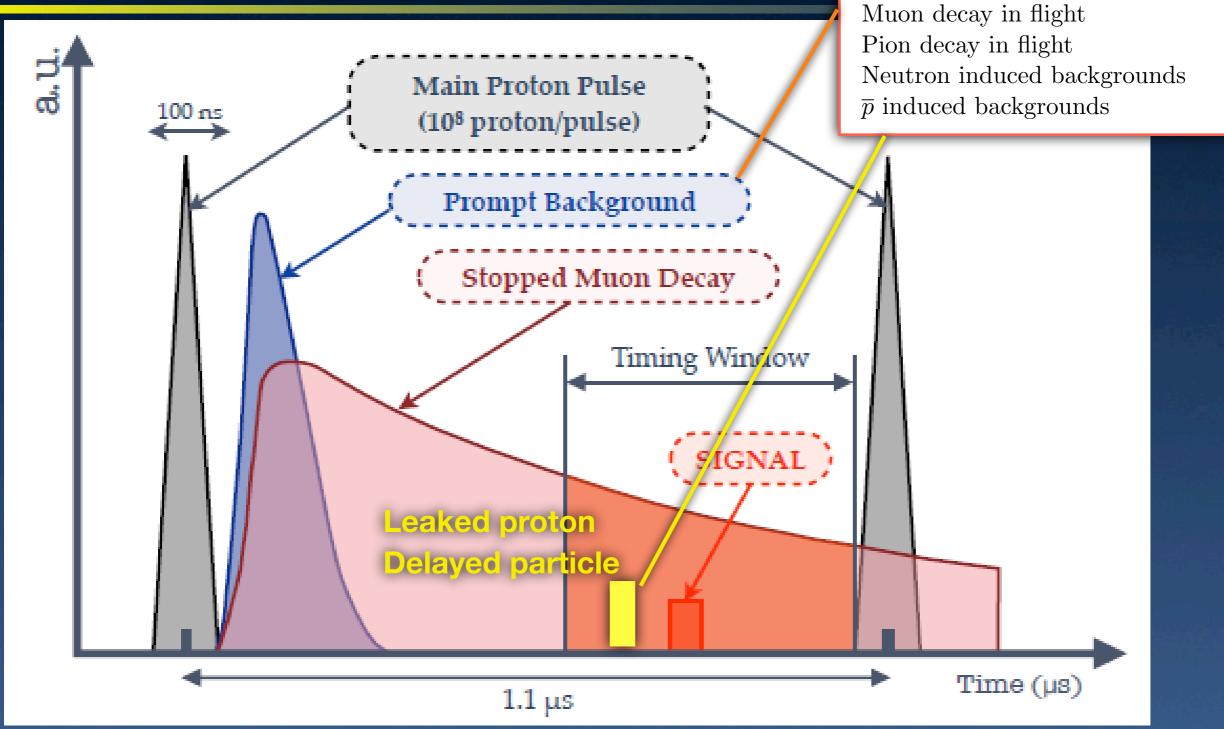

40


20

60

10⁻⁹ 10⁻¹⁰ 10⁻¹¹

10⁻¹² 10⁻¹³ 10⁻¹⁴


BG events for COMET

Intrinsic physics backgrounds		BGs from stopped muons at the stopping target	
. 1	Muon decay in orbit (DIO)		
2	Radiative muon capture (external)		
		High p resolution for signal e ⁻	
3	Radiative muon capture (internal)		
4	Neutron emission after	* Thin stopping target	
	after muon capture	* Low mass electron tracker	
5	Charged particle emission		
	after muon capture)

Beam related prompt/delayed backgrounds

	Beam Felatea prompt/ delajea saengrounas			
6	Radiative pion capture (external)			
7	Radiative pion capture (internal)			
8	Beam electrons	Pulsed muon beam with good quality		
9	Muon decay in flight	* Pulsed proton beam		
10	Pion decay in flight			
11	Other particles induced backgrounds	* Long curved solenoid muon transport		
12	\overline{p} induced backgrounds	* antiproton absorber		
Otl	her backgrounds			
14	Cosmic-ray induced backgrounds			
15	Room neutron induced background	3		
16	False tracking			

Beam related BGs

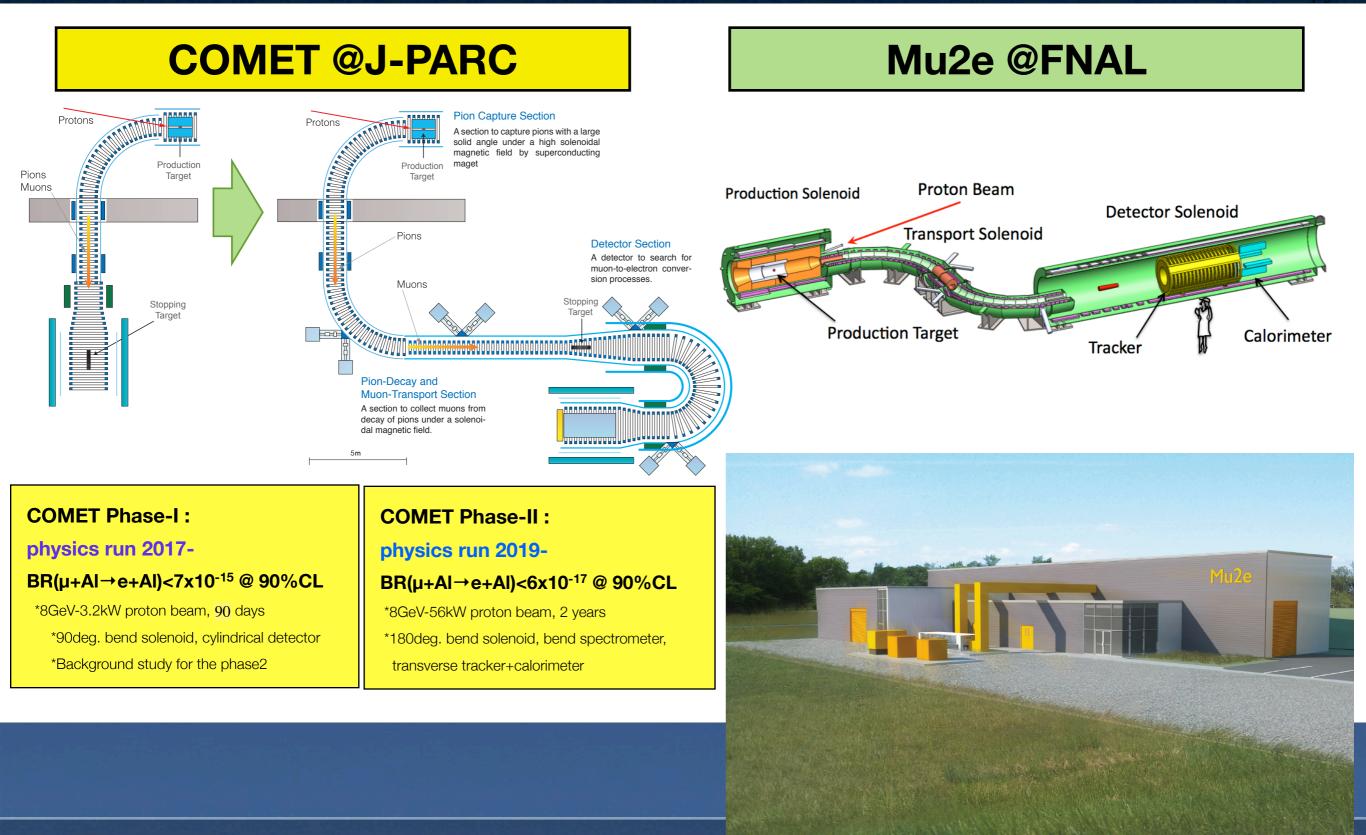
Proton extinction level of 10⁻¹¹ has been studied.

Phill's talk on Thursday

Radiative pion capture (external)

Radiative pion capture (internal)

Beam electrons


BG events for COMET

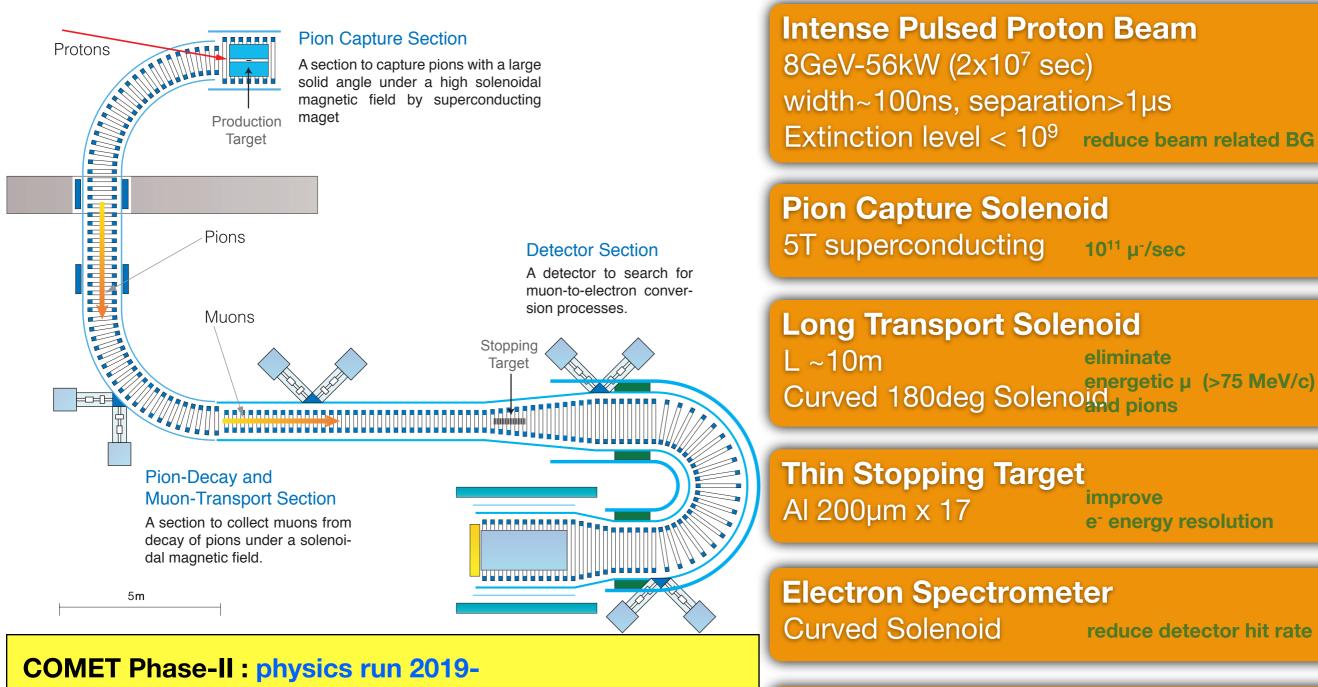
Intrinsic physics backgrounds		BGs from stopped muons at the stopping target	
1	Muon decay in orbit (DIO)		
2	Radiative muon capture (external)		
		High p resolution for signal e ⁻	
3	Radiative muon capture (internal)	•••	
4	Neutron emission after	* Thin stopping target	
	after muon capture	* Low mass electron tracker	
5	Charged particle emission		
	after muon capture		

Beam related prompt/delayed backgrounds

6 7 8 9 10 11 12 Ot]	Radiative pion capture (external)Radiative pion capture (internal)Beam electronsMuon decay in flightPion decay in flightOther particles induced backgrounds \overline{p} induced backgrounds	 Pulsed muon beam with good quality * Pulsed proton beam * Long curved solenoid muon transport * antiproton absorber 	
14 15 16	Cosmic-ray induced backgrounds Room neutron induced backgrounds False tracking	* Cosmic-ray veto * Neutron shielding	

Staging approach in COMET

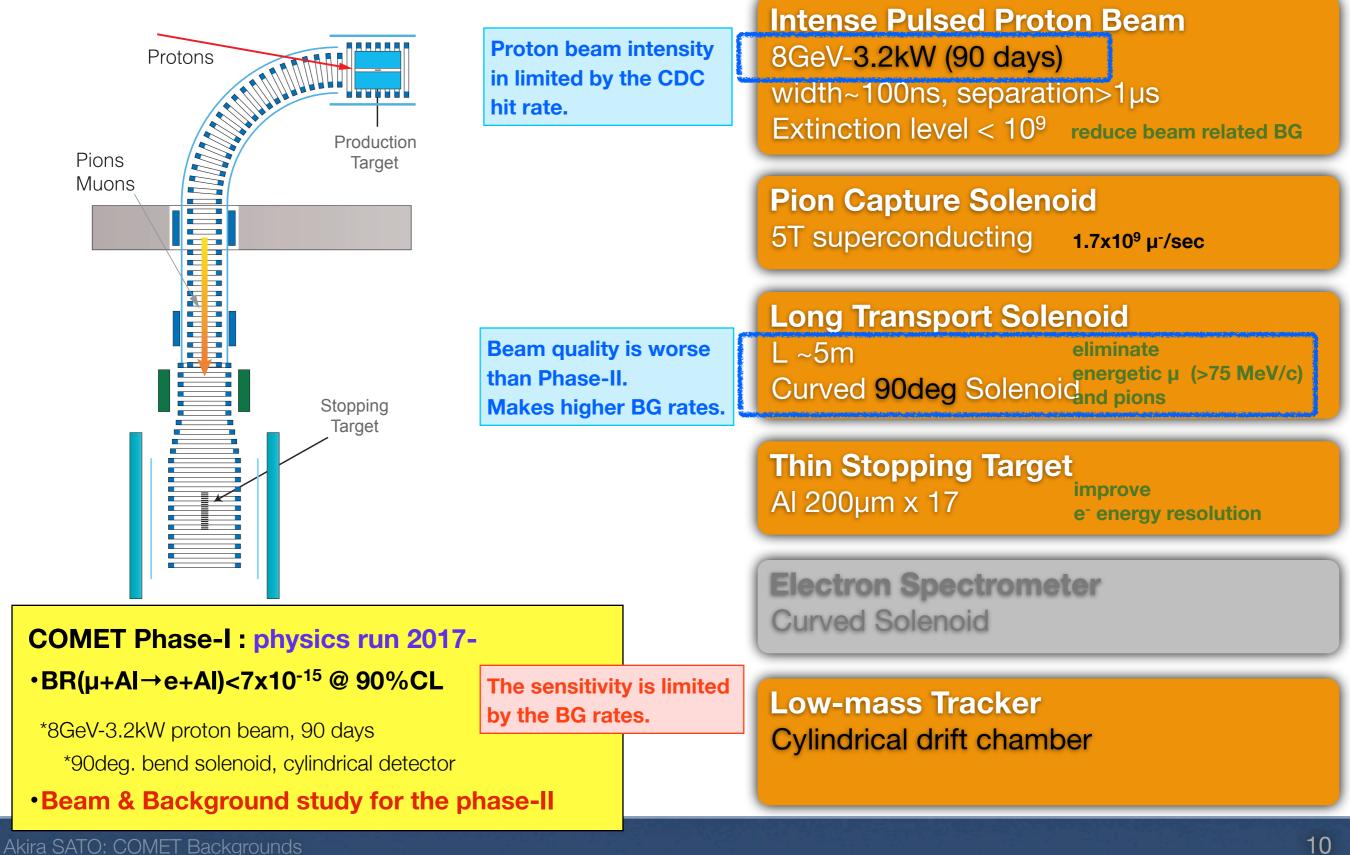
Key Points of COMET Phase-II (S.E.S 10⁻¹⁷)


Low-mass Tracker

improve

e⁻ energy resolution

Straw chamber


in Vacuum

- •BR(µ+AI→e+AI)<6x10⁻¹⁷ @ 90%CL
- *8GeV-56kW proton beam, 2 years

*180deg. bend solenoid, bend spectrometer, transverse tracker+calorimeter

Key Points of COMET Phase-I (S.E.S 10⁻¹⁵)

COMET Phase-

BG events for COMET Phase-I

of events for S.E.S. of 3.1×10^{-15}

Intrinsic physics backgrounds

1	Muon decay in orbit (DIO)	Bound muons decay in a muonic atom	0.01
2	Radiative muon capture (external)	$\mu^- + A \to \nu_\mu + A' + \gamma,$	
		followed by $\gamma \to e^- + e^+$	5.6 x 10 ⁻⁴
3	Radiative muon capture (internal)	$\mu^- + A \rightarrow \nu_\mu + e^+ + e^- + A',$	
4	Neutron emission after	$\mu^- + A \to \nu_\mu + A' + n,$	< 0.001
	after muon capture	and neutrons produce e^-	< 0.001
5	Charged particle emission	$\mu^- + A \to \nu_\mu + A' + p \text{ (or } d \text{ or } \alpha),$	< 0.001
	after muon capture	followed by charged particles produce e^-	< 0.001

Bea	am related prompt/delayed back	grounds with proton extinction fa	<i>ector</i> 3×10^{-11}
6	Radiative pion capture (external)	$\pi^- + A \to \gamma + A', \ \gamma \to e^- + e^+$	4.24 x 10 ⁻⁴
7	Radiative pion capture (internal)	$\pi^- + A \to e^+ + e^- + A'$	4.24 X 10
8	Beam electrons	e^- scattering off a muon stopping ta	arget 7.1 x 10 ⁻⁴
9	Muon decay in flight	μ^- decays in flight to produce e^-	≤ 1.7 x 10 ⁻⁴
10	Pion decay in flight	π^- decays in flight to produce e^-	$\leq 2.0 \text{ x } 10^{-3}$
11	Other particles induced backgrounds	Other particles to produce e-	≤ 2.4 x 10 ⁻⁶
12	\overline{p} induced backgrounds	\overline{p} hits material to produce e^-	0.007

Other backgrounds

14	Cosmic-ray induced backgrounds	< 0.0001
15	Room neutron induced backgrounds	$< 4 \text{ x } 10^{-10}$
16	False tracking	-

0.019

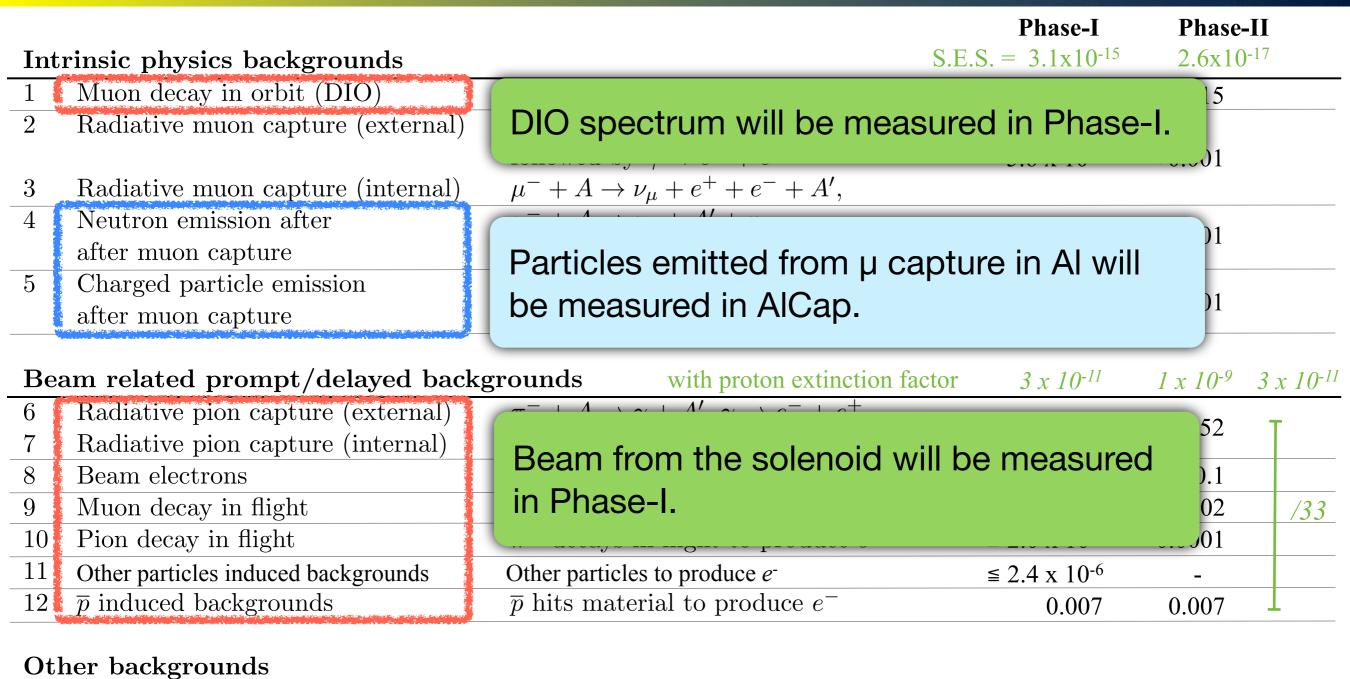
Total

COMET Phase-II

Sensitivity of COMET Phase-II

Single event sensitivity

- = $(N_p \cdot N_{\mu/p}^{stop} \cdot f_{cap} \cdot A_{\mu-e})^{-1}$ = 2.6 x 10⁻¹⁷
- \rightarrow 90% C.L. upper limit = 6.0 x 10⁻¹⁷
- \rightarrow Events per 1 x 10⁻¹⁶ BR = 3.8

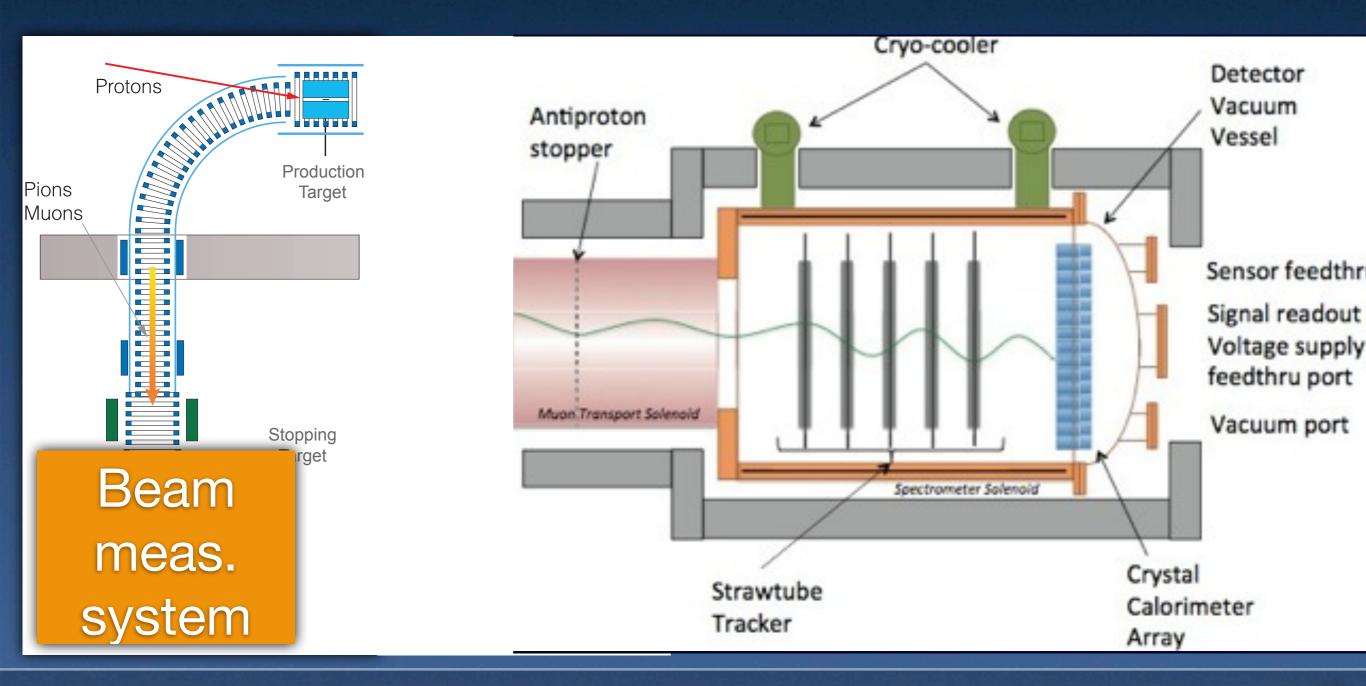

Total much on af anotanan N		
$\frac{\text{Total number of protons: } N_p}{D_p}$	8.5 $\times 10^{20}$	
Proton kinetic energy	8	[GeV]
Harmonics of MR	8	г 1
Bunch time spacing	657	[nsec]
Number of RF bunches filled with protons per spill	4	г 1
Time between adjacent filled bunches	1314	[nsec]
Number of protons in each RF bunch	1.6×10^{13}	r 7
Cycle time of MR (=spill period)	1.47	[sec]
Flat top for the slow extraction	0.7	[sec]
Number slow-extracted pulse in a spill	5.3×10^{5}	[pulses/spill]
Number of Protons in each slow-extracted pulse	1.2×10^{8}	
Average beam current	7.0	$[\mu A]$
Average beam power	56	[kW]
Average proton intensity	4.4×10^{13}	[protons/sec]
Total running time	2.0×10^{7}	[sec]
Running time per year	1.0×10^{7}	[sec/year]
Number of stopped muons per proton: $N_{\mu/p}^{stop}$	0.0023	[muons/proton]
Rate of muons per proton transported to the target	0.0035	[muons/proton]
Muon stopped acceptance	0.66	
Number of stopped muons: $N_{\mu/year}^{stop}$	1.0×10^{18}	[muons/year]
Total number of stopped muons: N_{μ}^{stop}	2.0×10^{18}	
Fraction of captured muon: f_{cap}	0.61	
Fraction of captured muon: J_{cap}	0.01	
Net acceptance: $A_{\mu-e}$	0.031	
Geometrical acceptance, fitting and selection criteria	0.09	
Solid angle with mirroring acceptance	(0.73)	
Muon beam stop acceptance	(0.57)	
Curved solenoid acceptance	(0.47)	
Track reconstruction efficiency	(0.88)	
Track quality cut efficiency	(0.89)	
Transverse momentum cut efficiency	(0.83)	
E/p cut efficiency	(0.99)	
Helix pitch cut efficiency	(0.99)	
Momentum selection efficiency	(0.33) (0.72)	
Timing window selection efficiency	0.39	
Trigger acceptance and DAQ live efficiency	0.90	
The enciency	0.90	

BG events for COMET Phase-I and II

T 4	Phase-IPhase-IIIntrinsic physics backgrounds $S.E.S. = 3.1 \times 10^{-15}$ 2.6×10^{-17}					
	rinsic physics backgrounds) 17	
	Muon decay in orbit (DIO)	Bound muons decay in a muonic atom	0.01	0.15		
2	Radiative muon capture (external)	$\mu^- + A \to \nu_\mu + A' + \gamma,$ followed by $\gamma \to e^- + e^+$	5.6 x 10 ⁻⁴	< 0.001		
3	Radiative muon capture (internal)	$\mu^- + A \to \nu_\mu + e^+ + e^- + A',$	5.0 A 10			
4	Neutron emission after after muon capture	$\mu^- + A \rightarrow \nu_\mu + A' + n,$ and neutrons produce e^-	< 0.001	< 0.001		
5	Charged particle emission after muon capture	$\mu^- + A \rightarrow \nu_\mu + A' + p \text{ (or } d \text{ or } \alpha),$ followed by charged particles produce e^-	< 0.001	< 0.001		
Bea	am related prompt/delayed backgrounds with proton extinction factor		3 x 10 ⁻¹¹	1 x 10 ⁻⁹	3 x 10 ⁻¹¹	
6	Radiative pion capture (external)	$\pi^- + A \to \gamma + A', \ \gamma \to e^- + e^+$	4.24 x 10 ⁻⁴	0.052	т	
7	Radiative pion capture (internal)	$\pi^- + A \to e^+ + e^- + A'$	H.2H X IU	0.052		
8	Beam electrons	e^- scattering off a muon stopping target	7.1 x 10 ⁻⁴	< 0.1		
9	Muon decay in flight	μ^- decays in flight to produce e^-	≤ 1.7 x 10 ⁻⁴	< 0.0002	/33	
10	Pion decay in flight	π^- decays in flight to produce e^-	$\leq 2.0 \ge 10^{-3}$	< 0.0001		
11	Other particles induced backgrounds	Other particles to produce e-	≤ 2.4 x 10 ⁻⁶	-		
12	\overline{p} induced backgrounds	\overline{p} hits material to produce e^-	0.007	0.007		
Otl	Other backgrounds		sub-total : 0.01	0.16	0.005	
14	Cosmic-ray induced backgrounds		< 0.0001	0.004		
15	Room neutron induced backgrounds		< 4 x 10 ⁻¹⁰	0.024		
16	False tracking		-	-		
Tota	al		0.019	0.34	0.19	

from COMET Phase-I TDR 15 Jan 2014 and COMET CDR

BG events for COMET Phase-I and II


14	Cosmic-ray induced backgrounds	< 0.0001	0.004	
15	Room neutron induced backgrounds	< 4 x 10 ⁻¹⁰	0.024	
16	False tracking	-	-	
T -4	-1	0.010	0.24	0.10

Total

0.019 0.34 0.19

Beam measurements at Phase-I

- Beam at the end of 90deg solenoid will be measured in COMET Phase-I.
 - yield and energy for pion, muon, antiproton ...

Summary

- Characteristic of the muon beam is very important for μ-e conversion experiments.
- BGs were estimated for COMET Phase-I and reestimation towards a new TDR is in progress.
- Better understanding of the beam and backgroung source is crucial for the sensitivity of ~10⁻¹⁷ at the Phase-II.
- One of the important task for the COMET Phase-I is beam measurements. We will re-optimize the beamline of the Phase-II (another 90deg of the bend solenoid and collimators ...)