

Tokai to Hyper-Kamiokande

•Use upgraded J-PARC neutrino beam line (same as T2K) with expected beam power ≥750kW, 2.5° off-axis angle.

The Hyper-Kamiokande Project

Multi-purpose neutrino experiment. Wide-variety of scientific goals:

- •Neutrino oscillations:
 - Neutrino beam from J-PARC
 - Atmospheric neutrinos
 - Solar neutrinos
- Search for proton decay
- Astrophysical neutrinos
 (supernova bursts, supernova relic neutrinos, dark matter, solar flare, ...)
- Neutrino geophysics

Hyper-K in the World

(http://www.hyperk.org)

- Selected one of the 27 'top projects' in the 'Japanese master plan for large scale research projects' by the Science Council of Japan.
- Open meetings held twice/year since Aug.2012
- International Board of Representatives formed to discuss contributions, cost-sharing and budget request.
- R&D work ongoing internationally.

The Hyper-Kamiokande Timeline

- Approved WC prototype for technical studies (2013-2018) ~\$1.2M
- Major decisions on experiment design expected before 2018.

The Hyper-Kamiokande Detector

The Hyper-Kamiokande Detector

- Water Cherenkov, proven technology & scalability:
 - Excellent PID at sub-GeV region >99%
 - Large mass → statistics always critical for any measurements.

Total Volume	0.99 Megaton
Inner Volume	0.74 Mton
Fiducial Volume	0.56 Mton (0.056 Mton \times 10 compartments)
Outer Volume	0.2 Megaton
Photo-sensors	 •99,000 20"Ф PMTs for Inner Detector (ID) (20% photo-coverage) •25,000 8"Ф PMTs for Outer Detector (OD)
Tanks	 •2 tanks, with egg-shape cross section ≈ 48m (w) × 50m (t) × 250 m (l) •5 optically separated compartments per tank

The Hyper-Kamiokande Detector

GEANT4 event displays

Oscillation Searches at Hyper-K

HK is optimized for both appearance and disappearance searches

T2K v beam energy peak

ν_μ Disappearance: determine θ₂₃ and Δm₃₂²

$$P(ν_μ → ν_μ) ≈ 1 - sin^2 2 θ_{32} sin^2 \left(\frac{\Delta m_{23}^2 L}{4 E_ν} \right)$$

 v_e Appearance: determine θ_{13} , constrain δ_{CP}

$$P(\nu_{\mu} \to \nu_{e}) \approx \sin^{2}\theta_{23} \sin^{2}2\theta_{13} \sin^{2}\left(\frac{\Delta m_{31}^{2} L}{4 E_{\nu}}\right)$$

$$-\sin 2\theta_{12} \sin 2\theta_{23} \sin 2\theta_{13} \cos \theta_{13} \sin^{2}\left(\frac{\Delta m_{32}^{2} L}{4 E_{\nu}}\right)$$

$$\sin^{2}\left(\frac{\Delta m_{31}^{2} L}{4 E_{\nu}}\right) \sin^{2}\left(\frac{\Delta m_{21}^{2} L}{4 E_{\nu}}\right) \sin \delta_{CP} + CPC$$

$$\sin^2\left(\frac{\Delta m_{31}^2 L}{4 E_v}\right) \sin^2\left(\frac{\Delta m_{21}^2 L}{4 E_v}\right) \sin\delta_{CP} + CPC$$

+matter + solar terms

For maximum power fit both data samples jointly

Neutrino Beam for the Experiment

- Same beam configuration as for T2K
 - > Same off-axis sub-GeV narrow-band beam.
 - Horn current 320kA
- At least 750kW expected at the starting of the experiment.
- •Assumed **7.5MW** \times **10**⁷ **s** (1.56 \times 10²² POT) for the following sensitivity studies
 - ▶ 10 years are needed if 750kW per 10⁷s/year
 - > Higher beam power is under study

Expected unoscillated neutrino flux at Hyper-K

Nominal beam sharing between neutrinos and anti-neutrinos in the following sensitivity plots:

v-mode: v-mode

1y:3y

Expected Events

Letter of Intent to J-PARC, April 2014

Appearance	Sig	nal		Bac	kgrour	nd		Total
	$V_{\mu} \rightarrow V_{e}$	$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$	V_{μ}	$\overline{\mathbf{v}}_{\mu}$	$v_{\sf e}$	$\overline{v}_{\mathrm{e}}$	NC	
v mode (3016	28	11	0	503	20	172	3750
\overline{v} mode	396	2110	4	5	222	265	265	3397
Disappearanc	e v _µ	$\overline{\overline{v}}_{\mathfrak{\mu}}$	$v_{\rm e}$	\overline{v}_{e}		NC	$V_{\mu} \rightarrow V_{e}$	Total
v mode	17225	1088	11	1		999	49	19372
\overline{v} mode	10066	15597	7	7		1281	6	26964

Large expected number of events. NH, $\sin^2 2\theta_{13} = 0.1$ and $\delta_{CP} = 0$

Hyper-K Sensitivity to $\delta_{_{\text{CP}}}$

Letter of Intent to J-PARC, April 2014

Errors (%) on the expected number of events					
	v mode		\overline{v} mod	le	
	$v_{\rm e}$	${f V}_{\mu}$	$v_{\rm e}$	${f V}_{\mu}$	
Flux & ND	3.0	2.8	5.6	4.2	
ND-independ. xsect	1.2	1.5	2.0	1.4	
Far Detector	0.7	1.0	1.7	1.1	
Total	3.3	3.3	6.2	4.5	

Sensitivity to θ_{23}

- $\sin^2 2\theta_{23}$ and Δm^2_{23} free parameters as well as $\sin^2 2\theta_{13}$ and δ_{CP} in the fit.
- Octant resolution w/ reactor θ_{13} : ~3 σ wrong octact rejection for $\sin^2\theta_{23}$ <0.46 or >0.56

True $\sin^2\theta_{23}$	$1\sigma err sin^2\theta_{_{23}}$	$1\sigma \operatorname{err} \Delta m^2_{23} (eV^2)$
0.45	0.006	1.4
0.50	0.015	1.4
0.55	0.009	1.5

Hyper-K Sensitivity to MH

arXiv:1109.3262

Significance for MH determination as a function of Hyper-K lifetime

- Use atmospherics for 3σ mass hierarchy determination.
- 3σ mass hierarchy determination for $\sin^2\theta_{23} > 0.42$ (0.43) for normal (inverted) hierarchy for 10y data taking.
- Also combine with beam data to enhance physics capability.

Proton Decay Sensitivity

Surpass SK limit in ~1 year

- •10 times better sensitivity than Super-K
- Hyper-K surpasses SK limits in ~1y
- Hyper-K is sensitive in every single mode
 - $^{\flat}$ p→e $^{+}$ π 0 : 1.3 × 10 35 y at 90% CL
 - $p \to v K^+$: 2.5 × 10³⁴ y at 90% CL
 - Many other modes:
 - $p(n \rightarrow e,\mu) + (\pi,\rho,\omega,\eta); 10^{14}-10^{35}$
 - K⁰ modes
 - $v\pi^{0}$, $v\pi^{+}$
 -

'Other' Physics Topics at Hyper-K

More physics topics can be investigated by Hyper-Kamiokande:

- •Solar Neutrinos: 200 v's / day from Sun \rightarrow day/night asymmetry of the solar neutrinos flux can be precisely measured at HK.
- Astrophysical neutrinos:
 - 200k ν's from Supernova at Galactic center (10kpc)
 - → time variation & energy can be measured with high statistics. Important data to cross check explosion models
 - Supernova relic neutrinos → possible G_d-doping of Hyper-K
- •Indirect Searches for Dark Matter: 1) search for excess of neutrinos from the center of the Earth, Sun and galactic centre as compared to atmospheric neutrino background 2) Search for diffuse signal from Milky Way halo.
- •Search for transient astrophysical phenomena: solar flares, GRBs, etc.
- •Neutrino geophysics: neutrino radiography w/ atmospheric neutrinos for surveying the internal structure of the Earth.

Site(s) and Cavern(s)

Two sites are being investigated:

- Tochibora mine:
 - ~8km South from Super-K
 - Identical baseline (295km) and off-axis angle (2.5°) to Super-Kamiokande
- Mozumi mine (same as Super-K)
 - Deeper than Tochibora
 - Currently finishing design studies

Site(s) and Cavern(s), cont'd

Rock quality in the two sites is similar.

HK tank location

- Design of the cavity, support structure studies based on geological survey
- Confirmed that the HK cavern can be constructed w/ existing techniques
- Construction schedule for the Tochibora mine: ~2y tunnels, ~3y cavern

Baseline design expected to finish soon

Tank Design Work

•All major parts of HK tank have been designed: water containment system, photosensors support, layout of water pipes, front-end electronics, cables, calibration holes, plug manholes, etc.

Photodector Development

PMT

- Used in Super-K for 18 years
- High reliability

High QE photocathode

Venetian blind PMT (50-cm φ Normal QE)

New photosensor (HPD)

Under viability test

Test in 200 ton tank

Venetian blind PMT (50-cm φ High QE)

HPD (New) (20-cm φ Normal QE)

Under development

 Under evaluation in the air

Box and Line PMT (50-cm φ High QE)

High QE photoca<mark>t</mark>hode

PMT

improvement

Make larger

HPD 50-cm φ High QE)

Photodector Development

PMT

- Used in Super-K for 18 years
- High reliability

High QE photocathe

Venetian blind PMT (50-cm φ Normal QE)

New photosensor (HPD)

Under viability test

Test in 200 ton tank

High-QE SK PMT

(50-cm φ High QE)

Under development

Under evaluation in the air

Box and Line PMT (50-cm Φ High QE)

HPD (New) (20-cm φ Normal QE) High QE photocathode

Make larger

HPD 50-cm φ High QE)

Photosensors Candidates

Photosensors Tests in Water Tank

- EGADS (for G_d-doped water tests)
- 240 inward-facing PMTs
- EGADS used to test high-QE PMTs
- 227 PMTs (R3600; currently in SK) for reference for photodetector evaluation
- 8" HPDs, 20" high-QE PMTs

20" high-QE PMTs

- Data taking: Sept 2013, May 2014
- Viability tests performed ongoing process up to 2016.
- Adding (Aug 2014) Box-and-Line PMTs and 2 HPD.
- More tests planned.
 - Photosensor choice will be made in 2016, needed to allow time for making mass production

Electronics/DAQ

- Investigating a few approches for the electronics, eg:
 - > QTC (ADC) + TDC (similar to SK4)
 - > FADC
- •Will evaluate their performance with the WC prototype detector
- Also working on the design of the DAQ

- Digitize all the signal (timing and charge) above ~ 1/4 p.e.
- Define events with software and store the event data.
- Nominal starting point: SK DAQ

Investigating improved system for triggering (redundant, robust)

Calibration

- •Review systems used by several experiments (SK, SNO, SNO+, Borexino, KamLAND, Daya Bay) to help in the design of the calibration system for Hyper-K
- Several ongoing R&D activities, some examples:
- Simple semi-automated calibration system (to be deployed in SK)
- Computed controlled.
- Compact and lightshielded.

R&D (3D) for HK in 2015-

- Study response & reflection of large photosensors in water (Photosensor Testing Facility at TRIUMF)
- Optical system with laser, monitor and receiver PMTs in place and tested.

- Use LED as a light source for optical calibration.
- Can build an automated system that can illuminate each PMT with known sources
- Tests of LEDs underway

Calibration

- •Review systems used by several experiments (SK, SNO, SNO+, Borexino, KamLAND, Daya Bay) to help in the design of the calibration system for Hyper-K
- Several ongoing R&D activities, some examples:
- Simple semi-automated calibration system (to be deployed in SK)
- Computer controlled.
- Compact and lightshielded.

R&D (3D) for HK in 2015-

- Study response & reflection of large photosensors in water (Photosensor Testing Facility at TRIUMF)
- Optical system with laser, monitor and receiver PMTs in place and tested.

- Use LED as a light source for optical calibration.
- Can build an automated system that can illuminate each PMT with known sources
- Tests of LEDs underway

New Near Detector Concepts to further enhance the Hyper-K physics potential

See M. Scott talk (WG2 "ν-PRISM" (~1km) parallel session - Monday)

- tall (~50 m) WC detector spanning wide range of off-axis angles
- effectively isolate response in narrow band of energy by comparing interactions at different off-axis angles

"TITUS" (~2 km)

 2 kt Gadolinium-doped WC detector with HPDs and LAPPDs

Muon range detector (MRD)

 G_d for v/v discrimination

See M. Rayner poster (Tuesday)

Several new upgrades planned at a 280m distance, either new detectors or upgrading ND280

Conclusions

- Next generation multi-purpose experiment
 - Oscillation physics:
 - able to measure $\delta_{_{\text{CP}}}$ at 3σ for 76% of its phase space
 - solve octant degeneracy, mass hierarchy (atmospherics), θ_{32} , Δm_{32}^2
 - Astro and other physics:
 - very sensitive to all the proton decay channels, observe supernovas burst and relic supernova neutrinos, indirect dark matter, transient astrophysical phenomena, etc.
- Work ongoing worldwide in all the aspects of the experiment
- Data taking around 2025 with current schedule

Stay tuned for many more exciting news from Hyper-Kamiokande!

Additional Slides

Muon Momentum in ND280

	Purity of each sample						
	CC0π	CC1π	CCother				
CC0π	72.6%	6.4%	5.8%				
CC1π	8.6%	49.4%	7.8%				
CCother	11.4%	31%	73.8%				
Bkg(NC+anti-nu)	2.3%	6.8%	8.7%				
Out of FGD1 Fid Vol	5.1%	6.5%	3.9%				

T2K Far Detector: Super-Kamiokande

- 50 kton (22.5 kton fiducial) water Cherenkov detector
- Good reconstruction for T2K energy range
- Particle Identification (PID) based on shape of Cherenkov rings

Results Systematic Errors w/ ND280 Fit

Relative uncertainty (%) on the expected number of events $(\sin^2 2\theta_{13} = 0.1, \sin^2 \theta_{23} = 0.5, \Delta m_{32}^2 = 2.4 \times 10^{-3} \text{eV}^2, \delta \text{CP} = 0, \text{NH})$

V _e	Systematic sources	V_{μ}
3.1	Flux & Combined Cross-Sections	2.7
4.7	Independent Cross Sections	5.0
2.4	π Hadronic Interactions (FSI)	3.0
2.7	SK Detector Efficiencies	4.0
6.8	TOTAL	7.6

$\nu_{\mu} \rightarrow \nu_{e}$ Event Selection

Event selection:

- Fully contained in fid. volume
- Only one reconstructed ring
- Ring is electron-like
- Visible energy > 100MeV
- No Michel Electrons
- Reconstructed energy < 1.25 GeV
- New SK reconstruction (~30% reduction in π^0 background)
- 28 events in 6.57× 10²⁰ POT

T2K Observation of v_e Appearance

- $\bullet \nu_{_{e}}$ appearance in a $\nu_{_{\mu}}$ beam with
- 7.3σ significance
- •Best fit value for $\sin^2 2\theta_{13}$ larger than the reactor value
- •Due to δ_{CP} -sin² θ_{13} correlation, when applying the reactor constraint, region with sin²2 θ_{13} small as possible is favoured.

Maximum likelihood fit in (p_e, θ_e)

$V_{\mu} \rightarrow V_{\mu}$ T2K Result

• Best-fit oscillation parameter values:

Oscillation parameter	NH	IH
$\sin^2 \theta_{23}$	$0.514^{+0.055}_{-0.056}$	0.511 ± 0.055
$\Delta m_{_{32}}^{2} (\times 10^{-3} \text{ eV}^{2})$	2.51 ± 0.10	2.48 ± 0.10

• Events: 120 (observed), 446.0 ± 22.5 (no oscillation)

 \bullet Most precise measurement of $\sin^2\theta_{23}$ and favours Maximal Mixing

T2K Joint $v_{\mu} + v_{e}$ Analysis

- •Likelihood ratio fit to both $\nu_{_{u}}$
- $+ v_e$ event samples
- •Plot includes constraint from reactor experiments as given by the PDG2013 ($\sin^2 2\theta_{13}$ =
- 0.095 ± 0.01)
- Consistent results with a Bayesian analysis

 $\sin^2\!\theta_{_{23}}$, $\Delta m^2_{_{32}}$ and $\sin^2\!2\theta_{_{13}}$ are marginalized following the 3D $\Delta\chi^2$ surface from Run1+2+3+4

T2K has a slight hint for $\delta_{\rm CP} \sim -\pi/2$

$\delta_{_{\mathrm{CP}}}$ excluded	Preliminary		
regions	Best fit	90%CL (π)	
NH	-0.495	[0.146;0.825]	
IH	-0.495	[-0.080;1.091]	

Future: Neutrino & Anti-neutrino running

T2K Future Sensitivity to $\delta_{_{\text{CP}}}$

Sensitivity studies to resolve $\sin\delta_{\rm CP}\neq 0$ with 7.8×10^{21} POT. Best sensitivity expected for 50%v and 50% anti-v beam running. Projected reactor constraint $\sin^2 2\theta_{13} = 0.1\pm 0.005$.

Using joint oscillation analysis with realistic 2012 systematic errors (~10% v_{e} , ~13% v_{u})

Using GloBES, with 50% v and anti-v running for NOvA too. Solid lines: no syst. error.

J-PARC v-Beamline

θ_{13} - δ_{CP} allowed region (90%)

 $7.5\text{MW} \times 10^7 \text{sec}$, v:anti-v=1:3

Parameter	sin²2θ ₁₃	$\delta_{_{ extsf{CP}}}$	$\sin^2 2\theta_{23}$	22		$\sin^2 2\theta_{12}$	Δm_{12}^2
Nominal (0.10	90, 0, -90	0.50	_	hierarchy Nominal,	0.8704	7.6x10 ⁻⁵
Treatment I	Fitted	Fixed	Fitted		Inverted Known	Fixed	Fixed 40

40

Significance of $\delta_{CD} = 0$

CPV discovery sensitivity w/ mass hierarchy known: $\Delta \chi^2 = \chi^2_{trial} - \chi^2 (\delta_{CP} = 0.180)$

Fractional region of $\delta(\%)$ for which the CPV ($\sin \delta \neq 0$) significance is > 3σ

Integrated beam power (MW 10 ⁷ sec)

 1σ uncertainty of δ as a function of the **beam power**: $< 19^{\circ}(6^{\circ})$ for $\delta = 90^{\circ}(0^{\circ})$

Beam + Atmospheric v: Allowed δ_{CP}

- Without assumption of the prior mass hierarchy knowledge, but NH is true.
- True $\delta_{\rm CP}=0.0$; $\sin^2\!2\theta_{_{13}}=0.10$; Maximal mixing $\sin^2\!2\theta_{_{23}}=1.0$
- Degenerate solution exists at 3σ in the beam only case.
- The physics capability of the project can be enhanced by combining two complementary measurements.

1kton WC Prototype

- •Prototype (1kton, \sim 10×10×10 m³) for R&D test approved in Japan as Grant-in-Aid: \sim USD 1.2M/5 years (2013-18).
- •It's one of the 27 proposals selected each year from all areas in science.
- •Main feasibility studies:
 - Photosensor and corresponding support structure
 - Liners
 - Leak water collection detection
 - DAQ
 - Electronics
 - Calibration system

>

Overall Cost Estimate

Total	800M USD	
Cavern	300M USD	
Tank & structure	200M USD	
Photo-sensors	200M USD	High QE HPD
Near Detector	30M USD	@Tokai

- •Costs estimated based on the current design and including a new near detector.
- •Proportional sharing of costs between the interested Countries is expected.