Magnetized Iron Neutrino Detectors at Neutrino Factories

Ryan Bayes

University of Glasgow

Experimental Particle Physics

School of Physics and Astronomy University of Glasgow

29 August, 2014

Outline

(1) Background
(2) Simulation and Reconstruction
(3) Event Selection with MIND
4. Physics at Neutrino Factory with MIND

A 10 GeV Neutrino Factory

- Use a single 2000 km baseline with 10 GeV stored $\mu^{ \pm}$
- Neutrinos from a cooled muon beam
- Known flavour content
- Known energy distribution
- Reduced beam uncertainties (< 1\%)
- Magnetized detector needed for charge separation.
- See talk by P. Soler (Tues PM WP3).

Neutrino Oscillations at a Neutrino Factory

Accessible Oscillation Channels

	Store μ^{+}	Store μ^{-}
Golden Channel	$\nu_{e} \rightarrow \nu_{\mu}$	$\bar{\nu}_{e} \rightarrow \bar{\nu}_{\mu}$
ν_{e} Disappearance Channel	$\nu_{e} \rightarrow \nu_{e}$	$\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}$
Silver Channel	$\nu_{e} \rightarrow \nu_{\tau}$	$\bar{\nu}_{e} \rightarrow \bar{\nu}_{\tau}$
Platinum Channel	$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$	$\nu_{\mu} \rightarrow \nu_{e}$
ν_{μ} Disappearance Channel	$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}$	$\nu_{\mu} \rightarrow \nu_{\mu}$
Dominant Oscillation	$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\tau}$	$\nu_{\mu} \rightarrow \nu_{\tau}$

- We know ${ }^{a}$
- $\sin ^{2} 2 \theta_{13}=0.095 \pm 0.010$
- $\sin ^{2} 2 \theta_{12}=0.857 \pm 0.024$
- $\sin ^{2} 2 \theta_{23}>0.95$
- $\Delta m_{12}^{2}=(7.65 \pm 0.20) \times 10^{-5} \mathrm{eV}^{2}$
- $\Delta m_{23}^{2}=\left(2.32_{-0.08}^{+0.12}\right) \times 10^{-3} \mathrm{eV}^{2}$
- Effect of $\delta_{C P}$ on oscillated NF spectrum from 5×10^{21} stored μ decays shown.
${ }^{a} \mathrm{~J}$. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012)
$\nu_{\mu} \mathrm{CC}$ interaction rate with perfect 100 kt detector

$\bar{\nu}_{\mu} \mathrm{CC}$ interaction rate with perfect 100 kt detector

MIND: A Magnetized Iron Neutrino Detector

- Octagonal cross-section $14 \times 14 \mathrm{~m}^{2}$
- Fe plates 3 cm thick
- Space points from paired array of Scint bars $3 \times 1 \mathrm{~cm}^{2}$
- Toroidal magnetic field in steel.
- Field induced by 100 kA-turns.
- Current carried by multiple turns of STL through detector axis. ${ }^{a}$

[^0]

MIND: A Magnetized Iron Neutrino Detector

- Octagonal cross-section $14 \times 14 \mathrm{~m}^{2}$
- Fe plates 3 cm thick
- Space points from paired array of Scint bars $3 \times 1 \mathrm{~cm}^{2}$
- Toroidal magnetic field in steel.
- Field induced by 100 kA-turns.
- Current carried by multiple turns of STL through detector axis. ${ }^{a}$
${ }^{a}$ IDS-NF-020, Interim Design Report

Flow Liner 8 Support

MIND Simulation

- Events simulated using GENIE.

Detector simulated using GEANT4.

- Events products propagated through detector volume.
- Energy deposition recorded in 2 cm thick scintillator plane.

Ryan Bayes (University of Glasgow)

Simple digitization applied to events.

- Deposition grouped into $3 \times 3 \mathrm{~cm}^{2}$ voxels.
- 5 m attenuation length applied to energy.
- Smearing applied to hit position. ${ }^{a}$

```
\({ }^{a}\) arxiv:1208.2735
```


Muon Reconstruction within MIND

Position Pull

Curvature Pull

Momentum Resolution

Analysis

- Five variables with potential correlations used.
- Adopted TMVA package.
- Multiple methods tested i.e. Boosted Decision Trees (BDT), k-Nearest Neighbour (KNN), etc.
- Train CC (signal) to NC (background) separately for stored μ^{+}and μ^{-}.

4ロ・4号 -

Event Selection Efficiency

Efficiency

- Clear difference between beam polarity (both physics and training).
- Different MVA have different low energy behaviour
- Compare BDT to KNN

Background (stored μ^{-})

Background (stored μ^{+})

Event Selection Efficiency

Efficiency

- Clear difference between beam polarity (both physics and training).
- Different MVA have different low energy behaviour
- Compare BDT to KNN

Background (stored μ^{-})

Background (stored μ^{+})

Rates After Selection

Det. response for $\nu_{\mu} C C$ sample

- GLoBeS package used to turn Det. response into detector rates
- Assume 100 kt detector, 2000 km baseline.
- Use $5 \times 10^{20} \mu^{+} / \mathrm{yr}$ and $5 \times 10^{20} \mu^{-} / \mathrm{yr}$
- Assume 10 years running.

Rate in detector for stored μ^{-}

Rate in detector for stored μ^{+}

Rates After Selection

Det. response for $\nu_{\mu} C C$ sample

- GLoBeS package used to turn Det. response into detector rates
- Assume 100 kt detector, 2000 km baseline.
- Use $5 \times 10^{20} \mu^{+} / \mathrm{yr}$ and $5 \times 10^{20} \mu^{-} / \mathrm{yr}$
- Assume 10 years running.

Rate in detector for stored μ^{-}

Rate in detector for stored μ^{+}

Precision of CP Violation Measurements

- Assume
- 1.4\% Signal systematic uncertainty (Flux \times Cross-Section)
- 20\% Background systematic uncertainty (Ditto).
- Precision between 4° and 5°.
- $\approx 85 \%$ coverage of $\Delta \delta_{C P}$ at 3σ.

KNN Method

- Method choice affects background rejection.
- Background affects result weakly.

CP Violation for Modified Experiments

Intermediate Exposure

- Partial exposure parametrized as product of mass by years.
- Gains in $\Delta \delta_{C P}$ small after 600 kT•yrs.
$5 \mathrm{GeV} E_{\mu}, 1300 \mathrm{~km}$ baseline

- Re-optimized analysis for 5 GeV NF.
- Identical exposure to 10 GeV NF given 1000 kT•yr.

Systematics for a Neutrino Factory Experiment

- Two systematics cases studied.
- "Known" from MINOS
- Expected for NF

Detector Construction Uncertainties

Uncertainty	Known Measures		Expected Contribution	
	Signal	Bkgd	Signal	Bkgd
EM Model	2%	0	0.5%	0
Magnetic Field	$<1 \%$	$<1 \%$	0.2%	3%
Steel	0.2%	0.2%	0.2%	0.2%

Beam and Theoretical Systematic Uncertainties

Uncertainty	Known Measures		Expected Contribution	
	Signal	Background	Signal	Background
Source luminosity	0.1%	0.1%	0.1%	0.1%
Cross section	4%	40%	0.5%	5%
Hadronic Model	0	15%	0	8%

- $\Delta \delta_{C P}$ between 6° and 10° for "known" systematics case.

Cosmic Ray Backgrounds

Question: Do we need to put this detector underground?

- Simulations done with CRY generator in GEANT4 detector.
- Identical reconstruction and event selection done.
- Apply self vetoing fiducial cuts at 30 cm .
- Detector will need overburden $>6 \mathrm{~m}$.

Events in Detector

Stored μ^{+}	
Signal	17802
Bkgd	298
Cosmics	261370
Stored μ^{-}	
Signal	3166
Bkgd	244
Cosmics	73169

nuSTORM

- 120 GeV proton beam incident on a graphite target produce pions.
- Pions are horn captured, transported, and injected into ring.
- 52% of pions decay to muons before first turn
- Muons within momentum acceptance circulate in ring.

- Study sterile neutrino oscillations
- 1.5 cm steel plates, 1.5 cm thick Scint. plane
- Field induced by 270 kA-turn current in SCTL.

Sterile Sensitivity at nuSTORM ${ }^{1}$

- Assume sample of 1×10^{18} useful μ^{+}decays.
- 1.3 kTon iron-scinitillator calorimeter detector, 2 km from ring.
- Assume a 0.5% rate and 0.5% cross-sectional systematic.
- In absence of interaction studies $0.5 \% \rightarrow 5 \%$.
$\nu_{e} \rightarrow \nu_{\mu}$ Appearance Search

$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}$ Disappearance Search

Conclusions

- MIND is a well developed technology suitable for a Neutrino Factory.
- A full simulation of the detector has been developed to evaluate detector performance.
- Excellent charge selection allows for reduction of background below parts in 10^{3}
- Simulation can (and has) been used to scope variations in the detector technology.
- Sterile neutrino search at nuSTORM.
- Reduced energy neutrino factory.
- For IDS-NF design a precision in $\delta_{C P}$ between 4° and 5° is achievable

Thank you

- A. Bross, ${ }^{a}$
- A. Cervera-Villanueva, ${ }^{b}$
- M. Ellis, ${ }^{c}$
- T. Ghosh, ${ }^{3}$
- A. Laing, ${ }^{3}$
- F.J.P. Soler, ${ }^{d}$
- R. Wands ${ }^{2}$
- C. Tunnell ${ }^{a}$
- P. Colomba ${ }^{b}$
${ }^{2}$ NikHEF
${ }^{b}$ Virginia Tech

[^1]
[^0]: ${ }^{\text {a }}$ IDS-NF-020, Interim Design Report

[^1]: ${ }^{a}$ Fermilab
 ${ }^{b}$ IFIC and Universidad de Valencia
 ${ }^{c}$ Westpac Institutional Bank, Australia
 ${ }^{d}$ University of Glasgow

