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Background

A 10 GeV Neutrino Factory

@ Use a single 2000 km
baseline with 10 GeV

IDS-NFR201240

stored Mi Proton Driver:  Neutrino
. ©—Linac option Beam
o Neutrinos from a Ring option Muon Decay

cooled muon beam

o Known flavour
content

o Known energy
distribution

o Reduced beam
uncertainties (< 1%)

Ring

562 m

Buncher
Phase Rotation

Target
Cooling

—@0 I m

° Magnetlzed detector Linac to 0.8 GeV 0.8-2.8 GeV RLA
needed for charge _— — (Op—)
separation. C 2.8-10 GeV RLA

o See talk by P. Soler
(Tues PM WP3).
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Background

Neutrino Oscillations at a Neutrino Factory

Accessible Oscillation Channels

Store Store
Golden Channel ve — vy e — Uy,
ve Disappearance Channel ve — Ve e — Ue
Silver Channel Ve — Ur Ve — Uy
Platinum Channel Uy — Ve vy — Ve
v, Disappearance Channel Dy — Uy vy — vy
Dominant Oscillation Uy — U7 vy — VUr

@ We know @

o sin?20;3 = 0.095 + 0.010

© © 0 o

sin® 20y, = 0.857 + 0.024
sin? 26,3 > 0.95
Am12 = (7.65+0.20) x 1075 eV?
Amgy = (2.3210 %
o Effect of 5cp on oscillated NF spectrum
from 5x 102" stored ;. decays shown.

) x 1073 eV?

4J. Beringer et al. (Particle Data Group),
Phys. Rev. D86, 010001 (2012)
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v,, CC interaction rate with perfect 100 kt detector

Neutrino Interactions per 250 MeV

v, CC interaction rate with perfect 100 kt detector

Neutrino Interactions per 250 MeV
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Simulation and Reconstruction

MIND: A Magnetized Iron Neutrino Detector

‘m o Octagonal cross-section
14x14 m?

o Fe plates 3 cm thick

@ Space points from paired array
of Scint bars 3x1 cm?

Y-position(m)

o Toroidal magnetic field in steel.
o Field induced by 100 kA-turns.

o Current carried by multiple
turns of STL through detector
axis.?

2IDS-NF-020, Interim Design Report

4 6 8
X-position (m) R
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Simulation and Reconstruction

MIND: A Magnetized Iron Neutrino Detector

o Octagonal cross-section
14x14 m?

o Fe plates 3 cm thick

o Space points from paired array
of Scint bars 3x1 cm?

o Toroidal magnetic field in steel.
o Field induced by 100 kA-turns.

o Current carried by multiple
turns of STL through detector
axis.2

2IDS-NF-020, Interim Design Report
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Simulation and Reconstruction

MIND Simulation

o Events simulated using

GENIE.

Detector simulated using GEANTA4.

o Events products propagated
through detector volume.

o Energy deposition recorded in
2 cm thick scintillator plane.
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Ryan Bayes (University of Glasgow)

Simple digitization applied to events.

o Deposition grouped into 3x3 cm? voxels.

o 5 m attenuation length applied to energy.

@ Smearing applied to hit position.?

4arxiv:1208.2735
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Simulation and Reconstruction

Muon Reconstruction within MIND

©

Position Pull Trajectories identified using Kalman filter.

e o Multiple trajectories identified per event.
o Helix fit to trajectory with Kalman fit
o (.Y 55 55 B)-
o Longest trajectory selected as the muon.
it S o Energy reconstructed as E, = E,, + Epag

or using Quasi elastic approximation.

Direction Pull Curvature Pull Momentum Resolution
x10°
8 F g e
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Event Selection with MIND

Analysis

o Five variables with potential correlations used.
o Adopted TMVA package.

o Multiple methods tested i.e. Boosted Decision Trees
(BDT), k-Nearest Neighbour (KNN), etc.

o Train CC (signal) to NC (background) separately for
stored pt and .

TMVA response for classifier: BDT TMVA Cut efficiencies and optimal cut value
o T, T T T T T T T T T Si l effi ——=—Signal purity
5 EESem BRRE i -
z 77/ Background g J sis+B
z 12f ? 1f =
Zz m 2
2 ] 5 I / :N\\*
10F (% y
r B 2 08
£ ES 2
C °B E 06 s
C K3 i} L / 6
Sp 12 r Vi —~
£ B 0.4 2
4 =B L B
£ 1a F
L qo 0.2 o
2t “H j_emm? maxmym $f {S+B is
C 15 [ 20.8489 whey 4793
o & | L ! S 0
0.2 0 0.2 0.4 0.6 0.8 1 0.2 0 0.2 0.4 0.6 08 1
BDT response Cut value applied on BDT output
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Event Selection with MIND

Event Selection Efficiency

Efficiency Background (stored p™)
> E >
5 08t e T g
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4

Background (stored n™)

o Clear difference between

beam polarity (both physics N
and training). e .
o Different MVA have different L
low energy behaviour WL o
o Compare BDT to KNN 3 T T

6 7 10
True Energy (GeV)
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Event Selection with MIND

Event Selection Efficiency
Efficiency

0.8 .
0.78
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- —e— p* detected from v, CC
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o Clear difference between
beam polarity (both physics
and training).

o Different MVA have different
low energy behaviour

o Compare BDT to KNN
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Event Selection with MIND

Rates After Selection

D

(o]

t. response for v, CC sample

o GLoBeS package used to turn Det.

N 10
(] 9| .
g 4 response into detector rates
o
s 7
5 6 @ Assume 100 kt detector, 2000 km
2 5 .
! baseline.
3 _
2 o Use 5x1020 ut/yrand 5x1020 —/yr
64— | @ Assume 10 years running.
Reconstructed Energy (GeV)
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Event Selection with MIND

Rates After Selection

Det. response for v, CC sample

(o]

o GLoBeS package used to turn Det.

N 10
e 2 response into detector rates
g 7
5 6 @ Assume 100 kt detector, 2000 km
£ baseline.
3
2 o Use 5x1020 ut/yrand 5x1020 —/yr
64— | @ Assume 10 years running.
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Adcp (in degrees)

Physics at Neutrino Factory with MIND

Precision of CP Violation Measurements

6.5

KNN Method - o Assume
6 r Cuts-based Method - X i
ol o 1.4% Signal systematic
' uncertainty (Fluxx
° Cross-Section)
a5t o 20% Background systematic
4l uncertainty (Ditto).
a5l L o Precision between 4° and 5°.
-200 -150 -100 -50 0 50 100 150 200
8cp (in degrees) 0 ~85% coverage of Ajcp at 3o.
. KNN Method
o Method choice BT Method
© F 3 450F R
affects 5400? —, ccja; 90 E —v.ccs ire.o
3 3500 =0
background % s00E Hec
rejection. £ ook e o bt
o Background g o b
affects result N R T
0 2 4 8 10 0 2 4 6 8 10

weakly.
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Physics at Neutrino Factory with MIND

CP Violation for Modified Experiments

Intermediate Exposure

Adgp (in degrees)

100KT-yrs e
200KT-yrs.

B00KT-yrs essesssnens

[ 400KT-yrs 4
500KT-yrs,

r 00 KT-yrs 1

TOOKTyrs v e v e

800 KTyrs

100 200 300

-100 0
dcp (in degrees)

o Partial exposure parametrized

as product of mass by years.

@ Gains in Aégp small after 600

KT-yrs.

5 GeV E,,, 1300 km baseline

Ddcp (in degrees)
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10 GeV p, 1000 KT-yrs.
5Gevy
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Re-optimized analysis for 5
GeV NF.

Identical exposure to 10 GeV
NF given 1000 KT-yr.

v
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Physics at Neutrino Factory with MIND

Systematics for a Neutrino Factory Experiment

12 : ; ; . .
19/20% sys, f f— . .
104/20% oY%, focus . o Two systematics cases studied.
10 t m4%/40% sys, focus g~ e i
g o "Known" from MINOS
g ° o Expected for NF
S ol | -,
& Detector Construction Uncertainties
ar Uncertainty Known Measures Expected Contribution
Signal Bkgd Signal Bkgd
2 . . . . . . . EM Model 2% 0 0.5% 0
-200 -150 -100 -50 0 50 100 150 200 Magnetic Field <1% <1% 0.2% 3%
3cp (in degrees) Steel 0.2% 0.2% 0.2% 0.2%

Beam and Theoretical Systematic Uncertainties

Uncertainty Known Measures Expected Contribution
Signal Background Signal Background

Source luminosity  0.1% 0.1% 0.1% 0.1%
Cross section 4% 40% 0.5% 5%
Hadronic Model 0 15% 0 8%

o Adcp between 6° and 10° for "known" systematics case.
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Physics at Neutrino Factory with MIND

Cosmic Ray Backgrounds

Question: Do we need to put this detector underground?

@ Simulations done with CRY generator in GEANT4 detector.

o ldentical reconstruction and event selection done.

o Apply self vetoing fiducial cuts at 30 cm.

o Detector will need overburden >6 m.

Y Position (m)
DB N O N B OO @

' ' ' '
1 00
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Y Position (m)
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Events in Detector

&
Qo
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Stored u™
Signal 17802
Bkgd 298
Cosmics | 261370
Stored 1~
Signal | 3166
Bkgd 244
Cosmics | 73169
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Physics at Neutrino Factory with MIND

nuSTORM

@ 120 GeV proton beam incident on a graphite target produce pions.
o Pions are horn captured, transported, and injected into ring.
o 52% of pions decay to muons before first turn

@ Muons within momentum acceptance circulate in ring.

STORM

SuperBIND Detector
_ Target
NeutrinAo Beam Muon Decay Ring 0

- C

| ———226 m—p|

o Study sterile neutrino
oscillations

o 1.5 cm steel plates, 1.5 cm
thick Scint. plane

o Field induced by 270 kA-turn current in SCTL.
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Physics at Neutrino Factory with MIND

Sterile Sensitivity at nuUSTORM

o Assume sample of 1x10'8 useful x* decays.

o 1.3 kTon iron-scinitillator calorimeter detector, 2 km from ring.
o Assume a 0.5% rate and 0.5% cross-sectional systematic.

@ In absence of interaction studies 0.5%—5%.

ve — v, Appearance Search v, — i, Disappearance Search
10
" 100, 1% Sys 10
99% C.L., 1% Sys
= 106 5% Sys
399% C.L., 5% Sys -
99% C.L: Fit to Evid. -
e 99% C.L: Fit to App. - e
> 99%C.L. Icarus - 3
N‘; 1 g P 1
5 E
99%, 1% Sys., Dis.
99%, 5% Sys., Dis.
ut 99% Fit to Dis. Data
0.1 . i 0.1 .
0.0001 0.001 0.01 0.1 0.01 0.1
sin®20

. 2
sin Zf)eu m

'D. Adey et. al. Phys. Rev. D 89, 071301(R)
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Physics at Neutrino Factory with MIND

Conclusions

o MIND is a well developed technology suitable for a Neutrino
Factory.
o A full simulation of the detector has been developed to evaluate
detector performance.
o Excellent charge selection allows for reduction of background
below parts in 103
@ Simulation can (and has) been used to scope variations in the
detector technology.
o Sterile neutrino search at nuSTORM.
o Reduced energy neutrino factory.
o For IDS-NF design a precision in cp between 4° and 5° is
achievable
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Physics at Neutrino Factory with MIND

Thank you
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