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Background

A 10 GeV Neutrino Factory

Use a single 2000 km
baseline with 10 GeV
stored µ±

Neutrinos from a
cooled muon beam

Known flavour
content
Known energy
distribution
Reduced beam
uncertainties (< 1%)

Magnetized detector
needed for charge
separation.
See talk by P. Soler
(Tues PM WP3).

562 m
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Background

Neutrino Oscillations at a Neutrino Factory

Accessible Oscillation Channels

Store µ+ Store µ−

Golden Channel νe → νµ ν̄e → ν̄µ
νe Disappearance Channel νe → νe ν̄e → ν̄e
Silver Channel νe → ντ ν̄e → ν̄τ

Platinum Channel ν̄µ → ν̄e νµ → νe
νµ Disappearance Channel ν̄µ → ν̄µ νµ → νµ
Dominant Oscillation ν̄µ → ν̄τ νµ → ντ

We know a

sin2 2θ13 = 0.095± 0.010
sin2 2θ12 = 0.857± 0.024
sin2 2θ23 > 0.95
∆m2

12 = (7.65± 0.20)× 10−5 eV2

∆m2
23 = (2.32+0.12

−0.08)× 10−3 eV2

Effect of δCP on oscillated NF spectrum
from 5×1021 stored µ decays shown.

aJ. Beringer et al. (Particle Data Group),
Phys. Rev. D86, 010001 (2012)

νµ CC interaction rate with perfect 100 kt detector

 0

 500

 1000

 1500

 2000

 2500

 0  2  4  6  8  10

N
eu

tr
in

o 
In

te
ra

ct
io

ns
 p

er
 2

50
 M

eV

Neutrino Energy (GeV)

νµ CC, δCP = -90 degrees
νµ CC, δCP =   0 degrees

νµ CC, δCP =  90 degrees
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Simulation and Reconstruction

MIND: A Magnetized Iron Neutrino Detector

Octagonal cross-section
14×14 m2

Fe plates 3 cm thick
Space points from paired array
of Scint bars 3×1 cm2

Toroidal magnetic field in steel.
Field induced by 100 kA-turns.
Current carried by multiple
turns of STL through detector
axis.a

aIDS-NF-020, Interim Design Report
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Simulation and Reconstruction
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Simulation and Reconstruction

MIND Simulation

Events simulated using
GENIE.

Detector simulated using GEANT4.
Events products propagated
through detector volume.
Energy deposition recorded in
2 cm thick scintillator plane.

CHAPTER 6. THE GOLDEN CHANNEL OSCILLATION SIGNAL WITH A
MAGNETISED IRON NEUTRINO DETECTOR
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Figure 6.6: The digitization and voxel clustering of an example event: (top left) bending
plane view, (top right) non bending plane, (bottom) an individual scintillator plane. The
individual hits are small dots (in red), the blue squares are the voxels and the black asterisks
represent the centroid positions of the clusters.

85

Simple digitization applied to events.

Deposition grouped into 3×3 cm2 voxels.
5 m attenuation length applied to energy.
Smearing applied to hit position.a

aarxiv:1208.2735
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Simulation and Reconstruction

Muon Reconstruction within MIND

Position Pull
pullx

Entries  946891

Mean   -0.004073

RMS      1.93

 / ndf 2χ  1.814e+04 / 82

Constant  1.370e+02± 9.685e+04 

Mean      0.001866± -0.001779 

Sigma     0.002± 1.798 
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Direction Pull
pulldy

Entries  945338

Mean   0.0006489

RMS       1.7

 / ndf 2χ  1.321e+04 / 83

Constant  1.630e+02± 1.204e+05 
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Sigma     0.001± 1.452 
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Trajectories identified using Kalman filter.
Multiple trajectories identified per event.
Helix fit to trajectory with Kalman fit
(x , y , ∂x

∂z ,
∂y
∂z ,

q
p ).

Longest trajectory selected as the muon.
Energy reconstructed as Eν = Eµ + Ehad
or using Quasi elastic approximation.

Curvature Pull
pullp

Entries  946713

Mean   -0.8557

RMS     1.593

 / ndf 2χ  4.124e+04 / 83
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Event Selection with MIND

Analysis

Number of hits in Trajectory
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Five variables with potential correlations used.
Adopted TMVA package.
Multiple methods tested i.e. Boosted Decision Trees
(BDT), k-Nearest Neighbour (KNN), etc.
Train CC (signal) to NC (background) separately for
stored µ+ and µ−.
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Event Selection with MIND

Event Selection Efficiency
Efficiency

True Neutrino Energy (GeV)
0 1 2 3 4 5 6 7 8 9 10

F
ra

ct
io

na
l E

ffi
ci

en
cy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 CCµν detected from +µ

 CCµν detected from -µ

Background (stored µ−)

True Energy (GeV)
0 1 2 3 4 5 6 7 8 9 10

F
ra

ct
io

na
l E

ffi
ci

en
cy

-610

-510

-410

-310

-210

-110

1

10
 CC mis-ID Backgroundµν
 NC Backgroundµν

 CC Backgroundeν
 CC Contaminationτν
 CC Backgroundτν

Clear difference between
beam polarity (both physics
and training).
Different MVA have different
low energy behaviour

Compare BDT to KNN

Background (stored µ+)

True Energy (GeV)
0 1 2 3 4 5 6 7 8 9 10

F
ra

ct
io

na
l E

ffi
ci

en
cy

-610

-510

-410

-310

-210

-110

1

10
 CC mis-ID Backgroundµν
 NC Backgroundµν
 CC Backgroundeν
 CC Contaminationτν

 CC Backgroundτν

Ryan Bayes (University of Glasgow) MIND at NuFACT 29 August, 2014 9 / 18



Event Selection with MIND

Event Selection Efficiency
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Event Selection with MIND

Rates After Selection
Det. response for νµCC sample
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Event Selection with MIND

Rates After Selection
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Physics at Neutrino Factory with MIND

Precision of CP Violation Measurements
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Physics at Neutrino Factory with MIND

CP Violation for Modified Experiments

Intermediate Exposure
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Physics at Neutrino Factory with MIND

Systematics for a Neutrino Factory Experiment
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1%/20% sys, focus µ+

1%/20% sys, focus µ-

4%/40% sys, focus µ+ Two systematics cases studied.

"Known" from MINOS
Expected for NF

Detector Construction Uncertainties
Uncertainty Known Measures Expected Contribution

Signal Bkgd Signal Bkgd
EM Model 2% 0 0.5% 0

Magnetic Field <1% <1% 0.2% 3%
Steel 0.2% 0.2% 0.2% 0.2%

Beam and Theoretical Systematic Uncertainties

Uncertainty Known Measures Expected Contribution
Signal Background Signal Background

Source luminosity 0.1% 0.1% 0.1% 0.1%
Cross section 4% 40% 0.5% 5%

Hadronic Model 0 15% 0 8%

∆δCP between 6◦ and 10◦ for "known" systematics case.
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Cosmic Ray Backgrounds

Question: Do we need to put this detector underground?

Simulations done with CRY generator in GEANT4 detector.
Identical reconstruction and event selection done.
Apply self vetoing fiducial cuts at 30 cm.
Detector will need overburden >6 m.
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8 Events in Detector

Stored µ+

Signal 17802
Bkgd 298

Cosmics 261370
Stored µ−

Signal 3166
Bkgd 244

Cosmics 73169
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nuSTORM

120 GeV proton beam incident on a graphite target produce pions.
Pions are horn captured, transported, and injected into ring.

52% of pions decay to muons before first turn

Muons within momentum acceptance circulate in ring.SuperBIND�

31 Alan Bross                              NuFact 2013 - IHEP                              August 24th, 2013 

Study sterile neutrino
oscillations
1.5 cm steel plates, 1.5 cm
thick Scint. plane

Field induced by 270 kA-turn current in SCTL.
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Sterile Sensitivity at nuSTORM 1

Assume sample of 1×1018 useful µ+ decays.
1.3 kTon iron-scinitillator calorimeter detector, 2 km from ring.
Assume a 0.5% rate and 0.5% cross-sectional systematic.
In absence of interaction studies 0.5%→5%.

νe → νµ Appearance Search

 0.1

 1

 10

 0.0001  0.001  0.01  0.1

∆
m

2
 [
e
v2

]

sin22θeµ 

10σ, 1% Sys
99% C.L., 1% Sys

10σ, 5% Sys
99% C.L., 5% Sys

99% C.L. Fit to Evid.
99% C.L. Fit to App.

99% C.L. Icarus

ν̄µ → ν̄µ Disappearance Search
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1D. Adey et. al. Phys. Rev. D 89, 071301(R)
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Conclusions

MIND is a well developed technology suitable for a Neutrino
Factory.
A full simulation of the detector has been developed to evaluate
detector performance.
Excellent charge selection allows for reduction of background
below parts in 103

Simulation can (and has) been used to scope variations in the
detector technology.

Sterile neutrino search at nuSTORM.
Reduced energy neutrino factory.

For IDS-NF design a precision in δCP between 4◦ and 5◦ is
achievable
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