Model comparison and experimental constraints

Davide Meloni

Dipartimento di Matematica e Fisica
 RomaTre

Based mainly on:
NUFACT2014
-Ballett, King, Luhn, Pascoli, Schmidt,
Phys.Rev. D89, 016016 (2014)
-D.M., Phys.Lett. B728 (2014) 118-124

Big question

Is it possible to identify the flavor model "responsible" for the measured values of v mixing?

Two different but equivalent approaches to study the problem:
" sum rules among mixing angles: are they satisfied?
" direct comparison of different flavor models

Experimental precision is the key issue

Also important: choice of the variables to perform the check

Approach based on sum rules

Theory invariant under a flavor group G_{F}

- permutation groups like A4 and S4 suitable for TBM

Residual symmetry in the neutrino sector: $G_{v} \rightarrow U_{v}$

Residual symmetry in the charged lepton sector $G_{\mid} \rightarrow U_{\text {I }}$

$$
U_{P M N S}=U_{1}+U_{v}
$$

At this step: quite often a vanishing reactor angle
Appropriate breaking of the residual symmetries generates a non-vanishing th13, whose value is related to the shift of th23 from maximal mixing

Approach based on sum rules

Ballett, King, Luhn, Pascoli, Schmidt, Phys.Rev. D89, 016016 (2014)

$$
s_{23}=\left(\frac{1+a_{0}}{\sqrt{2}}\right)+\lambda s_{13} \cos \delta
$$

- a_{0} and lambda are model-dependent parameters

$$
\begin{array}{lll}
a_{0}=0, \lambda=1 / 2 & \rightarrow & s_{23}^{2}=\frac{1}{2}+\frac{1}{\sqrt{2}} s_{13} \cos \delta
\end{array} \quad \text { Yin Lin, Nucl.Phys. B824 (2010) 95-110 }
$$

Compatibility with data

$s_{23}=\left(\frac{1+a_{0}}{\sqrt{2}}\right)+\lambda s_{13} \cos \delta$
$a_{0}=0, \lambda=-1 / 2, \lambda=0$

Red areas:
projected sensitivities based on T2K, NOvA, Double Chooz, Reno and Daya Bay

Gray areas:
1 and 2 sigma intervals

Excluding sum rules

Strategy:

Plot already shown by Christoph...

- "cos δ " and "a" (or equivalently s_{23}) are varied in their allowed ranges
- for every (δ, a) pairs the best fitting set of oscillation parameters obeying a given sum-rule is found
- the corresponding χ^{2} is computed and, if above a reference value, the sum-rule is exclud

$$
\lambda=1
$$

Ballett, King, Luhn, Pascoli, Schmidt, Phys.Rev. D89, 016016 (2014)
D.Meloni

The Hernandez-Smirnov approach

Hernandez and Smirnov, Phys.Rev.D86, 053014 (2012)

- Mass terms

$$
\mathscr{L}=\frac{g}{\sqrt{2}} \bar{e}_{L} U_{P M N S} \gamma^{\mu} \nu_{L} W_{\mu}^{+}+\bar{E}_{R} m_{\ell} \ell_{L}+\frac{1}{2} \bar{\nu}_{L} m_{\nu} \nu_{L}+\ldots+\text { h.c. }
$$

- nu-mass: $S_{i}^{\top} m_{n} S_{i}=m_{n}(i=1,2) \rightarrow Z_{2} \times Z_{2} \rightarrow S^{2}=1$
- charged leptons: $I_{L} \rightarrow T I_{L^{\prime}} I_{R} \rightarrow T I_{R} \rightarrow U(1)^{3}$ (or Z_{m} for the discrete case)

$$
S_{1}=\left(\begin{array}{lll}
1 & & \\
& -1 & \\
& & -1
\end{array}\right), \quad S_{2}=\left(\begin{array}{lll}
-1 & & \\
& 1 & \\
& & -1
\end{array}\right) \quad T=\left(\begin{array}{llll}
e^{2 \pi i \frac{k}{m}} & & \\
& & e^{2 \pi i \frac{i}{m}} & \\
& & e^{2 \pi i \frac{k}{m}}
\end{array}\right) \stackrel{\boldsymbol{T}_{\boldsymbol{e}}}{\boldsymbol{T}_{\tau}}
$$

" Assumptions: the residual symmetries are 1-generator groups

D.Meloni
$\left.S_{i}, T_{\alpha}\right\}$ generate the flavor group

The Hernandez-Smirnov approach

- The definition of G requires: $\left(S_{i}, T_{\alpha}\right)^{p}=I$

$$
\mathbf{D}(\mathbf{2}, \mathbf{m}, \mathbf{p}) \quad \begin{aligned}
& \\
& D(2,2,3)=\mathbf{S}_{3}, \\
& D(2,3,3)=\mathbf{A}_{4}, \\
& D(2,3,4)=\mathrm{S}_{4}, \\
& D(2,3,5)=\mathbf{A}_{5},
\end{aligned}
$$

* Consequence of the 1-g assumption: mixing angles not all fixed!

Here I consider two different models:

$$
\begin{aligned}
& 1 \mathrm{~T}: \mathrm{S}_{1}, \mathrm{Te},(\mathrm{~m}, \mathrm{p})=(3,4)-->S_{4} \\
& 2 \mathrm{~T}: \mathrm{S}_{2}, \mathrm{Te},(\mathrm{~m}, \mathrm{p})=(3,3)-->A_{4}
\end{aligned}
$$

1 T vs 2 T

$$
\begin{gathered}
1 \mathrm{~T} \\
\cos ^{2} \theta_{12}=\frac{2}{3 \cos ^{2} \theta_{13}} \\
\tan 2 \theta_{23}=\frac{-1+5 s_{13}^{2}}{2 \cos \delta s_{13} \sqrt{2\left(1-3 s_{13}^{2}\right)}} \\
\quad\left(a_{0}=0, \lambda=1\right)
\end{gathered}
$$

$2 T$

$$
\sin ^{2} \theta_{12}=\frac{1}{3 \cos ^{2} \theta_{13}}
$$

$$
\tan 2 \theta_{23}=\frac{1-2 s_{13}^{2}}{\cos \delta s_{13} \sqrt{2-3 s_{13}^{2}}}
$$

$$
\left(a_{0}=0, \lambda=1 / 2\right)
$$

Ma, Rajasekaran, Phys.Rev.D64,113012(2001)
Babu,Ma,Valle, Phys.Lett.B552,207(2003)
Ma, Phys.Rev.D73,057304(2006)

Main message of this talk

D.M., Phys.Lett. B728 (2014) 118-124

It is not enough that the models gives different intervals on the allowed mixing angles to distinguish them

th12's are not overlapping: not guaranteed that a precise measurement can tell 1T from 2T

Where to look for the largest effects?

D.M., Phys.Lett. B728 (2014) 118-124

Consider $\nu_{\mu}-->\nu_{e}$ and $\nu_{\mu} \rightarrow->\nu_{\mu}$ transitions

in the regions where the mixing angles are overlapping (this case for simplicity):

$$
\Delta P_{\mu e}=\left|P_{\mu e}^{1 \mathrm{~T}}-P_{\mu e}^{2 \mathrm{~T}}\right| \sim \sin \left(\frac{\delta_{1}-\delta_{2}}{2}\right) \sin \left[\frac{1}{2}\left(2 \Delta+\delta_{1}+\delta_{2}\right)\right]
$$

sensibly different from zero for $\delta_{1}-\delta_{2} \sim \pi$ in the correct range (remember: $\delta_{1}-\delta_{2}>0.6$)

$$
\Delta P_{\mu \mu} \sim \cos \delta_{2}-\cos \delta_{1}
$$

sensibly different from zero for $\delta_{1} \sim \pi / 2+\delta_{2} \longrightarrow$
in the correct range (remember: $\delta_{1}-\delta_{2}>0.6$)

Where to look for the largest effects?

D.M., Phys.Lett. B728 (2014) 118-124
for the NOvA setup

relevant differences here

for the T2K setup

relevant differences here
black lines: fluxes as usual, energy dependence is relevant
D.Meloni

A possible way to distinguish among 1T and 2T

D.M., Phys.Lett. B728 (2014) 118-124

The strategy

- Choose a pair of $\left(\bar{\theta}_{13}, \bar{\delta}\right)$ in the region allowed by the model 1 T and compute the expected number of events per energy-bin $\mathrm{N}^{1 T}{ }_{a, i}\left(\overline{\theta_{13}}, \bar{\delta}\right)$ (th12 and th23 determined by the relations shown before)
- One then compute the events for the competing model $\mathrm{N}^{2 T}{ }_{a, i}\left(\theta_{13}, \delta\right)$ in the whole parameter space
- Minimize a χ^{2} over the pair $\left(\theta_{13}, \delta\right)$

Models can be distinguished in $\left(\bar{\theta}_{13}, \bar{\delta}\right)$ if $\chi^{2}{ }_{\text {min }}>=\chi^{2}{ }_{\text {cut }}$

$$
\begin{aligned}
& \chi^{2}=\sum_{\alpha, i} \frac{\left[N_{\alpha, i}^{2 \mathrm{~T}}\left(\theta_{13}, \delta\right)-N_{\alpha, i}^{1 \mathrm{~T}}\left(\overline{\theta_{13}}, \bar{\delta}\right)\right]^{2}}{\sigma_{\alpha, i}^{2}} \quad \begin{array}{l}
\text { i=energy bin, } \alpha=\text { flavor } \\
n_{\alpha}, b_{a}=\text { overall systematic effects }=0.05
\end{array} \\
& \sigma_{\alpha, i}^{2}=N_{\alpha, i}^{1 \mathrm{~T}}\left(\overline{\theta_{13}}, \bar{\delta}\right)+B_{\alpha, i}+\left[n_{\alpha} N_{\alpha, i}^{1 \mathrm{~T}}\left(\overline{\theta_{13}}, \bar{\delta}\right)\right]^{2}+\left[b_{\alpha} B_{\alpha, i}\right]^{2}
\end{aligned}
$$

A possible way to distinguish among 1T and 2T

D.M., Phys.Lett. B728 (2014) 118-124

The strategy

do it for (a discrete choice of) every $\left(\bar{\theta}_{13}, \bar{\delta}\right)$ and collect the good points

Choice of the facilities

- NOvA:

14 Kt totally active scintillator
Backgrounds:

- in appearance: intrinsic nue beam, mis-identified muons and single piO from NC
- in disappearance: wrong-sign muons from numubar contamination in numu beam, NC events

Agarwalla,Prakash,Raut,Sankar, 1208.3644; Patterson 1209.0716,
Coloma, Huber, Kopp, Winter, 1209.5973; Pilar Coloma, private communication

- T2K:
22.5 K† water Cerenkov detector

Backgrounds:

- in appearance: nu_mu_disappearance_CC, NC, nu_e_beam, nu_e_bar_beam
- in disappearance: NC

Huber, Lindner,Schwetz, Winter, 0907.1896;
Fechner, DAPNIA-2006-01-Y

Results for a single experiment

similar results for NOvA and T2K 90\% CL

Discrimination possible for $n_{a}<5 \%$

- The true $\delta_{C P}$ must be as distant as possible from the corresponding 2T model values: $\delta_{C P}>\sim 2.06$
- APP and DIS alone cannot determine any discrimination
\rightarrow synergy
DDIS helps with th23, slightly different among 1 T and 2 T

It turns out that no distinction is possible in the $2 T$ parameter space

Results for the NOvA + T2K combination

D.M., Phys.Lett. B728 (2014) 118-124

Not a huge synergy in the 1 T parameter space

- In the 2T case distinction is possible in a limited portion of the parameter space, for $\delta_{C p}<\sim 0.2$ and very large th13
-The different behavior is (partially) explained in terms of intrinsic degeneracy

Results for the NOvA + T2K combination

D.M., Phys.Lett. B728 (2014) 118-124
-For a given $\left(\bar{\theta}_{13}, \bar{\delta}\right)$ in the 1 T space, clone points are given by $\left(\theta_{13}, \delta\right)$ solving (consider rate-only for simplicity):

$$
\begin{aligned}
& N_{\mu}^{1 \mathrm{~T}}\left(\overline{\theta_{13}}, \bar{\delta}\right)=N_{\mu}^{2 \mathrm{~T}}\left(\theta_{13}, \delta\right) \\
& N_{e}^{1 \mathrm{~T}}\left(\overline{\theta_{13}}, \bar{\delta}\right)=N_{e}^{2 \mathrm{~T}}\left(\theta_{13}, \delta\right)
\end{aligned}
$$

Black regions resemble the "no-confusion" regions of the previous plots

- The real situation is more complicated, due to the energy dependence of the signal

Results for T2HK

D.M., Phys.Lett. B728 (2014) 118-124

Much better discriminating power!

Conclusions

" Neutrino physics is an active field, from both experimental and theoretical point of views

- Many and precise data are now available, which in principle allow to discriminate among flavor models
- Two (or more) models can be distinguished by their predictions for the mixing angles but experiments with good energy resolution are necessary and systematics under control
- We started to investigate where the largest effects among two models can be seen at neutrino facilities: what about the mass difference? And matter effects?

