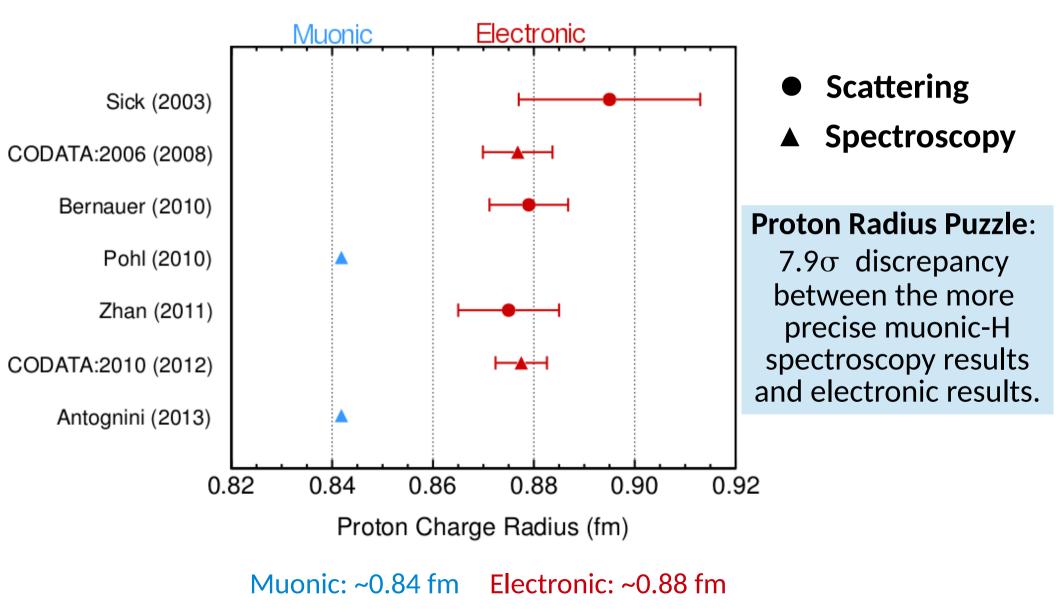
The MUSE Experiment: Studying the Proton Radius Puzzle with μp elastic scattering

Katherine Mesick for the MUSE Collaboration Rutgers University

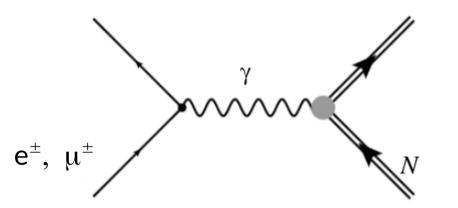

> **NUFACT2014** August 25-30, 2014 Glasgow, Scotland

Outline

- What is the proton radius puzzle
- How the proton radius is measured
- The MUSE contribution to a solution
- Experiment details and expected impact
- Summary

Review

Recent history of proton charge radius determinations:



K. Mesick (Rutgers)

Lepton Scattering

Lepton scattering from a nucleon:

Vertex currents:

$$J_e^{\mu} = -e\overline{u}_e\gamma^{\mu}u_e$$
$$J_N^{\mu} = \overline{\psi}_N \left[F_1(Q^2)\gamma^{\mu} + F_2(Q^2)\frac{i\sigma^{\mu\nu}q_{\nu}}{2M_N} \right]\psi_N$$

 F_1, F_2 are the Dirac and Pauli form factors

Sach's form factors:

$$G_E(Q^2) = F_1(Q^2) - \tau F_2(Q^2)$$

$$G_M(Q^2) = F_1(Q^2) + F_2(Q^2)$$

Fourier transform (in the Breit frame) gives spatial charge and magnetization distributions

$$\begin{aligned} \langle r_E^2 \rangle &= -6 \frac{dG_E^p(Q^2)}{dQ^2} \Big|_{Q^2 \to 0} \\ \langle r_M^2 \rangle &= -6 \frac{dG_M^p(Q^2)/\mu_p}{dQ^2} \Big|_{Q^2 \to 0} \end{aligned}$$

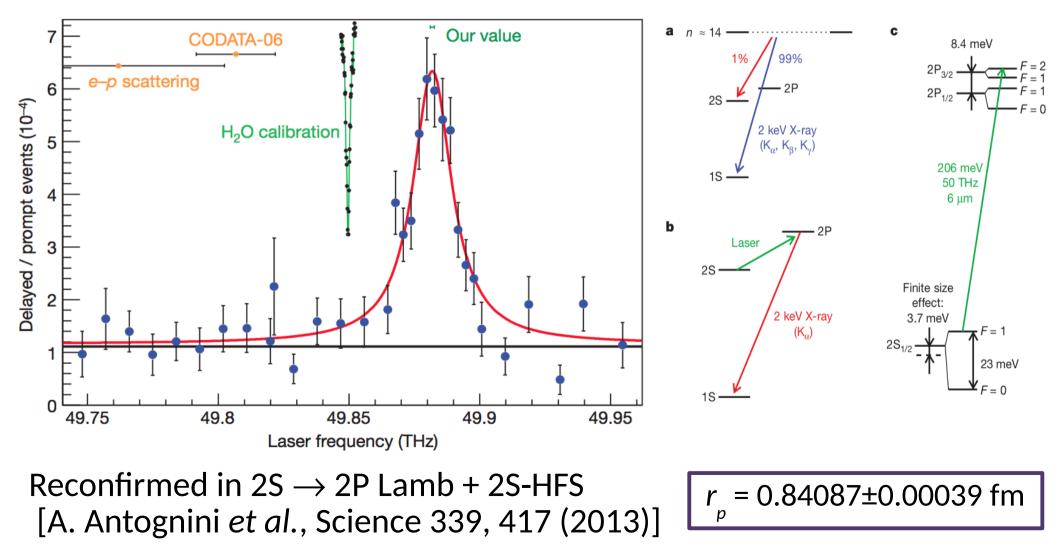
Derivative in $Q^2 \rightarrow 0$ limit:

Expect identical result from ep and µp scattering

Elastic ep Scattering

Mainz A1: Bernauer et al. (2010)

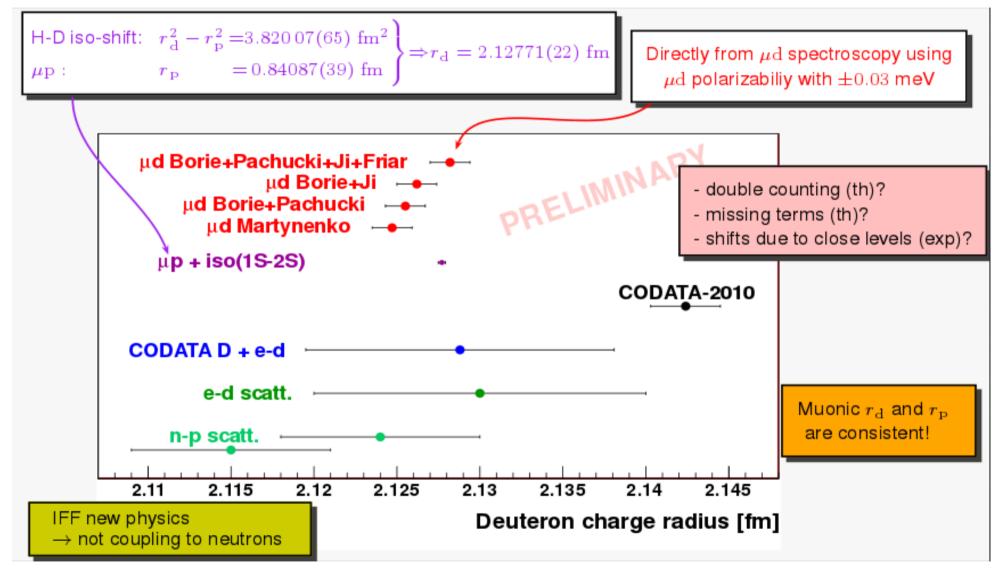
1400 points covering $Q^2 \sim 0.004$ –


Jlab E08-007 Zhan et al. (2011)

1.00 1 GeV^{2,} point-to-point cross section uncertainties 0.4% ບ ຍິ[.] 0.95 1.02 1.01 0.90 1.05 σ_{exp}/σ_{std}. dipole $G_M/\mu_p G_D$ 0.99 1.000.98 0.97 0.96 1.00^WD/³D^d^H 0.02 0.04 0 0.06 0.08 0.1 $Q^2 [(GeV/c)^2]$ Polvnomial Spline Poly. + dip. Spline × dip. 0.90 Updated global fit Poly. × dip. Friedrich-Walcher Double Dipole Inv. poly. Bernauer et al. Extended G.K. rrington, Melnitchouk & Tjon fit 0.85 0.2 0.8 1.0 0.6 0.4 1.2 **Global Fit:** $r = 0.877 \pm 0.006$ fm $Q^2 [GeV/c]^2$ 5 NUFACT2014 K. Mesick (Rutgers)

Muonic Hydrogen

Measure 2S \rightarrow 2P Lamb Shift [Pohl *et al.*, Nature 466, 213-217 (2010)]


 $\Delta \tilde{E} = 209.9779(49) - 5.2262 r_p^2 + 0.0347 r_p^3 \text{ meV} r_p = 0.84184 \pm 0.00067 \text{ fm}$

K. Mesick (Rutgers)

New: Heavier Muonic Systems

PRELIMINARY: Deuteron charge radius (slide from A. Antognini)

VERY PRELIMINARY: muonic ⁴He and e-⁴He scattering radii consistent

K. Mesick (Rutgers)

Possible Explanations

- Experimental issues...
 - μH is wrong: 3-body effects, theory uncertainties
 - Seems unlikey, known theory corrections small
 - ep scattering is wrong: underestimated uncertainties, bad radius extractions, two-photon exchange, ...

• New physics...

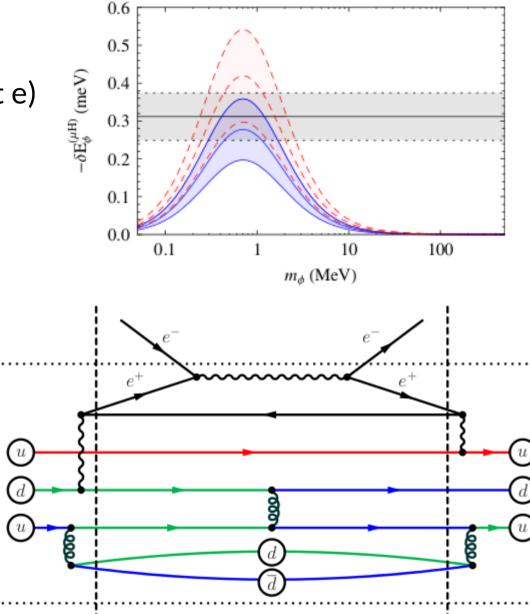
- Lepton non-universality
- New force / particle (dark photon?)
- \bullet enhanced two-photon exchange for μp
- Non-perturbative e+e- sea
- ??
- Note: many current theories ruled out / constrained by ⁴He results
- No explanation with majority support in community
- Need More Data!

Theory examples

Dark Photon:

New force with few MeV mass particle coupling to μ and p (not e)

Consistent with muon g-2


Tucker-Smith and Yavin, PRD **83**, 101702(R) (2011)

Non-perturbative sea:

~10e-7 light e+e- sea pairs per valence quark

electrons measure a larger proton size

Jentschura, PRA 88, 062514 (2013)

r _p (fm)	electrons	muons	New data needed:
atom	0.8758 ± 0.0077	0.8409 ± 0.0004	test are e and μ really different?
scattering	0.8770 ± 0.0060	???	

- Test implications for
 - BSM: modified scattering probability for Q² up to m²_{BSM}, enhanced parity violation
 - Hadronic: enhanced two-photon exchange
- Experiments include:
 - Redoing atomic hydrogen,
 - Light muonic atoms
 - Redoing electron scattering at lower Q²
 - Muon proton Elastic Scattering
 - Muon Scattering on Nuclei
 - Kaon Decays

K. Mesick (Rutgers)

r _p (fm)	electrons	muons	New data needed:
atom	0.8758 ± 0.0077	0.8409 ± 0.0004	test are e and μ really different?
scattering	0.8770 ± 0.0060	???	

- Test implications for
 - BSM: modified scattering probability for Q² up to m²_{BSM}, enhanced parity violation
 - Hadronic: enhanced two-photon exchange
- Experiments include:
 - Redoing atomic hydrogen,
 - Light muonic atoms
 - Redoing electron scattering at lower Q²
 - Muon proton Elastic Scattering
 - Muon Scattering on Nuclei
 - Kaon Decays

K. Mesick (Rutgers)

NUFACT2014

MUSE tests these

r _p (fm)	electrons	muons	New data needed:
atom	0.8758 ± 0.0077	0.8409 ± 0.0004	test are e and μ really different?
scattering	0.8770 ± 0.0060	???	
T			1

- Test implications for
 - BSM: modified scattering probability for Q² up to m²_{BSM}, enhanced parity violation
 - Hadronic: enhanced two-photon exchange
- Experiments include:
 - Redoing atomic hydrogen,
 - Light muonic atoms
 - Redoing electron scattering at lower Q²
 - Muon proton Elastic Scattering
 - Muon Scattering on Nuclei
 - Kaon Decays

K. Mesick (Rutgers)

MUSE tests these

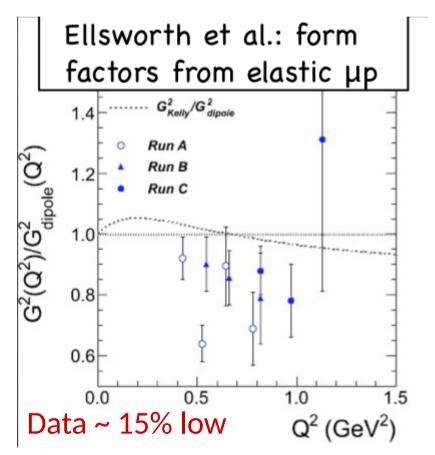
Possible next gen.

r _p (fm)	electrons	muons	New data needed:		
atom	0.8758 ± 0.0077	0.8409 ± 0.0004	test are e and µ really different?		
scattering	0.8770 ± 0.0060	???			
 Test implications for 					

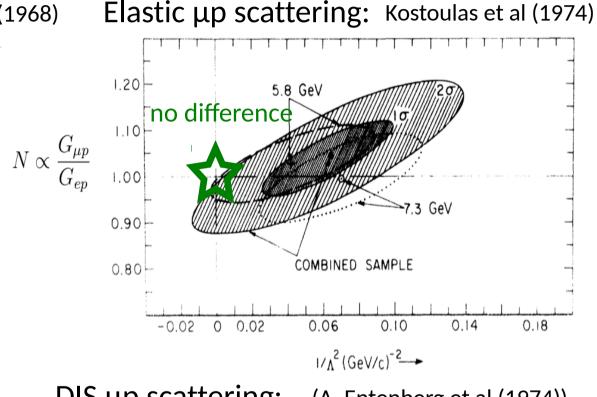
- BSM: modified scattering probability for Q² up to m²_{BSM}, enhanced parity violation
 - Hadronic: enhanced two-photon exchange
- Experiments include:
 - Redoing atomic hydrogen, YORK
 - Light muonic atoms CREMA (μD, μHe)
 - Redoing electron scattering at lower Q²
 - Muon proton Elastic Scattering
 - Muon Scattering on Nuclei
 - Kaon Decays TREK (J-PARC)
 NUFACT2014

K. Mesick (Rutgers)

MUSE tests these


JLab (ep) & Mainz (ep, eD)

Possible next gen.


e-µ Universality

1970s-1980s: experiments tested e- μ universality to ~10% level

Elastic µp scattering: Ellsworth et al (1968)

Constraints not very good!

DIS μp scattering: (A. Entenberg et al (1974)) $\sigma_{\mu p} / \sigma_{ep} \approx 1.0 \pm 0.04$ (±8.6% systematics)

e-C, and μ -C are in agreement

Also no evidence for TPE effects

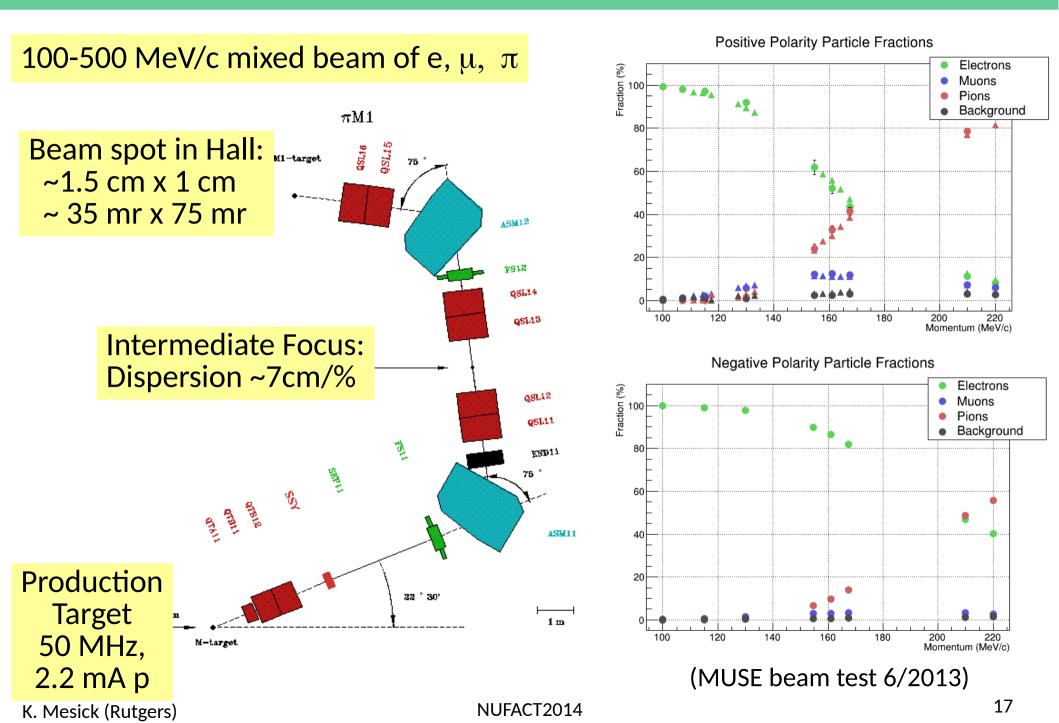
K. Mesick (Rutgers)

MUon Scattering Experiment (MUSE) at PSI

Use the world's most powerful separated $e/\mu/\pi$ beam to directly test if μp and ep scattering are different:

- Measure to higher precision than previously done, in the low Q² region for sensitivity to the radius
- Measure both μ[±]p and e[±]p cross sections, directly compare ratios for e/μ and μ⁺/μ⁻, e⁺/e⁻ (TPE) for reduced systematics and robust result
- Multiple beam momenta for overlapping datasets
- If radii different by 4%, FF slope different by 8%, xsec slope by 16%

Cross Section Experiment

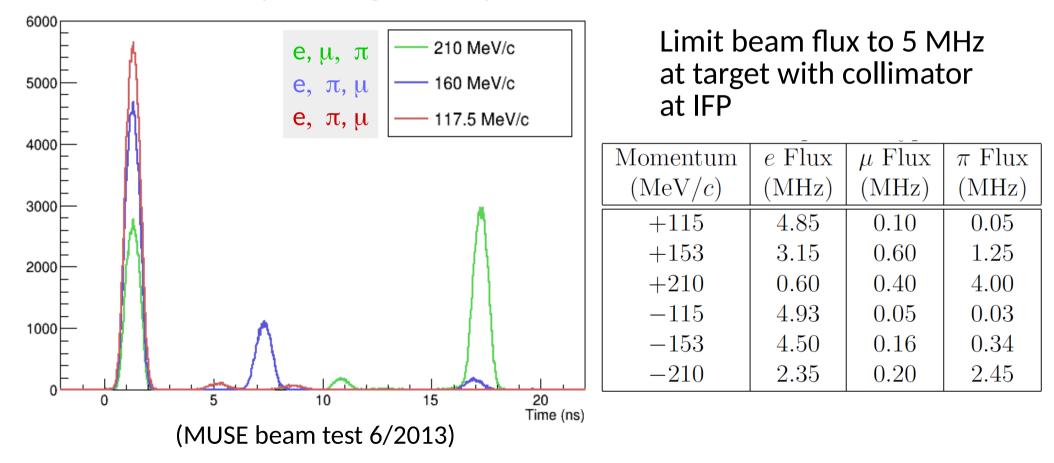

$$\begin{split} & d\sigma/d\Omega(\mathbf{Q}^2) = \mathsf{N}_{\text{counts}} / \left(\Delta\Omega \times \mathsf{N}_{\text{beam}} \times \left(\mathsf{xp}\right)_{\text{target}} \times \text{corrections} \times \varepsilon\right) \\ & \left[\frac{d\sigma}{d\Omega} \right] = \left[\frac{d\sigma}{d\Omega} \right]_{ns} \times \left[\frac{G_E^2(Q^2) + \tau G_M^2(Q^2)}{1 + \tau} + \left(2\tau - \frac{m^2}{M^2} \right) G_M^2(Q^2) \frac{\eta}{1 - \eta} \right] \\ & \left[\frac{d\sigma}{d\Omega} \right]_{ns} = \frac{\alpha^2}{4E^2} \frac{1 - \eta}{\eta^2} \frac{1/d}{\left[1 + \frac{2Ed}{M} \sin^2 \frac{\theta}{2} + \frac{E}{M}(1 - d) \right]} \quad d = \frac{\left[1 - \frac{m^2}{E^2} \right]^{1/2}}{\left[1 - \frac{m^2}{E'^2} \right]^{1/2}} \\ & \eta = Q^2/4EE' & \text{following Preedom \& Tegen,} \\ & \mathsf{PRC36, 2466 (1987)} \end{split}$$

We cannot measure absolute cross sections well enough

Do a relative measurement with 0.4% (0.6%) systematic error for μ (e)

Have 6 primary measurement settings x2 independent sets of detectors

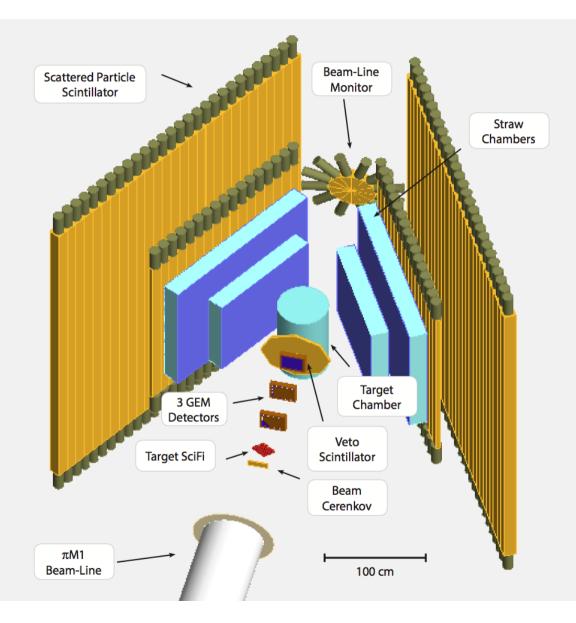
π M1 Channel at PSI



Beam considerations

Particle timing separation at chosen momentum for PID

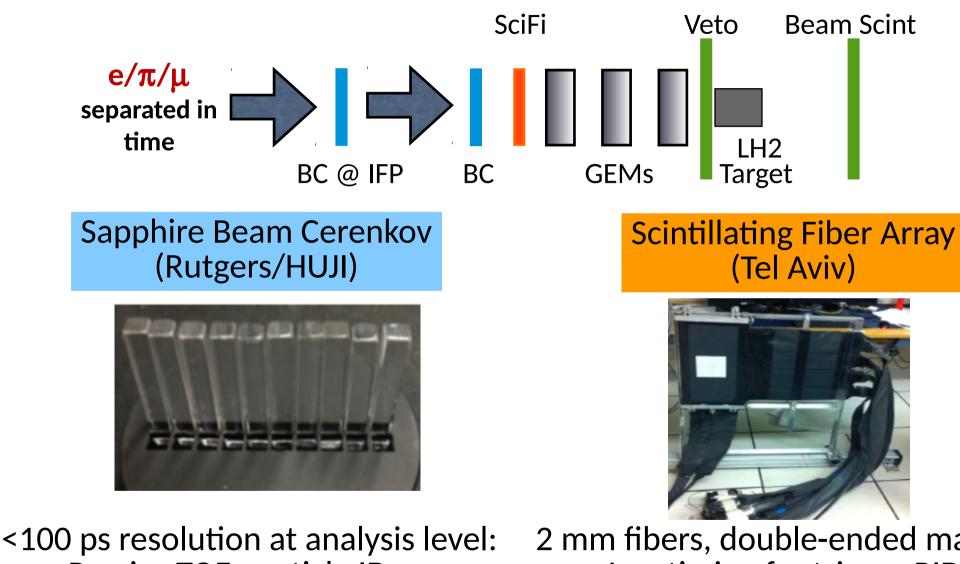
50 MHz RF \rightarrow 20 ns between bunches


Select momentum with 2 – 4 ns separation: ~ 115, 153, 210 MeV/c

RF Spectrum, Negative Polarity

Experiment Setup

Detector Overview in Simulation

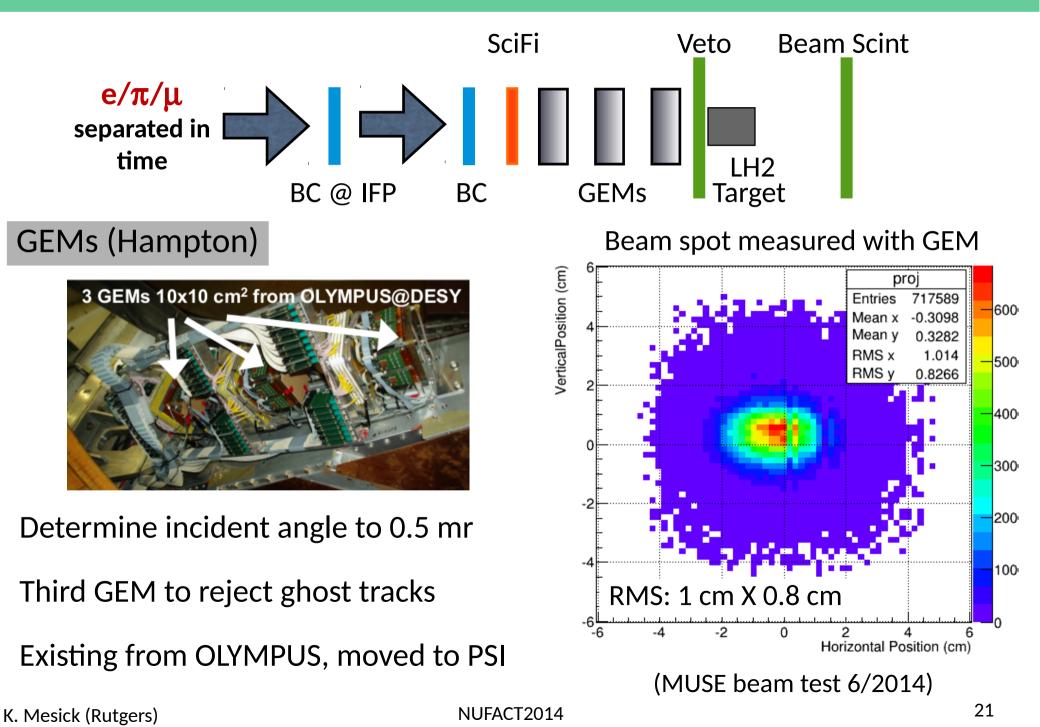


- Measure ep and µp cross sections
- p = 115, 158, and 210 MeV/c θ = 20° - 100° Q^2 = 0.002 - 0.07 GeV² ϵ = 0.256 - 0.94
- Measure both + and polarity
- Challenges include

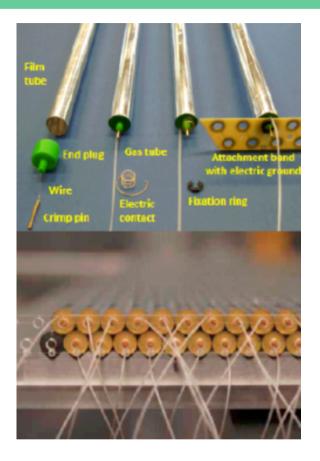
Need high pion rejection efficiency Good particle ID Precise timing

K. Mesick (Rutgers)

Beamline Instrumentation


- Precise TOF, particle ID
- Muon decay event rejection
- Use at IFP (high neutron rate)

K. Mesick (Rutgers)


2 mm fibers, double-ended maPMT

- 1 ns timing for trigger PID
- beam flux normalization
- position & time correlations with **GEMs** 20

Beamline Instrumentation

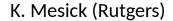
Scattered Particle Detectors

Straw Tube Tracker (HUJI + Temple):

~3000 straws, 2 chambers each side of beam

Determine scattered particle trajectory to 140 μm

Directly coupled to fast readout boards

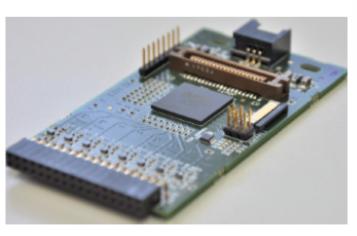

Calibrated relative to GEMs by rotating into beam

Fast scintillators (South Carolina):

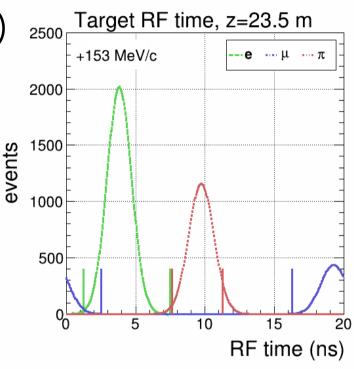
~ 90 bars, 2 planes each side of the beam

~100 (~200) cm long bars front (back) walls (thickness: 2 cm / 6 cm)

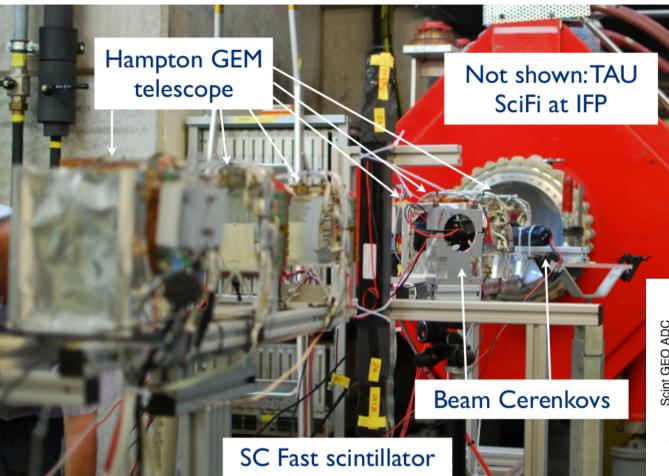
High-precision 40-50 ps timing, part of beam PID


DAQ & Trigger

DAQ (GWU): Use custom TDCs – TRB3


- cost effective, 256 ch/board
- < 25 ps resolution (11 ps in GSI bench test)
- PADIWA for frontend amplifier/disc
- Scaler functionality on board
- 5 FPGAs/board

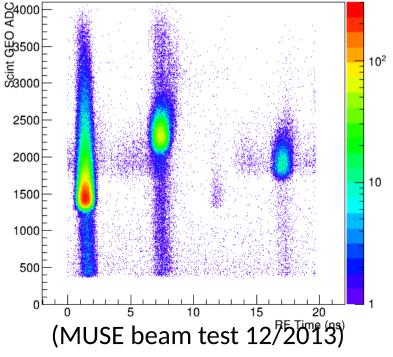
Use standard v792 QDCs for time-walk



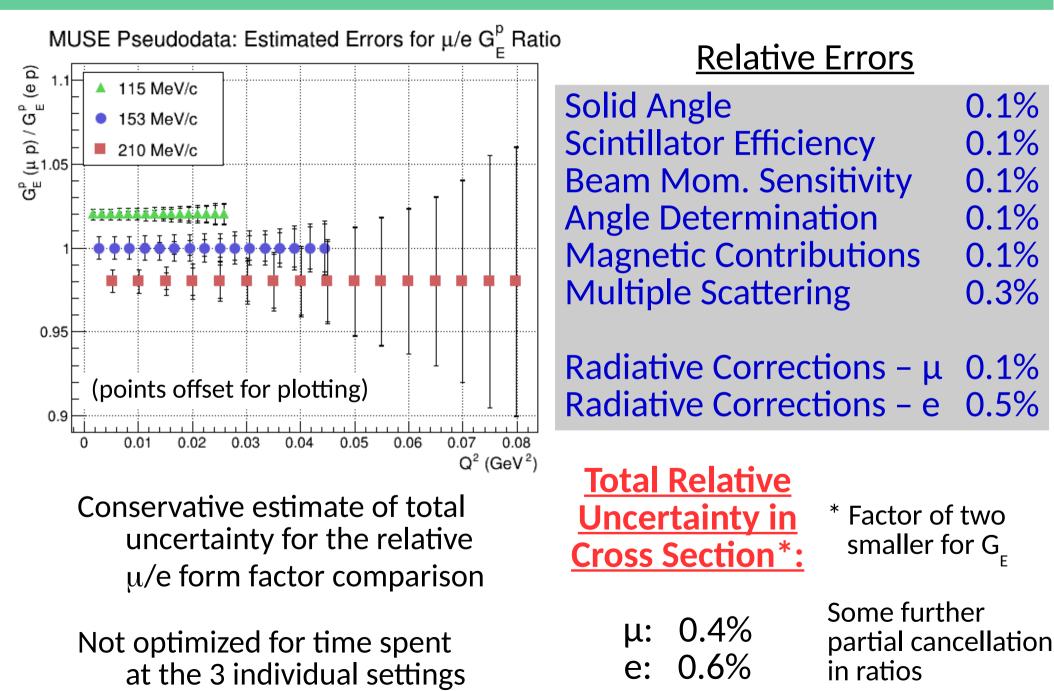
Trigger (Rutgers)

- Use FPGA from TRB3
- SciFi + BC + Beam RF determine beam PID
- Pion rejection >99.9%
- Trigger: beam PID + not VETO + scat. particle

Beam test measurements

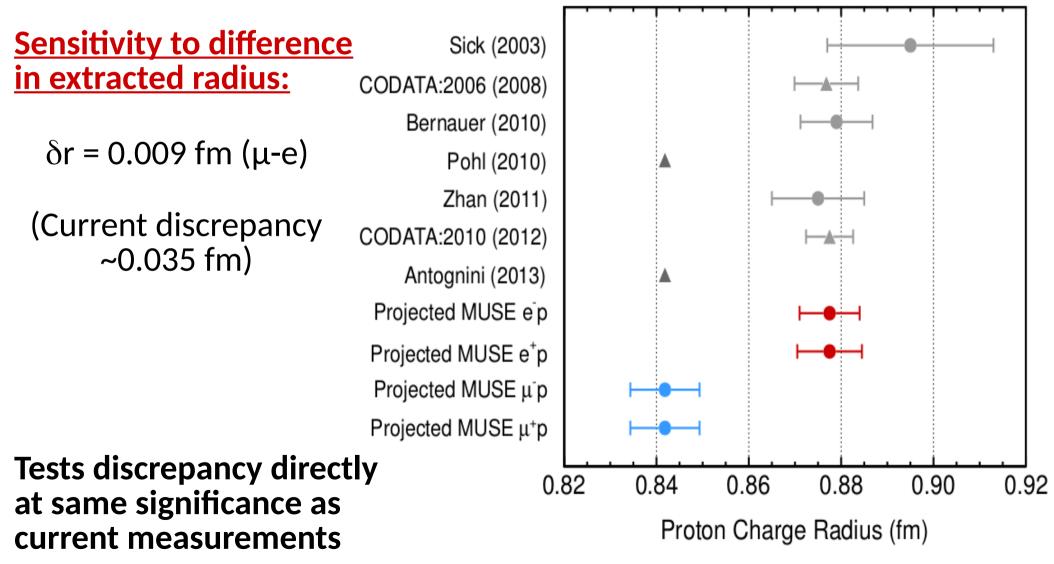

- Characterization of beam RF distributions
- Determine beam size and divergence (GEMs)
- Study beam tune, backgrounds
- Measure timing resolution, characterize BC
- DAQ and software development

K. Mesick (Rutgers)


Test Measurements:

- Dec 2012
- June 2013
- Fall 2013
- June 2014
- Dec 2014 (planned)

ADC vs. RF Time


Expected Results

K. Mesick (Rutgers)

Expected Results

Fit form factors individually

Relative Radius Uncertainties

K. Mesick (Rutgers)

MUSE Timeline

- Feb 2012: First proposed to PSI PAC
- July 2012: PAC / PSI Technical Review
- Fall 2012: 1^{st} beam test run at $\pi M1$
- Jan 2013: PAC / PSI Approval
- June 2013: 2^{nd} beam test run at $\pi M1$
- Fall 2013: Funding requests
- December 2013: 3^{rd} beam test run at $\pi M1$
- Jan 2014: 2nd PAC / PSI Review
- March 2014: NSF Review with DOE representation
- June 2014: 4^{th} beam test run at $\pi M1$
- Now: R & D funding from NSF / DOE (~ \$750k)
- **Dec 2014:** Next beam test runs at π M1
- June 2015: Advanced test run with some equipment
- Nov 2016: "Dress rehearsal" with full beamline detectors and 1 full spectrometer side
- 2017-18: Two 6-month production runs

Summary

- The "proton radius puzzle" is a high profile issue, and is still unresolved 4 years later
- Explanation unclear, no general consensus
 - BSM? TPE? Experiment?
 - Many theories ruled out by recent muonic helium-4 results
- MUSE will uniquely:
 - simultaneously measure µp and ep scattering for direct comparison of radius with reduced systematics
 - Measure of e+/e- and μ +/ μ to test two-photon exchange
- R & D work is underway, planning for production running in 2017-18

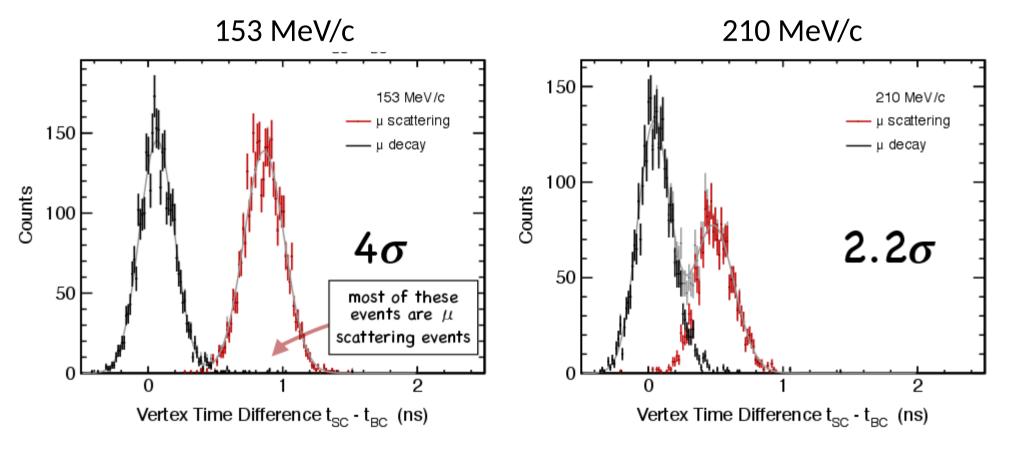
MUSE Collaboration

The MUon Scattering Experiment collaboration (MUSE):

R. Gilman (Contact person),¹ E.J. Downie (Spokesperson),² G. Ron (Spokesperson),³ A. Afanasev,² J. Arrington,⁴ O. Ates,⁵ C. Ayerbe-Gayoso,⁶ F. Benmokhtar,⁷ J. Bernauer,⁸ E. Brash,⁹ W. J. Briscoe,² K. Deiters,¹⁰ J. Diefenbach,⁵ B. Dongwi,⁵ L. El Fassi,¹ S. Gilad,⁸ K. Gnanvo,¹¹ R. Gothe,¹² D. Higinbotham,¹³ Y. Ilieva,¹² M. Jones,¹³ M. Kohl,⁵ G. Kumbartzki,¹ J. Lichtenstadt,¹⁴ A. Liyanage,⁵ N. Liyanage,¹¹ Z.-E. Meziani,¹⁵ P. Monaghan,⁵ K. E. Mesick,¹ C. Perdrisat,⁶ E. Piasetzsky,¹⁴ V. Punjabi,¹⁶ R. Ransome,¹ D. Reggiani,¹⁰ P.E. Reimer,⁴ A. Richter,¹⁷ A. Sarty,¹⁸ Y. Shamai,¹⁹ N. Sparveris,¹⁵ S. Strauch,¹² V. Sulkosky,²⁰ A.S. Tadepalli,¹ M. Taragin,²¹ and L. Weinstein²² ~50 Collaborators from ~20 institutions

New Collaborators welcome! Thank You!

http://www.physics.rutgers.edu/~rgilman/elasticmup

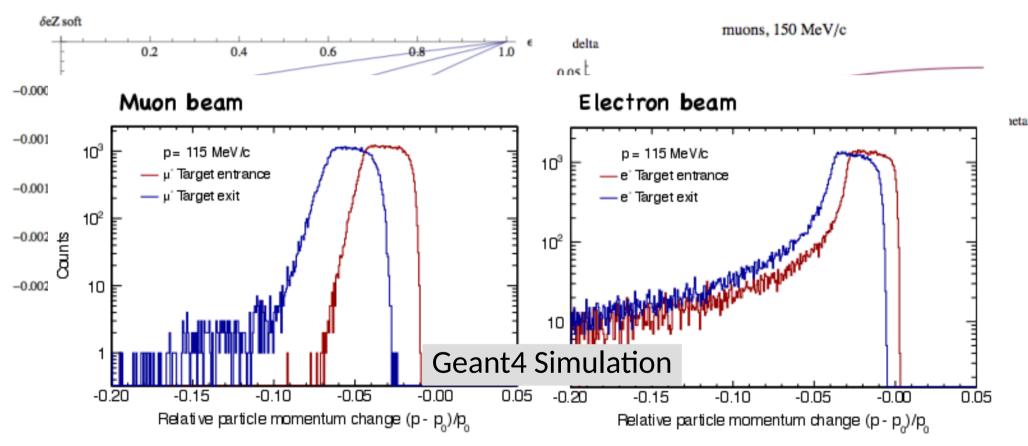

K. Mesick (Rutgers)

Extras

Decay Background Simulation

Geant4 simulation of muon decay event separation:

- TOF from Cerenkov to Scintillator



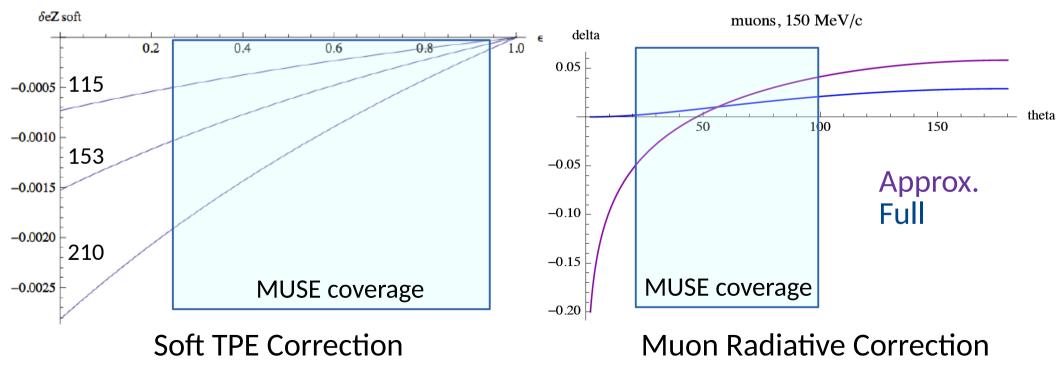
- Better (6 σ) separation at 115 MeV/c
- Will also measure empty target for subtraction, can also calculate

K. Mesick (Rutgers)

Radiative Corrections / TPE

Effect ~ 3% for 100° at 210 MeV/c for muons, ~ 5 times larger for e Uncertainties over an order of magnitude smaller Standard codes exist – updated to avoid approximations

shown are for electrons; the muon calculations are very similar. Right: Muon radiative corrections at 150 MeV/c for MUSE. The blue (red) curve is the full (approximate) calculation.


K. Mesick (Rutgers)

Some Theoretical Corrections

Soft TPE: <0.25% effect expected at MUSE kinematics, but we will measure any enhanced effects directly with our experiment!

Coulomb Corrections: Expected to be small, standard codes exist.

Radiative Corrections: Codes updated to remove approximations, effect ~ 3% for 100° at 210 MeV/c for muons, ~ 5 times larger for e. Contribution to the uncertainty over an order of magnitude smaller

Calculations from A. Afanasev