

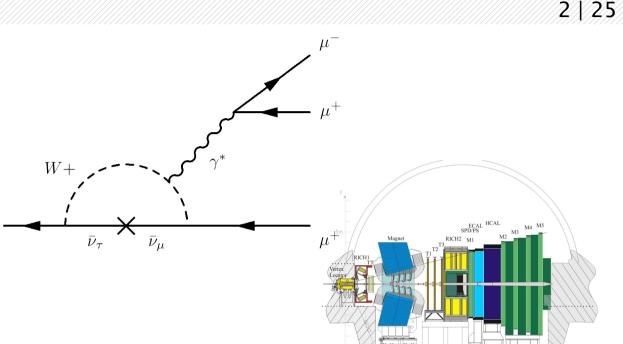
Search for Lepton Flavor Violation in tau decays

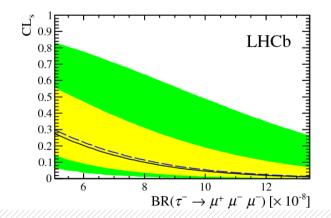
Gerco Onderwater on behalf of the LHCb collaboration

NUFACT2014, Glasgow, August 25, 2014

Outline

Context


LHCb Experiment


Results @ LHCb

Results and Prospects @ Belle & BaBar

 τ^+

Conclusion

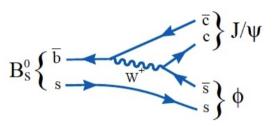
3 25

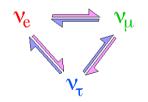
Standard Model

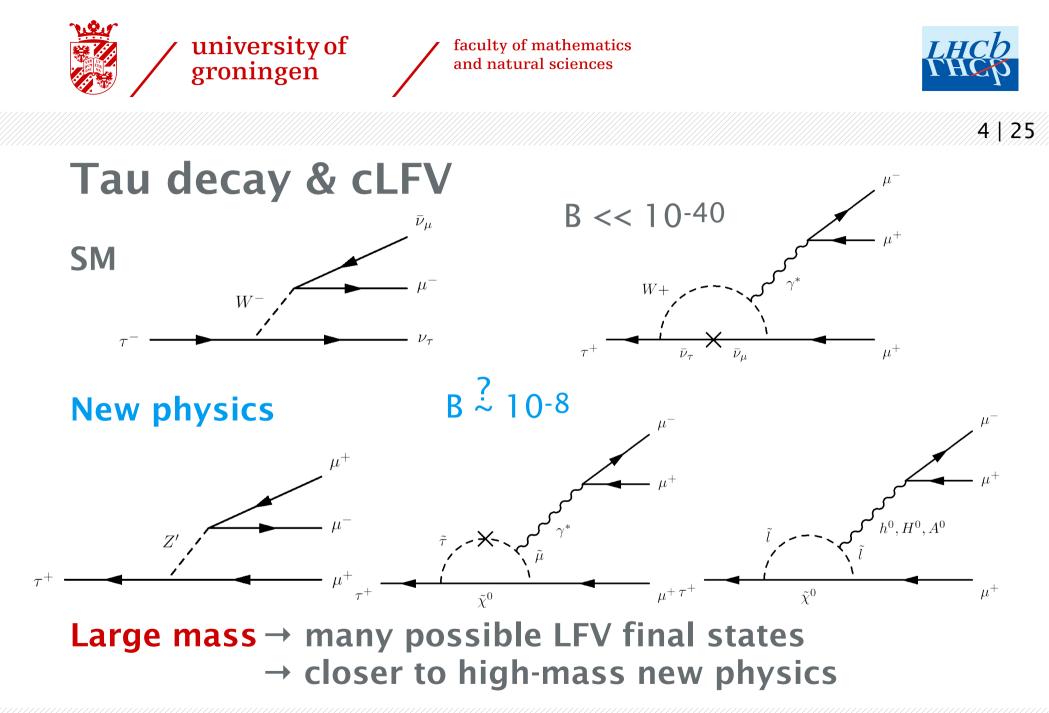
Remarkably successful, yet with unexplained features

Puzzling : Existence of 3 generations quarks & leptons (flavor)

Rich phenomenology when weak interaction is involved


Flavor-Non-Conservation well established for quarks (CKM)


No FNC for <u>charged</u> leptons observed, only neutrino oscillations


New physics cLFV amplitudes >>> immeasurably small SM ones

cLFV ideal test ground to search for new physics

5 25

Principle

Produce many tau's Find signal Fight backgrounds Calculate branching fraction Done!

Will mainly concentrate on $\tau \rightarrow 3\mu$ @ LHCb

Challenge : **T** decays at hadron collider

B factory

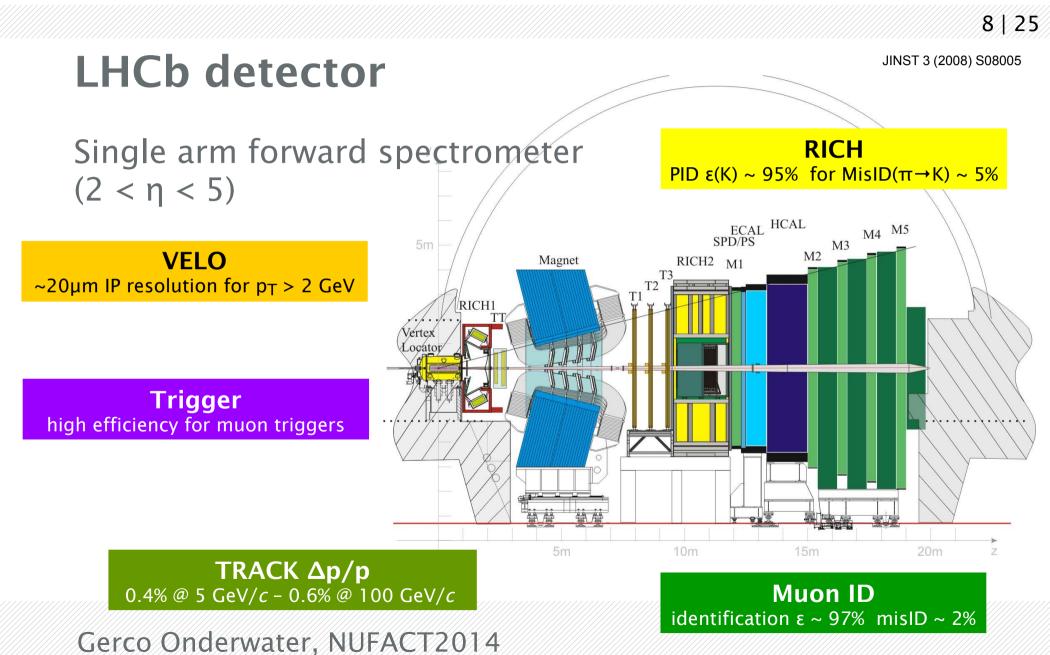
- X Babar & Belle ~10⁹ τ-pairs
- ✓ e^+e^- → $\tau^+\tau^-$ extremely clean
- tag with opposite τ possible

LHC

- LHCb ~8x10¹⁰ τ's in detector acceptance in 2011
- **X** pp $\rightarrow \tau$ + O(100) particles
- X No "production traces" in $D_s \rightarrow \tau v_{\tau}$
- Charm decay with missing particles similar to τ signature

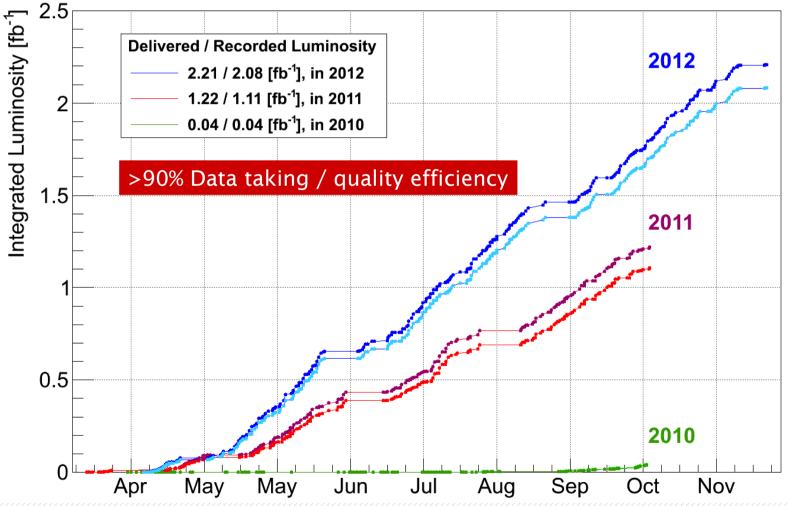
Challenge : **T** decays at hadron collider

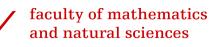
LHC


- LHCb ~8x10¹⁰ τ's in detector acceptance in 2011
- **X** pp $\rightarrow \tau$ + O(100) particles
- X No "production traces" in $D_s \rightarrow \tau v_{\tau}$
- Charm decay with missing particles similar to τ signature

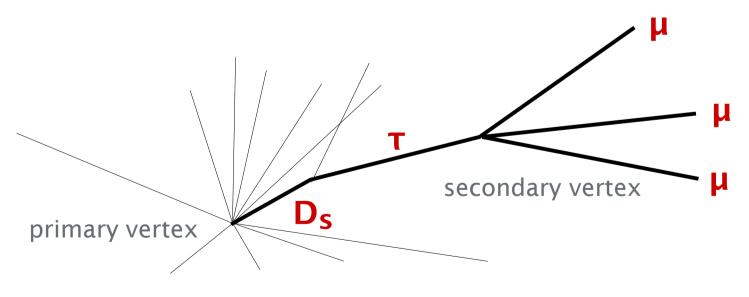
Remedies

- tight requirements to event selection
- develop strategies to suppress τ-less events
- ➡ understand ⊤ production in detail





LHCb data collection



10 25

$\tau \rightarrow 3\mu$ @ LHCb

Analysis strategy

- 1.0 fb⁻¹ of data collected @ $\sqrt{s} = 7 \text{ TeV}$
- trigger on *muon* and *secondary vertex*
- multivariate analysis to discriminate signal and background
- *control sample* for normalization and calibration

Main tau production via decay of D_s

Gerco Onderwater, NUFACT2014

Signal candidate selection

Trigger

- Muons with p_T > 1.48 GeV/c (Hardware)
- Two-, three- or four-track secondary vertex High sum p_T and significant displacement from primary vertex
- ≥1 track with $p_T > 1.7 \text{ GeV}/c$ & IP w.r.t. PV $\chi^2 > 16$

Analysis

- All tracks: IP $\chi^2 > 9$
- Fitted 3-track vertex $\chi^2 < 15$
- Decay-time compatible with τ decay (*c*t > 100 μ m)
- Reconstructed τ momentum must point back to PV

Background elimination

- $|M(\mu^+\mu^-) M(\Phi)| < 20 \text{ MeV}/c^2$
- M(µ+µ-) < 450 MeV/ c^2 D_s- → $\eta(\mu+\mu-\gamma)\mu-\overline{\nu}_{\mu}$
- $M(\mu^{-}\mu^{-}) < 250 \text{ MeV}/c^2$ reconstructed from same particle

Gerco Onderwater, NUFACT2014

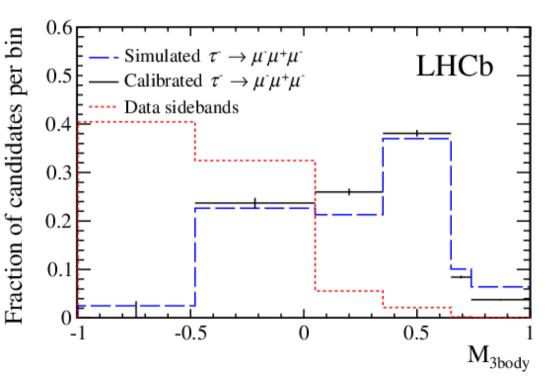
12 25

Signal & background discrimination

Three likelihoods to give probability for candidate to be signal or background

- I. M_{3body} discriminates signal from B/D decays
- **II. MPID** used to improve muon mis-identification
- III. $M_{3\mu}$ shape from simulation

Gerco Onderwater, NUFACT2014


M_{3body} likelihood

- 3-body decay topology
- vertex quality
- displacement from primary vertex
- track quality
- isolation

boosted decision tree

- trained using simulated samples of signal and background
- calibrated with $D_s^- \rightarrow \Phi(\mu^+\mu^-)\pi^-$

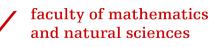
minimal number of bins maximize **S+B** vs **B-only** separation

Gerco Onderwater, NUFACT2014


14 25

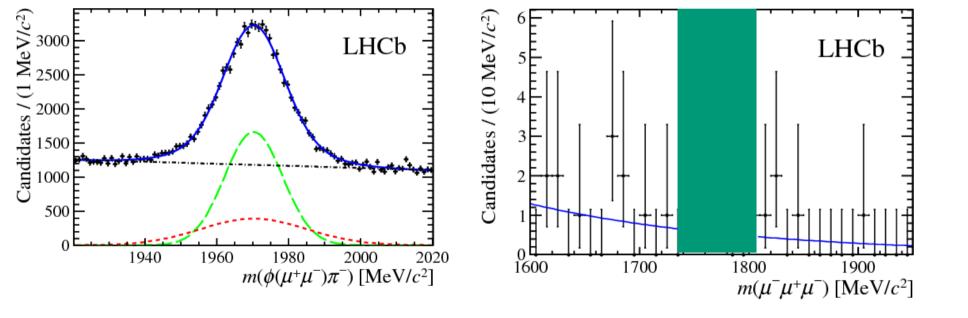
MPID likelihood

Particle Identification
hits in muon chambers
energy in calorimeters compatible with MIP
RICH information


Neural Network trained on simulation

Calibration $J/\psi \rightarrow \mu^+\mu^-$

Gerco Onderwater, NUFACT2014



$M_{3\mu}$ distribution

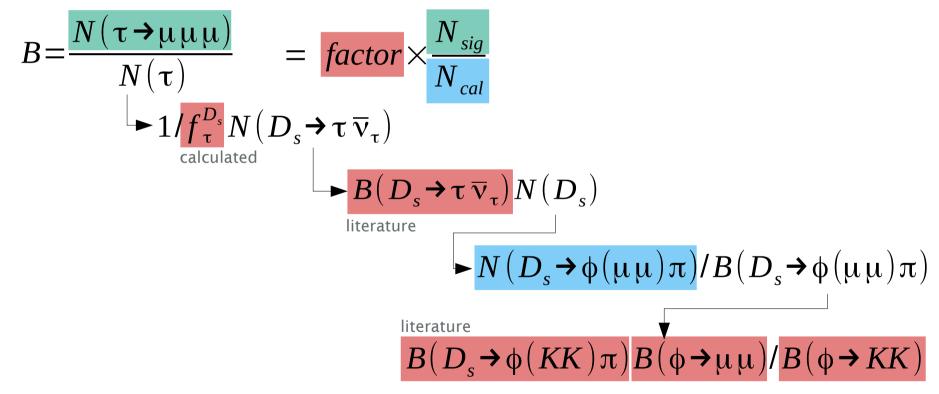
- Shape modeled using $D_s^- \rightarrow \Phi(\mu^+\mu^-)\pi^-$
- Analyze 5x5 best bins in MPID and M3body

M_{PID} : [0.65, 1.0] M_{3body} : [0.725, 1.0]

Gerco Onderwater, NUFACT2014

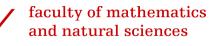
				16 25
Counto	$\mathcal{M}_{\mathrm{PID}}$	\mathcal{M}_{3body}	Expected	Observed
Counts	0.43-0.6	-0.48-0.05 0.05-0.35 0.35-0.65	345.0 ± 6.7 83.8 ± 3.3 30.2 ± 2.0	409 68 35
 Interpolate expected number of background events from sidebands to signal region 		0.33-0.83 0.65-0.74 0.74-1.0	30.2 ± 2.0 4.3 ± 0.8 1.4 ± 0.4	2 1
	0.6–0.65	-0.48-0.05 0.05-0.35 0.35-0.65	$73.1 \pm 3.1 \\ 18.3 \pm 1.5 \\ 8.6 \pm 1.1 \\$	64 15 7
 Count number of events in signal region 	0.65 0.725	0.65-0.74 0.74-1.0	0.4 ± 0.1 0.6 ± 0.2	0 2 51
Candidates / (10 MeV/2)	0.65–0.725	-0.48-0.05 0.05-0.35 0.35-0.65 0.65-0.74 0.74-1.0	$\begin{array}{c} 45.4 \pm 2.4 \\ 11.7 \pm 1.2 \\ 5.3 \pm 0.8 \\ 0.8 \pm 0.2 \\ 0.4 \pm 0.1 \end{array}$	51 6 3 1 0
	0.725–0.86	-0.48-0.05 0.05-0.35 0.35-0.65 0.65-0.74 0.74-1.0	$\begin{array}{c} 44.5 \pm 2.4 \\ 10.6 \pm 1.2 \\ 7.3 \pm 1.0 \\ 1.0 \pm 0.2 \\ 0.4 \pm 0.1 \end{array}$	62 13 7 2 0
	0.86–1.0	-0.48-0.05 0.05-0.35 0.35-0.65	5.9 ± 0.9 0.7 ± 0.2 1.0 ± 0.2	7 1 1
1600 1700 1800 1900 $m(\mu^{-}\mu^{+}\mu^{-})$ [MeV/ c^{2}]	/	0.65–0.74 0.74–1.0	$\begin{array}{c} 0.5 \pm 0.0 \\ 0.4 \pm 0.1 \end{array}$	0 0

Gerco Onderwater, NUFACT2014



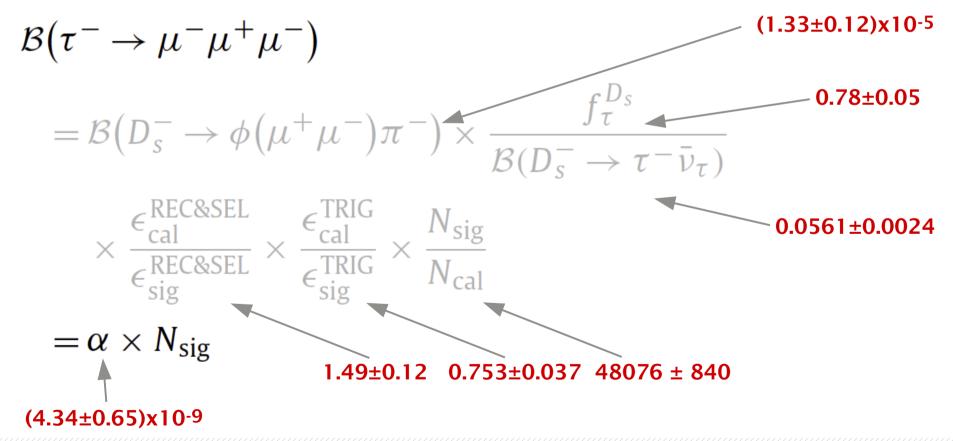
17 25

Normalization


Branching fraction for $\tau^- \rightarrow \mu^-\mu^+\mu^-$ normalized to $D_s^- \rightarrow \Phi(\mu^+\mu^-)\pi^-$

Must further include trigger, selection & reconstruction efficiencies

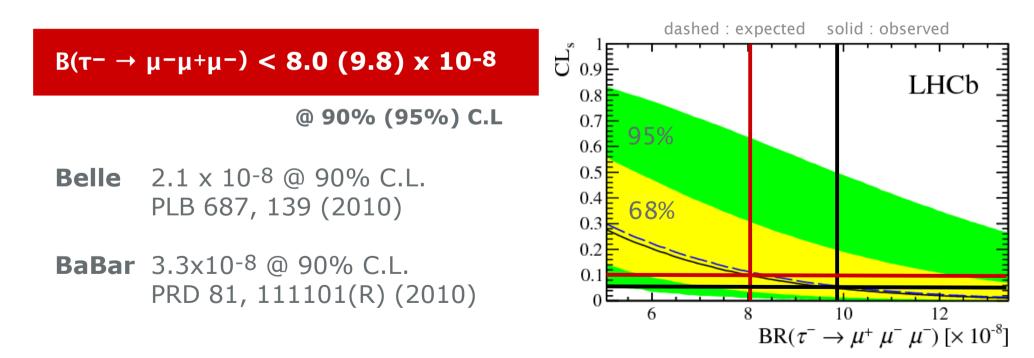
Gerco Onderwater, NUFACT2014



Normalization

Branching fraction for $\tau^- \rightarrow \mu^-\mu^+\mu^-$ normalized to $D_s^- \rightarrow \Phi(\mu^+\mu^-)\pi^-$

Gerco Onderwater, NUFACT2014



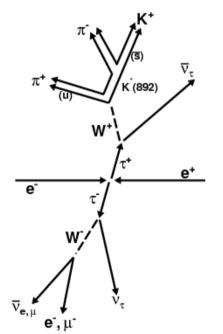
19 25

Result

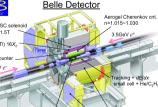
 $\frac{\mathbb{P}(\theta_{up}(X) < \theta | \theta)}{\mathbb{P}(\theta_{up}(X) < \theta | \theta)} \le \alpha' \text{ for all } \theta.$

- No significant evidence for an excess of events
- CL_s method used to extract upper limit
 Likelihood ratio signal+background vs background-only

Gerco Onderwater, NUFACT2014

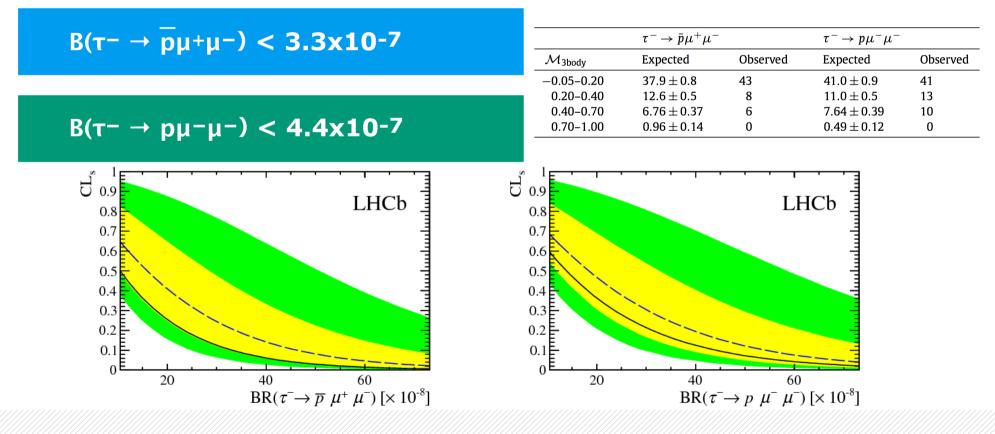


20 | 25


BaBar & Belle $\tau^- \rightarrow |-|'+|''-$

BaBar : PRD 81, 111101(R) (2010) Belle : PLB 687, 139 (2010)

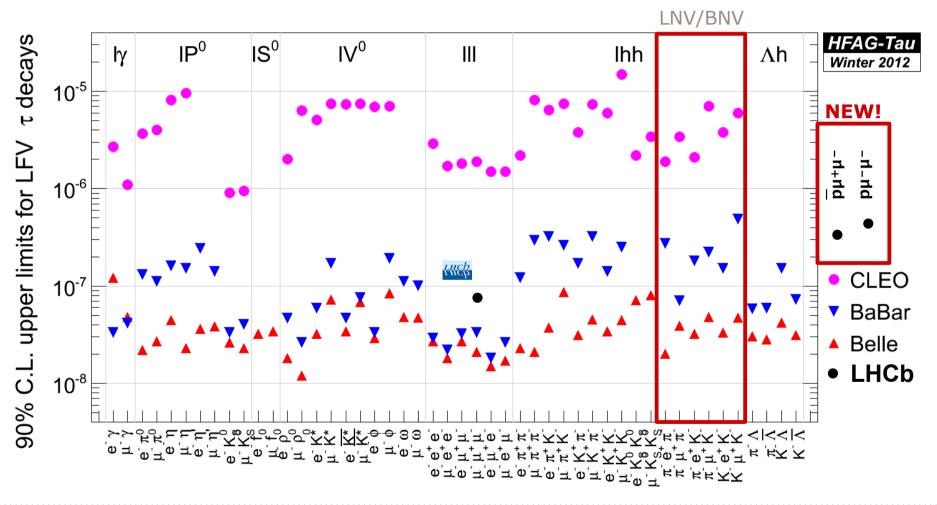
	108 x UL ₉₀		
Mode	BaBar	Belle	
e-e+e-	2.9	2.7	
µ-e+e-	2.2	1.8	
µ+e-e-	1.8	1.5	
e+µ-µ-	2.6	1.7	
e-µ+µ-	3.2	2.7	
µ-µ+µ-	3.3	2.1	



cLFV with LNV & BNV

 $\tau \rightarrow \overline{p}\mu + \mu - /p\mu - \mu - \nu$ violate lepton and baryon number (thus lepton flavor) First direct experiment limit @ LHCb with similar technique

Gerco Onderwater, NUFACT2014



22 | 25

Overview

http://www.slac.stanford.edu/xorg/hfag/tau/winter-2012/

23 25

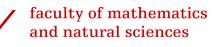
Prospects

BaBar

ended data taking 2008 analysis completed

Belle

ended data taking 2010 final analysis in progress


Belle-II

commissioning early 2015 expect to improve limits by O(10)

LHCb

2012 data being prepared for publication energy upgrade underway, intensity upgrade planned

24 25

Conclusion

Some τ studies are possible at a hadron collider! LHCb has set first $\tau \rightarrow \mu\mu\mu$ limit at a hadron collider LHCb has set first $\tau \rightarrow p\mu\mu$ limits More data available

Belle II : will come online soon ... LHCb : start taking more data after LHC energy upgrade : LHC intensity upgrade planned ~2018

Stay tuned!

Thank you for your attention!

