

The Double Chooz reactor antineutrino experiment: latest θ_{13} results

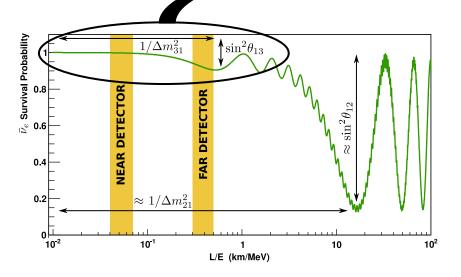
Matthieu Vivier¹, on behalf the Double Chooz collaboration

¹CEA-Saclay, IRFU, 91191 Gif-sur-Yvette, FRANCE

NUFACT international workshop, Glasgow - August 2014

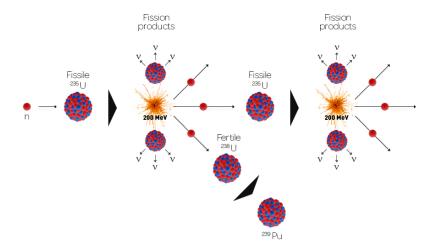
www.cea.fr

- 1. Double Chooz: motivations and experimental concept
- 2. Energy reconstruction, data selection and backgrounds (DC-III analysis with n-Gd)
- 3. Oscillation results
 - a. Reactor rate modulation analysis
 - b. Rate + shape analysis
 - c. Spectrum distortion above 4 MeV
- 4. Near detector outlook and summary



1. Motivations & experimental concept

Reactor antineutrinos and θ_{13}



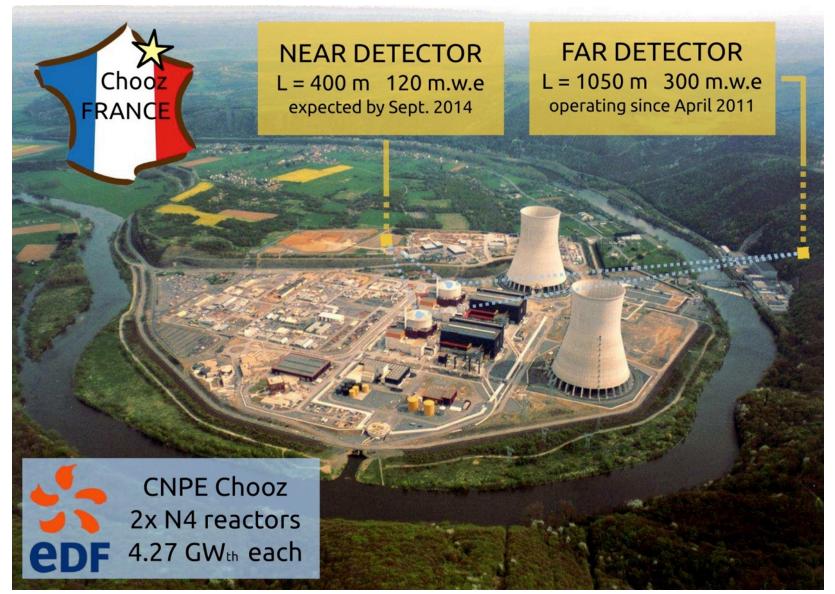
- Nuclear reactors perfect neutrino sources for θ₁₃ measurement:
 - \circ $\ \$ Pure ν_{e} source from beta decay of fission products (no source related backgrounds)
 - Energies up to 8 MeV (disappearance measurement only)
 - Possible to place large detectors at O(1-2 km) baselines
 - Matter effects negligible at such distances
 - $\circ \quad \text{Very high flux} \approx 2\,\times\,10^{20}\,\nu_e~s^{\text{--1}}\,\text{GW}^{\text{--1}}{}_{\text{th}}$

 Neutrino survival probability @ short baselines & in the MeV energy regime:

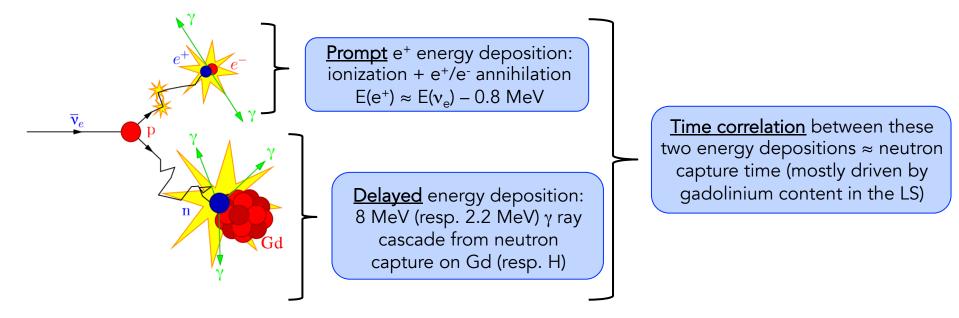
$$P_{\bar{\nu}_{e} \to \bar{\nu}_{e}} = \frac{\Phi_{\bar{\nu}_{e}}^{osc}}{\Phi_{\bar{\nu}_{e}}} \approx 1 - \sin^{2}(2\theta_{13})\sin^{2}(1.27\frac{\Delta m_{31}^{2}L}{E})$$

- No degeneracy with any other parameters of the PMNS matrix: robust measurement of θ₁₃
- With a two identical detector experimental concept, cancellation of almost all detection systematics & source flux prediction systematics

Double Chooz collaboration



Double Chooz experimental layout

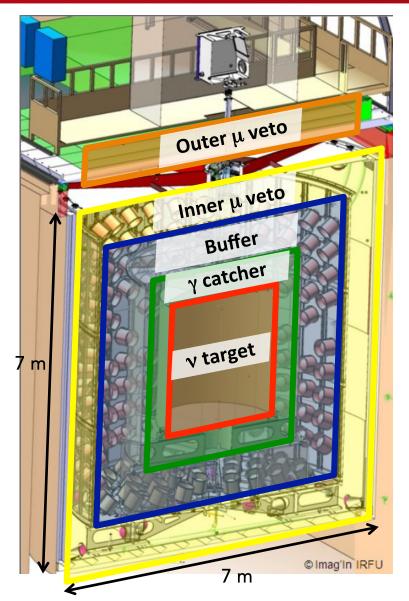


Cea Detection of antineutrinos in Gd-doped LS

Detection of antineutrinos through inverse beta decay (IBD):

$\bar{\nu}_{e} + p \rightarrow n + e^{+}$

Experimental signature is a time-correlated prompt and delayed energy deposition:



- Advantage of IBD detection in Gd-doped LS over other detection processes:
 - IBD cross-section 10-100 times higher than any other interaction processes
 - Time (and space)-correlation allows very efficient suppression of backgrounds
 - o 8 MeV delayed energy deposition from neutron capture on Gd well above natural radioactivity

Double Chooz detectors

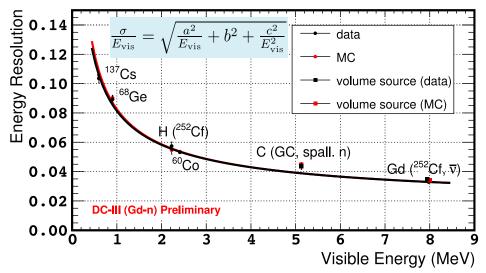
A concentric arrangement of cylindrical sub-detectors...

<u>µ vetoes</u>

- o <u>Outer µ veto</u>: plastic scintillator strips
- Inner μ veto: 90 m³ of LAB scintillator (50 cm thick) in a stainless steel tank equipped with 78 8' PMTs

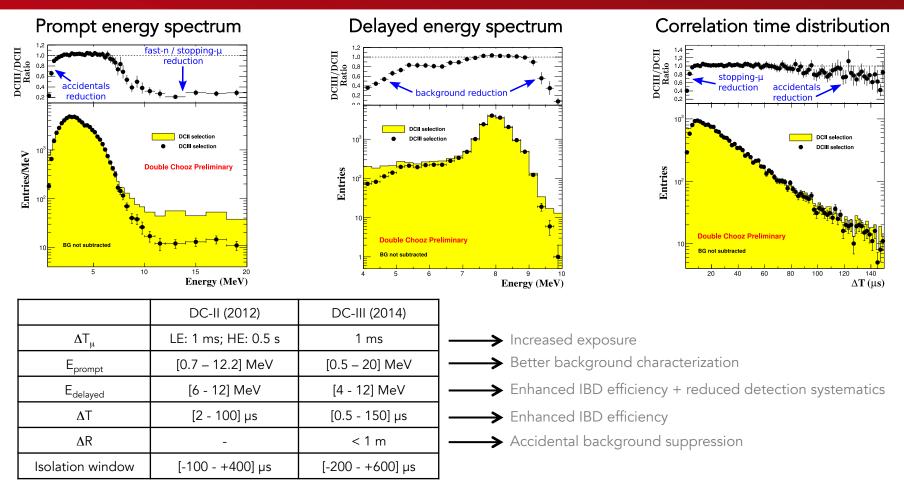
Inner detector (IV)

- <u>Buffer volume</u>: 100 m³ of transparent mineral oil (105 cm thick) in a stainless steel tank, equipped with 390 low background 10' PMTs
- <u>γ catcher</u>: 55 cm thick Gd-free LS (PXE) layer contained in a transparent acrylic vessel
- <u>v target:</u> 10 m³ of Gd-doped LS (PXE + 1 g/L of Gd)
- + central chimney connected to all layers for calibration source insertion
- + fast readout electronics
- + laser system for PMT gain calibration
- + etc ...


2. Energy reconstruction, data selection and backgrounds (DC-III analysis)

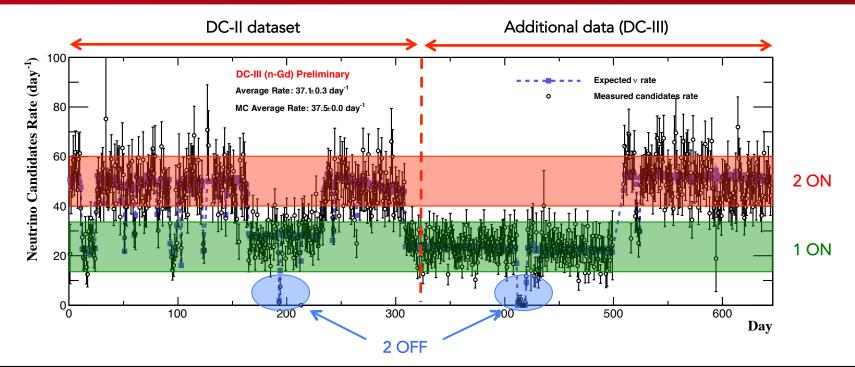
Energy reconstruction scheme

- Common to both data & MC:
 - 1. Charge to PE conversion for each channel: correction for gain non-linearity at low charges
 - 2. PE corrected for non-uniformity of the detector response: calculation of response map using spallation neutron capture on H for data, and IBD neutron capture for MC
 - 3. Absolute energy scale factor: from neutron capture of ²⁵²Cf source deployed at the detector center
- Applied to data only: correction for gain and detector variations over the data taking period (stability calibration). Correction function estimated with Gd and H captures + α decays of ²¹²Po
- Applied to MC only: charge (modeling of readout electronics) and light (LS related) non-linearity corrections


$$E_{vis} = \underbrace{N_{pe}^{m}}_{N_{pe}} \times \underbrace{f_{u}^{m}(\rho, z)}_{N_{e}} \times \underbrace{f_{MeV}^{m}}_{M_{e}} \times \underbrace{f_{s}^{data}(t)}_{S} \times \underbrace{f_{nl}^{MC}}_{N_{e}} \times \underbrace{f_{$$

Very good data/MC agreement over the full energy range

Improved neutrino selection


+ improved light noise suppression

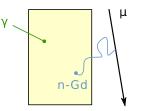
+ improved background vetoes: OV/IV vetoes, new ⁹Li veto, new Fv veto

- Overall improvement in S/B wrt DC-II (15.6 → 22)
- Detection and residual background systematics lowered thanks to wider cuts

Neutrino candidates

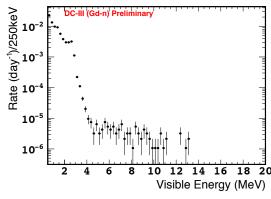
	Reactor ON	Reactor OFF
Live-time (days)	460.67 (April 2011 – Jan 2013)	7.24 (2011 & 2012)
Neutrino candidates	17351	7
Total prediction* (bck included)	18290 ⁺³⁷⁰ -330	12.9 ^{+3.1} -1.4

* Neutrino oscillation not included in the prediction

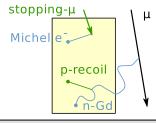

IBD statistics enhanced by a factor 2 wrt to DC-II

Matthieu Vivier

Background estimates with reactor ON data

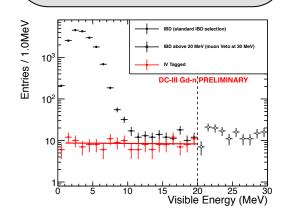


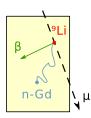
Accidental coincidences



Natural radioactivity

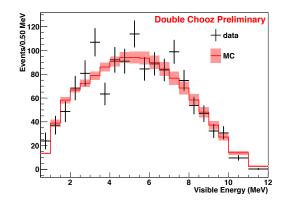
- $R = 0.070 \pm 0.003 d^{-1}$
- Measured by off-time coincidence window
- DC-III/DC-II = 0.27
- Further reduced thanks to (new) prompt-delayed distance cut


Correlated events


Fast neutrons & stopping μ

R = 0.604 ± 0.051 d⁻¹

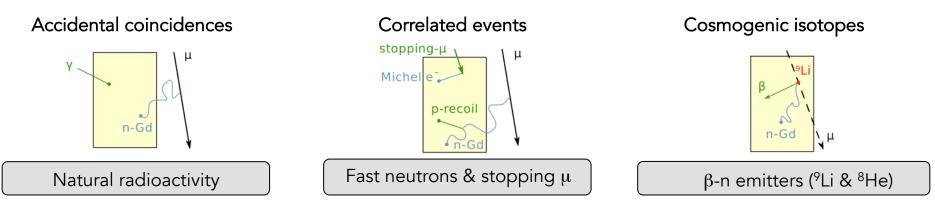
- Measured with IV-tagged IBD events
- DC-III/DC-II = 0.52
- Further reduced thanks to OV
 + IV vetos, and (new) Fv cut



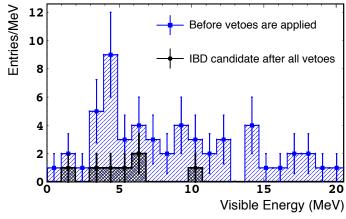
Cosmogenic isotopes

β -n emitters (⁹Li & ⁸He)

- $R = 0.97^{+0.41}_{-0.16} d^{-1}$
- Measured with distribution of ΔT_µ: time difference between µ and IBD-like prompt event
- DC-III/DC-II = 0.78
- Further reduced thanks to new ⁹Li
 + ⁸He veto


DC-II: 2012 DC-III: 2014

Matthieu Vivier


DC-III @ NUFACT 2014 - Glasgow

Cea Measured background in reactor OFF data

- 7.24 days of reactor OFF data taken in 2011 and 2012: unique opportunity to measure and study backgrounds in DC [Y. Abe et al. Phys. Rev. D 87, 011102(R)]
- With new selection cuts (see next slide): N^{IBD} = 7 (54, before background vetoes)
- Expected number based on previous background estimates + residual reactor v_e N^{exp} = 12.9^{+3.1}_{-1.4}
- Compatible at the 1.7 σ level (p-value = 9%)
- Reactor OFF data are used as an additional input in the different oscillations analyses

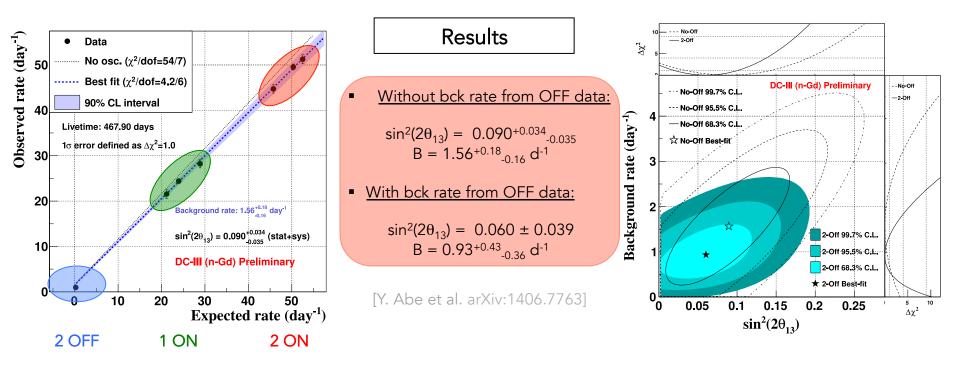
IBD prompt spectrum before and after background vetoes are applied

3. Oscillation results

Uncertainties relative to total signal prediction			
	Uncertainty (%)	DC-III/DC-II	
Reactor flux	1.7	1.0	
Detection efficiency	0.6	0.6 (- 40%)	
9Li + 8He	+1.1 / -0.4	0.5 (- 50%)	
Fast-n + stop. µ	0.1	0.2 (- 80 %)	
Stat.	0.8	0.7 (- 30%)	
Total	+2.3 / -2.0	0.8 (-20 %)	

Uncertainty on accidental background negligible

- All systematic uncertainties decreased by a factor of almost 2
- Not only background uncertainties were reduced, but also rates, thanks to improved neutrino selection cuts (see previous slides)
- Used as inputs into oscillation fits along with central values: better precision on θ_{13}

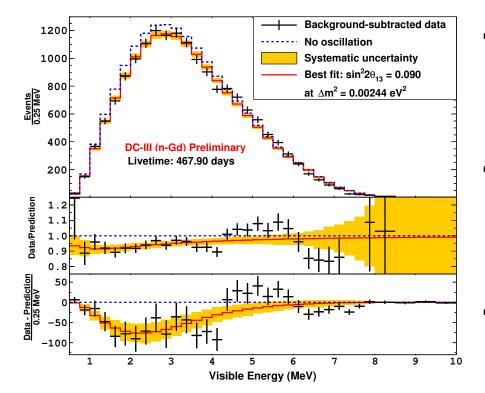

DC-III: reactor rate modulation analysis

Plata

- Same analysis as in [Y. Abe et al Phys.Lett. B735 (2014) 51-56]
- Background-model independent measure of θ_{13} using information brought by neutrino rates in different reactor power bins:

 $R^{obs} = B + (1 - \sin^2(2\theta_{13})\alpha_{osc})R^{\nu}$

- α_{osc} is sin²($\Delta m^{2}L/4E$) averaged over neutrino spectrum
- Fit intercept (B) and slope $(\sin^2(2\theta_{13}))$ either with or without background rate from OFF data
- χ^2 minimization in which, IBD efficiency, residual ν_e prediction and reactor flux prediction are systematics treated as nuisance parameters.

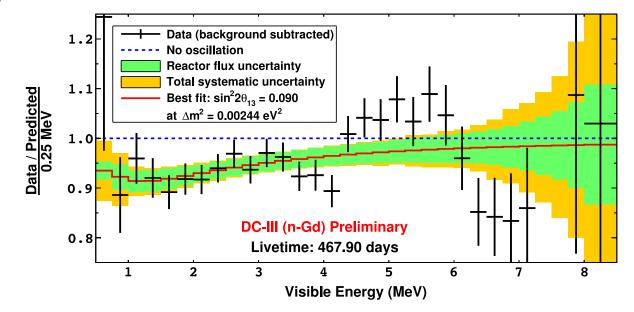


Matthieu Vivier

DC-III @ NUFACT 2014 - Glasgow

DC-III: rate + spectrum shape analysis

- Many improvements wrt DC-II analysis
 - o Better treatment of energy scale
 - Range from 0.5 to 20 MeV (250 KeV energy bins)
 - Extra bin from 2-reactor OFF measurement
 - $\circ~\Delta m^2$ from 2013 Minos measurement (confirmed by T2K)
- χ² minimization with treatment of systematic uncertainties as nuisance parameters:
 - o Background rates
 - Energy scale parameters
 - $\circ \Delta m^2$
 - Residual neutrino rate in 2-reactor OFF data
- Rest of systematic uncertainties encoded into a covariance matrix (reactor, background shapes, and detection)


 $sin^{2}(2\theta_{13}) = 0.092^{+0.033}_{-0.029}$ (stat. + syst.) $\chi^{2}_{min}/n_{dof} = 52.2/40$ (p-value = 9.4%) Background rate after fit = 1.38 ± 0.14 d⁻¹

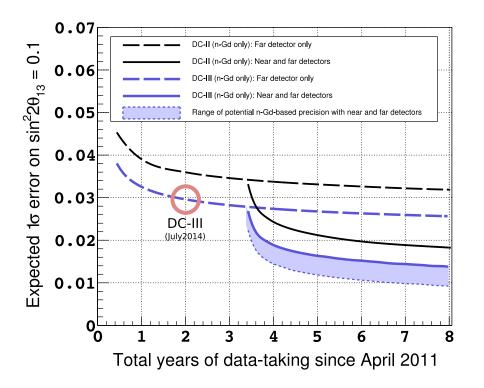
[Y. Abe et al. arXiv:1406.7763]

As a cross-check, rate only fit gives: $sin^2(2\theta_{13}) = 0.090^{+0.036}_{-0.037}$ (stat. + syst.)

Spectrum distortion

[Y. Abe et al. arXiv:1406.7763]

- Unexpected spectrum distortion observed above 4 MeV
- Many cross-checks have been done so far, and showed that:
 - ο $θ_{13}$ measurement is not affected by the distortion: most of the $θ_{13}$ -deficit is below 4 MeV + statistical power on $θ_{13}$ measurement brought mostly by rate information, not spectrum distortion
 - Energy scale above 4 MeV seems ok (as showed by neutron capture peak on ¹²C). Cross-checks still on-going though, because a < 1% bias in the energy scale modeling can cause migration of events between adjacent energy bins... (especially in the 4-8 MeV region where the spectrum steeply falls down)
 - Unknown background disfavored + excess/deficit in the 4 8 MeV region scale with reactor power
 - RRM fit in different energy bins disfavors a new background component, and rather favors an unaccounted reactor flux contribution.



4. Near detector outlook and summary

Near detector outlook

- Integration finished
- Sub-detector filling starts mid-september
- First neutrinos on October!

Prospects on θ_{13} with ND

- Cancellation of almost all reactor related uncertainties
- Background in the ND scaled wrt to FD using different µ flux
- Backgrounds and energy scales uncorrelated between FD and ND
- θ₁₃ precision expected to improve as we accumulate background (stat. Limited)

1σ uncertainty within [0.015-0.010] after 3 years of data taking with ND+FD

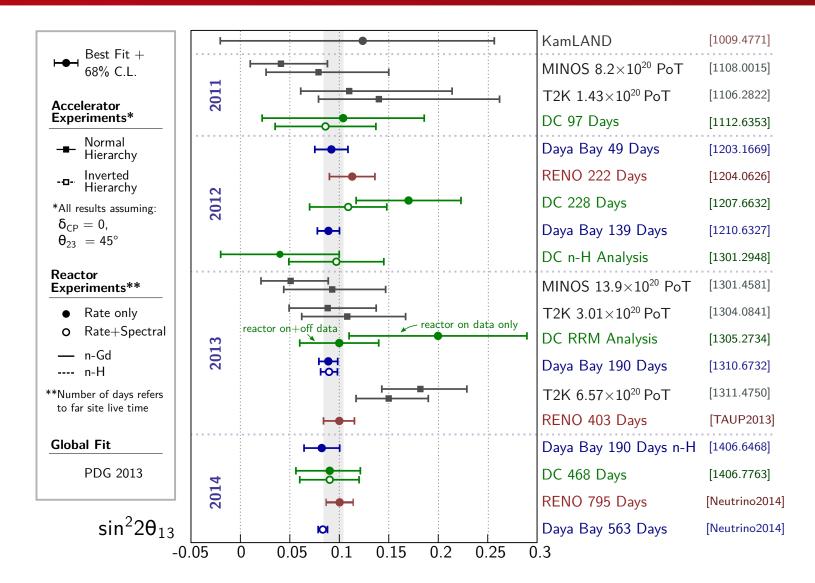
Conclusion

• DC-III improvements:

- Twice more statistics: 460.67 days
- Improved energy reconstruction (non-linearity calibrated)
- New selection cuts, active background rejection (IV,OV vetoes, etc): increased efficiencies, reduced systematics
- o Data-driven estimates of backgrounds, reduced systematics
- $\circ \quad \theta_{13}$ analysis also uses information from 2-reactor OFF data: 7.24 days
- <u>θ₁₃ results:</u>
 - $\mathbf{R+S}$: $\sin^2(2\theta_{13}) = 0.092^{+0.033}_{-0.029}$ (stat. + syst.)
 - **RRM:** (w/o 2-reactor OFF data): $\sin^2(2\theta_{13}) = 0.090^{+0.034}_{-0.035}$
 - **RRM:** (with 2-reactor OFF data): $\sin^2(2\theta_{13}) = 0.060 \pm 0.039$
- <u>Spectrum distortion observed between 4 8 MeV</u>: unknown origin but unaccounted reactor flux component might be favored.
- ND ready by October:

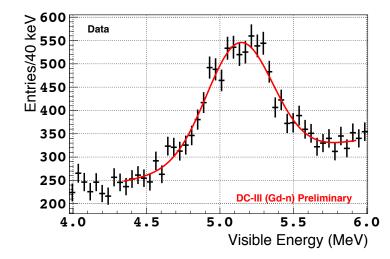
< 0.015 1 σ uncertainty on $\theta_{\rm 13}$ expected after 3 years of data taking

New DC paper on arxiv: 1406.7763 !!

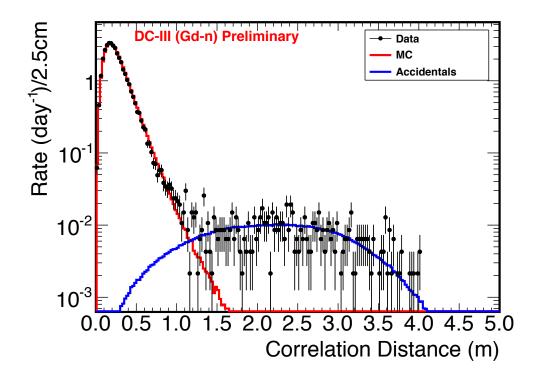


Backup slides

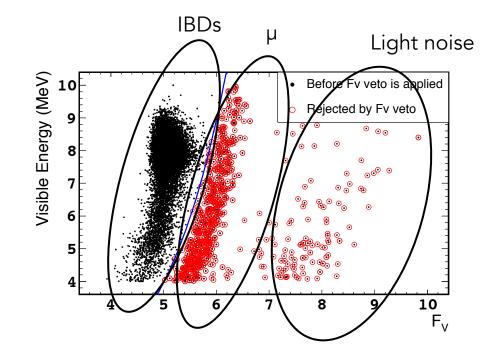
DC in the θ_{13} market...



Neutron capture on ¹²C in γ-catcher:

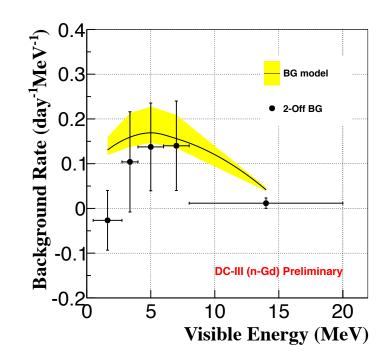

■ ∆(data,MC) < 0.5%

Accidental background



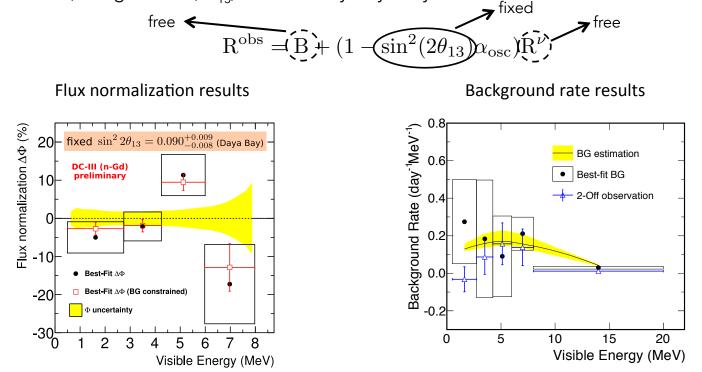
- Maximum likelihood algorithm using charge and time to reconstruct vertex position
- Assumption: point-like energy deposition

$$\mathcal{L}(\mathbf{X}) = \prod_{q_i=0} f_q(0; q'_i) \prod_{q_i>0} f_q(q_i; q'_i) f_t(t_i; t'_i, q'_i)$$

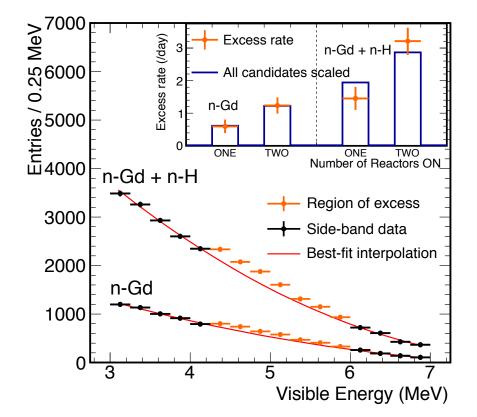

• $f_q \& f_t$ probabilities to measure charge and time given the model

• Fv = -ln(L(X))

2 reactor OFF data



- Agreement between background model (reactor ON data estimates) and measured 2reactor OFF background.
- Compatibility between $N_{BG}(OFF)$ and $\Sigma N_{BG}(ON)$ is 9% (1.7 σ)


 Reactor Rate modulation analysis in different energy bins: fit the background rate and reactor flux normalization, using the sin²(2θ₁₃) measured by Daya Bay

- Backgrounds compatible with both reactor ON and 2-reactor OFF estimates
- Discrepancy of reactor flux normalization with respect to predictions (3s in the [4.5 6 MeV] energy range)

Spectral distortion: correlation to reactor power

