Muon g-2/EDM @J-PARC

K. Ishida (RIKEN) for muon g-2/EDM at J-PARC group

Outline

muon g-2

Our proposed scheme ultra-cold muon beam

Progress since last year

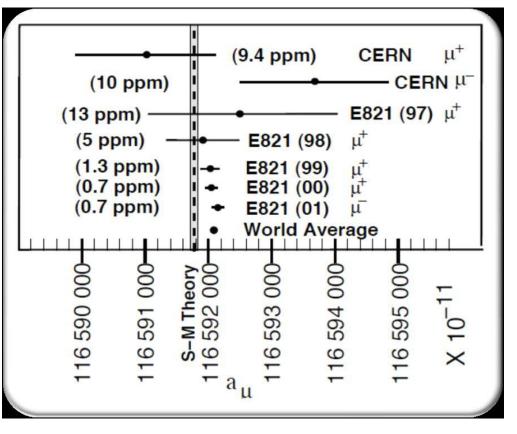
Summary

muon g-2 and EDM

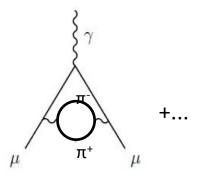
 $\mu = g_{\mu} (e/2m_{\mu}) s$ $a_{\mu} = (g_{\mu} - 2)/2 : \text{ anomalous magnetic moment}$ Dirac equation predicts g=2. Radiative corrections deviates g from 2. $a = a(QED) + a(Hadronic) + a(Weak) + \dots$ $y^{\mu} + \dots + y^{\mu}$ $y^{\mu} + \dots + y^{\mu}$ $y^{\mu} + \dots + y^{\mu}$

Contributions from all particles, even undiscovered

d = η (e/2mc) *s*If EDM is nonzero -> T reversal is violated.
=> Indication of CP violation in the lepton sector.


muon g-2

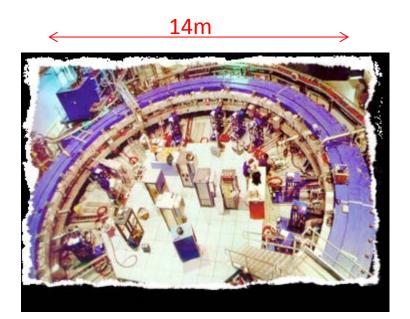
BNL E821 measured a_{μ} to 0.7 ppm for μ^+ and μ^- (sum 0.5 ppm) Deviation of experiment and theory by 3~3.5 σ was observed.

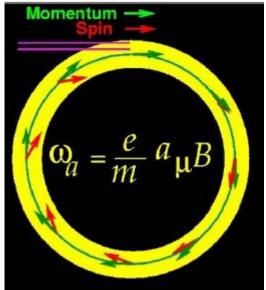

$$\Delta a_{\mu} = a_{\mu} (Exp) - a_{\mu} (SM) = (295+-88) \times 10^{-11}$$

New physics?

```
M. Passera, WG1/WG
P. Paradisi, WG1/WG4
```

Experiment and theory to better precision is waited for.

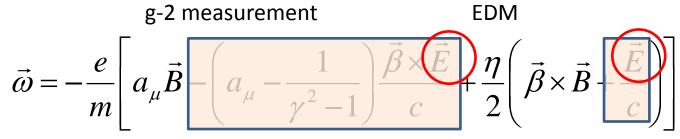

Hadronic contribution (experimental input) study by several groups and methods ("e+e- $\rightarrow \gamma^* \rightarrow$ hadrons" and tau-decay). => Some variations but not large enough to explain the discrepancy.



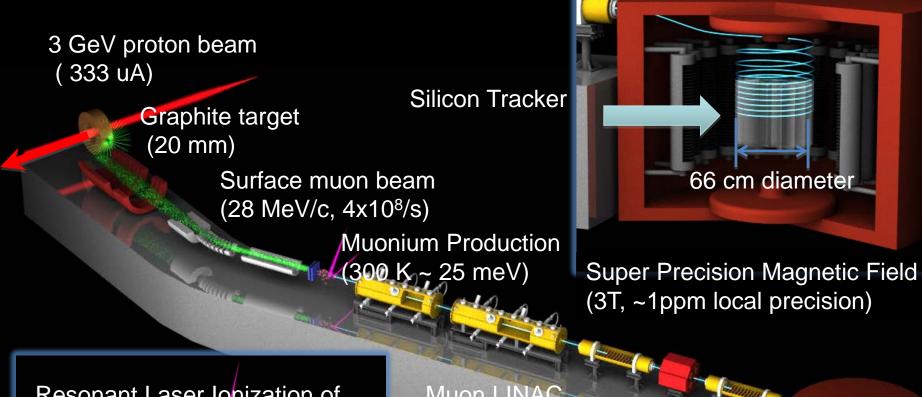
muon g-2: method

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu}\vec{B} - \left[a_{\mu} - \frac{1}{\gamma^2 - 1} \right] \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

 $\begin{array}{l} \text{make this zero} \\ \text{Measure } \omega_{a} \text{ and under well controlled B.} \\ \text{Previous measurement BNL E821} \\ \text{use of magic momentum (p=3.09 GeV/c)} \end{array}$



Muon g-2/EDM@J-PARC


We plan an independent measurement at J-PARC based on ultra-cold muon beam and MRI-type storage ring.

with different scheme - in systematic errors.

Out-of plane oscillation is an indication of EDM.

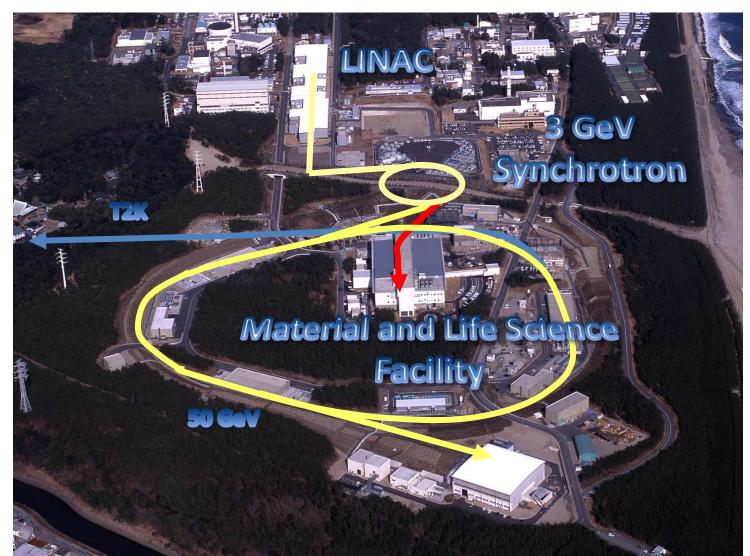
Make E=0 by making focusing needs low. - no high "magic" momentum requirement. Need of well controlled muon beam - start with ultra cold muon beam.

Resonant Laser Ionization of Muonium (~10⁶ μ ⁺/s)

Muon LINAC (300 MeV/c)

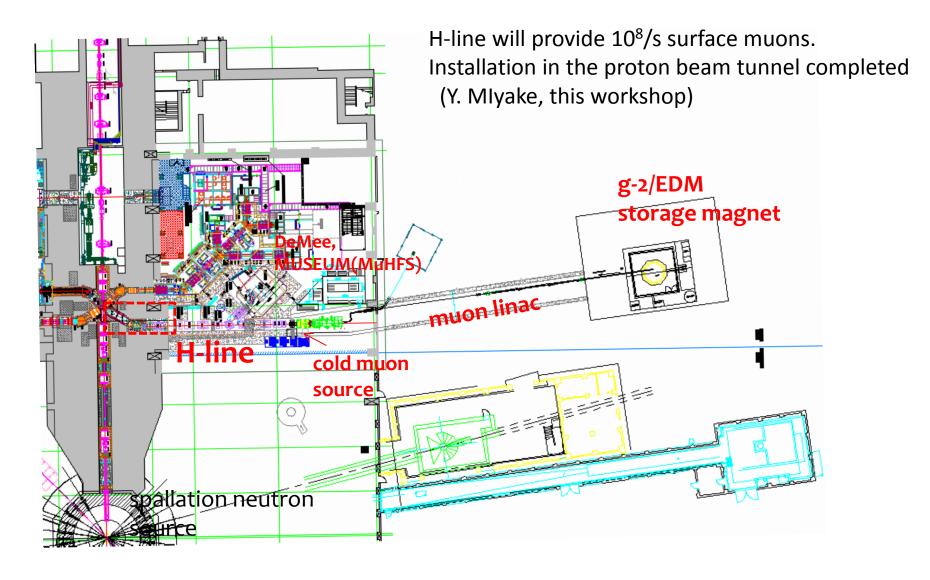
New Muon g-2/EDM Experiment at J-PARC with Ultra-Cold Muon Beam

Our goal: comparison

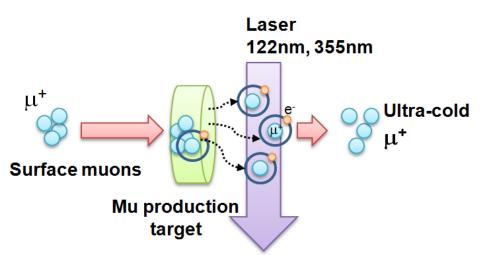

	BNL-E821	Fermilab	J-PARC
Muon momentum	3.09 GeV/c		0.3 GeV/c
gamma	29.3		3
Storage field	B=1.45 T		3.0 T
Focusing field	Electric quad		Very weak magnetic
# of detected μ+ decays	5.0E9	1.8E11	1.5E12
# of detected μ- decays	3.6E9	-	-
Precision (stat)	0.46 ppm	0.1 ppm	0.1 ppm*

* Based on 1 x 10⁶/s stored muons

x 1 year data taking (10^7 s) .


Muon g-2/EDM@J-PARC

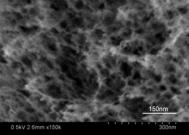
High intensity Japan Proton Accelerator Research Complex 1 MW at 3 GeV (0.3 MW at present), 0.75 MW at 30 GeV

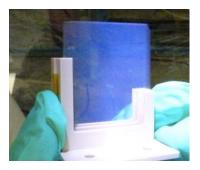

proposed experimental site

J-PARC MLF (Materials and Life Science Facility)

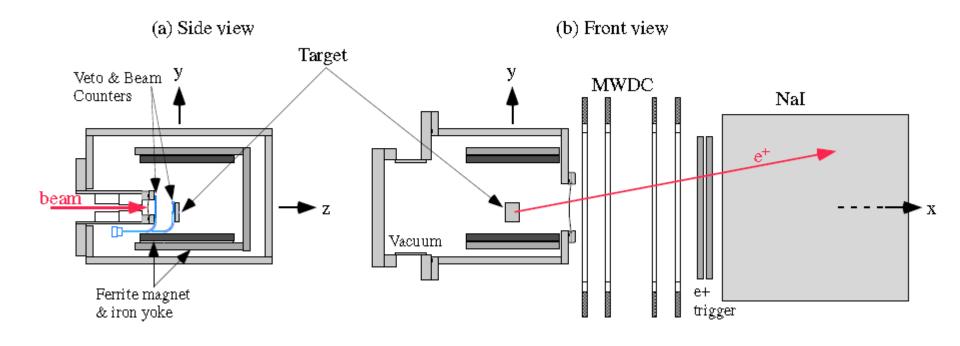
Ultra-slow muon from Thermal Muonium

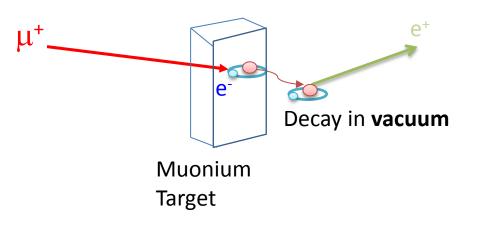
Starting from surface muon beam (4 MeV, Δp^2 %, 4cm ϕ , 50 mr)



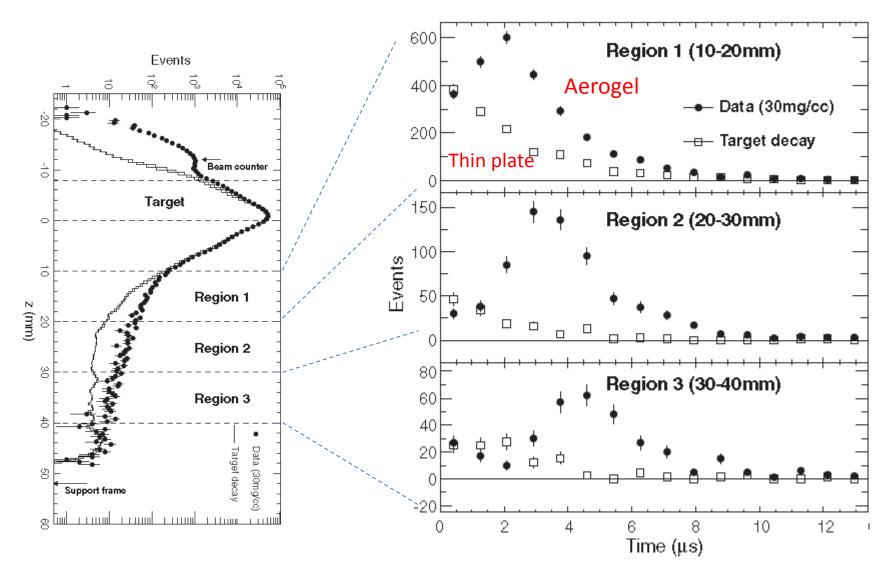

Stop muons in a material, some diffuse out at thermal energy. Good muonium emitter and an intense laser to remove the electron are essential.

(efficiency>1% required)

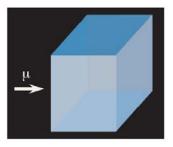

Silica powder has been known to be a good Mu emitter at room temperature Mu diffuse out through network of SiO₂ grains (large surface area)


Silica aerogels with similar network structure can be more easily handled and may fit better our system

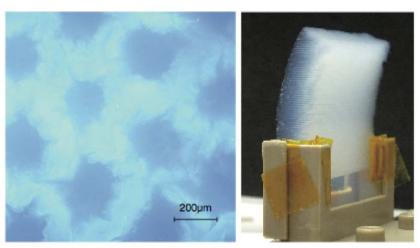
Measurement S1249@TRIUMF

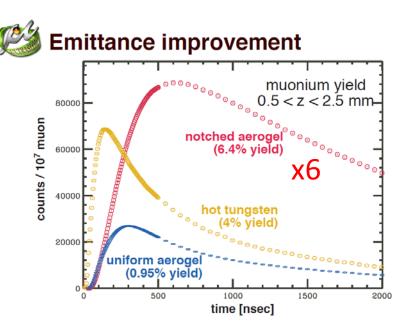


Mu velocity in vacuum ~5 mm/µs MWDC intrinsic resolution ~0.1 mm Track back resolution ~2mm (from 0.1mm silica-plate data)


First results S1249@TRIUMF 2010-2011

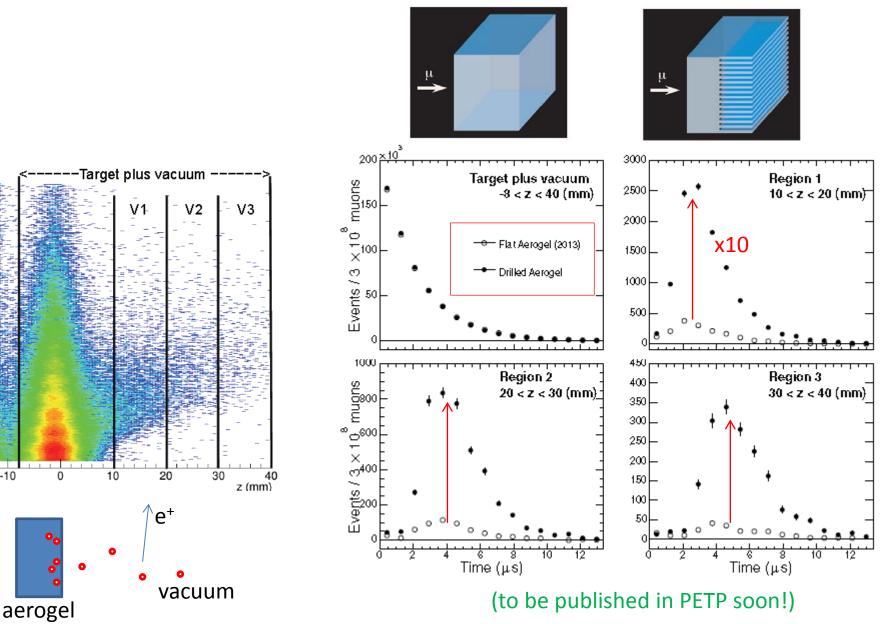
Mu excess over reference target was observed Yield was "not" satisfactory (~1% emission per stopped μ)


More muoniums wanted


Muon should stop near surface (<0.1mm) to come out! Simulation with structured surface by M. Iwasaki (Ultra Slow Muon Microscope Meeting, Sapporo, 2012)

How to make it?

Ion beam, dust-gun, mold, push-pin, ... Laser ablation was successfully applied.



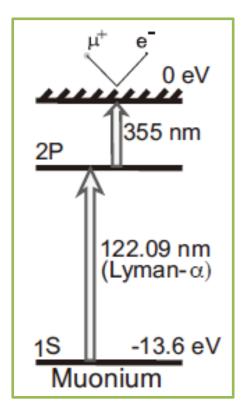
New measurement (S1249@TRIUMF 2013)

ime (usec)

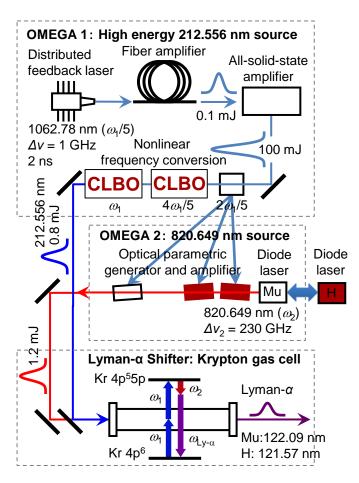
-20

-10

Muon source


Huge increase (x10) of Mu yield in measurement last October. We now have about 10% of muons coming out in vacuum. (from 23 MeV/c, σ_p =2% beam) Expected ultra-cold muon yield is only factors away from requirement. (present estimate is 0.2 x 10⁵/s assuming other conditions are fulfilled)

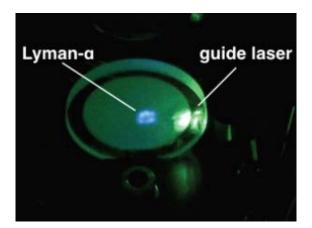
=> Further optimization of target condition (density, hole size/pitch, ...) (we initially tested only four samples) is now ongoing at J-PARC


=> Demonstration of ionization from silica aerogel is planned at RIKEN-RAL.

Mu Ionization Laser

Remove e⁻ for g-2 measurement (and acceleration) with lasers

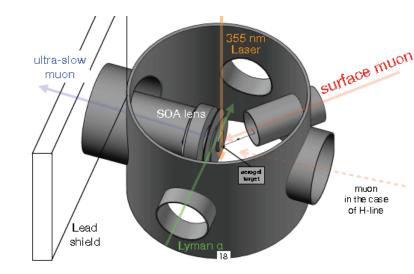
Improved Coherent Lyman-α System Configuration


Lyman- α laser progress

New Lyman-α laser developed by RIKEN laser group for ultra-slow-muon-microscope project (USMM by Grant-in-Aid) aimed for use of ultra-cold-muons for materials study => Laser intensity goal is 100 µJ (x100 improvement over record)

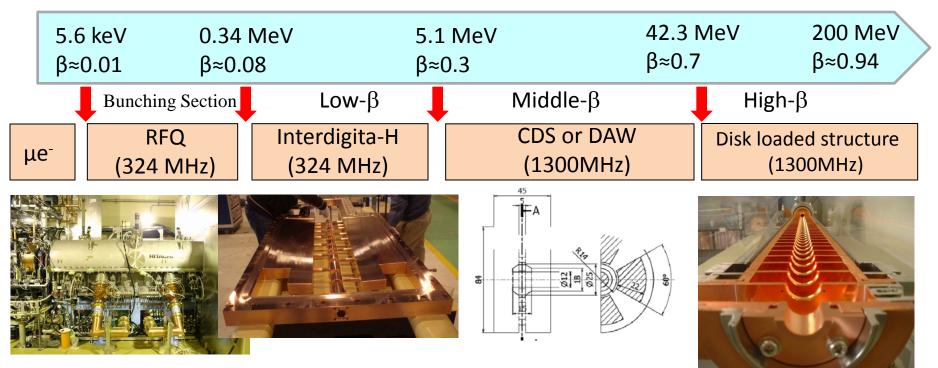
Lyman-α was introduced to the USMM beamline this year. Laser tuning and calibration progressing => Good R&D for muon g-2/EDM laser Ionization test (with Mu source from hot-W) this autumn

laser system installed in J-PARC (for USMM)

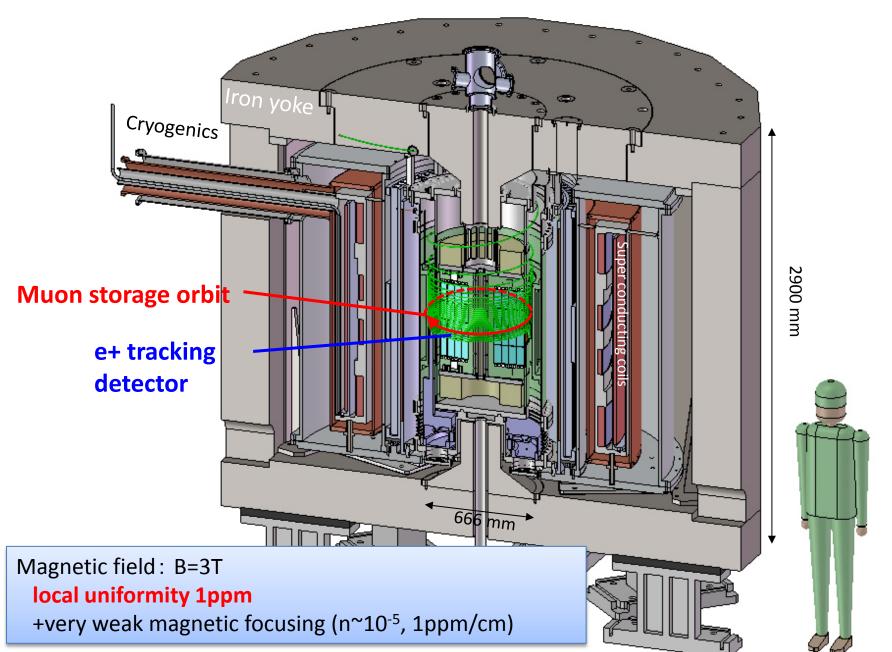

laser fluorescence in the source chamber

Ultra-cold muon from silica aerogel

Muonium to ultra-cold muon beam by ionization and acceleration So far all the ultra-cold muon beam at KEK and RIKEN-RAL Muon Facility was based on Mu from hot-W (~2000K) and with static field (~10 keV).

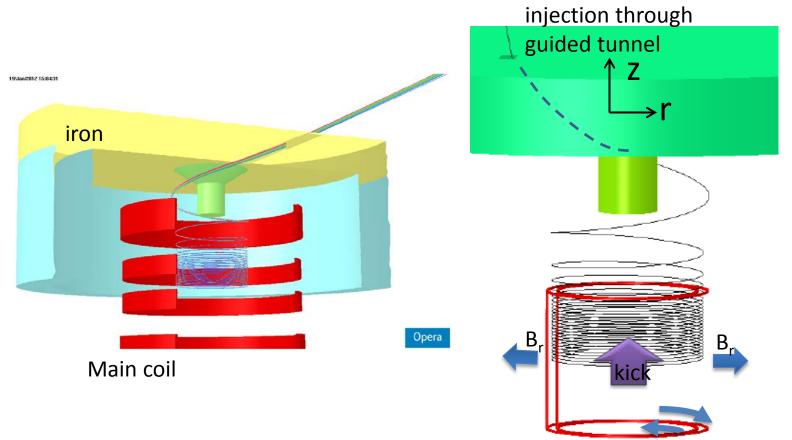

Ultra-cold muon beam from silica-aerogel source need to be demonstrated.

Silica aerogel will be evaluated for
1) long term stability of Mu yield
2) brittleness and vacuum
3) electrical field stability
(use of meshed metal container)
and also we try good things
1) colder beam spread
2) multiple-pass laser mirror
3) other functions (spin control, ...)


A new Muon Source chamber will be constructed for evaluation study.

Baseline for muon g-2 accelerator

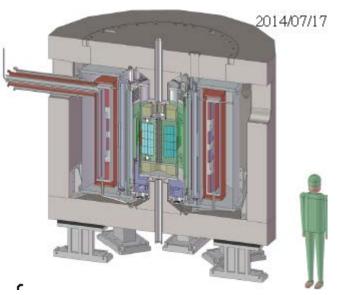
Initial acceleration simulation for ex. RFQ capture loss~30%, muon decay x 0.7


Muon storage magnet and detector

Beam Injection

Injection scheme

Spiral injection + weak magnetic kick (8 mr) to storage-orbit

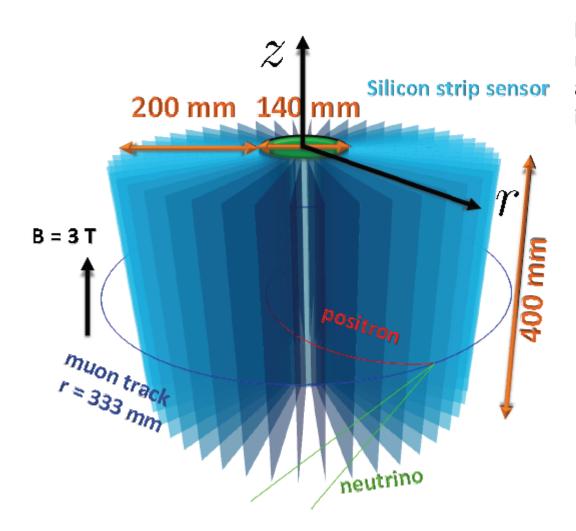


Design of injection-matching transport beamline. Spiral injection test with mini-solenoid and electron gun soon Muon storage magnet and field monitor

Good synergy with MUSEUM (P. Strasser, MuHFS talk)

in physics ($\lambda = \mu_{\mu}/\mu_{p}$ needed for g-2)

ultra-precision magnet (3T vs 1.7 T) shimming method of MuHFS magnet



MuHFS magnet 1.7T

and field measurement monitoring system, NMR probe

Detector

measure muon decay positron tracks with Silicon-strip detectors forward/backward decay gives different positron momentum

beam test with test sensor muon beam at J-PARC and electron at Tohoku-U in progress

Collaboration

- > 98 members (...still evolving)
- > 21 Institutions
- Academy of Science, BNL, BINP, CRNS-APC, UC Riverside, Charles U., KEK, Korea U, NIRS, UNM, Osaka U., PMCU, RCNP, STFC RAL, RIKEN, Rikkyo U., SUNYSB, CRC Tohoku, U. Tokyo, TITech, TRIUMF, U. Victoria
- 9 countries
- Canada, China, Czech, France, Japan, Korea, Russia, UK, USA (alphabetic order)

Maharu Aoki⁸, Pavel Bakule²⁰, Bernd Basaalleck²⁴, George Beer²⁶, Gerry Bunce²⁷, Abhay Deshpande¹⁹, Simon Eideiman⁴, Douglas E. Fields²⁴, Miloslav Finger⁴, Michael Finger Jt.⁶, Yuya Fujiwara^{17,14}, Yoshinori Fukao¹⁰, Noriyosu Hayashizaki¹⁶, Seiko Hirota^{10,14}, Hiromi linuma¹⁰, Masanori Ikegami¹⁰, Masahiro Ikeno¹⁰, Katsuhiko Ishida¹⁷, Masa Iwasaki¹⁷, Ryosuke Kadono¹⁰, Takuya Kakurai¹², Takuya Kamitani⁴⁰, Yukihide Kamiya¹⁰, Sohtaro Kanda¹², Frédéric Kapusta¹, Naritoshi Kawamurs¹², Takashi Kohriki¹⁰, Sachio Komamiya¹⁴, Kunio Koseki¹⁰, Yeshitaka Kuno⁸, Alfredo Luccio¹², Oleg Luchev², Munevoshi Maki¹², Gien Marshall²², Mika Masuzawa¹⁰, Yasuyuki Matsuda⁹, Teijiro Matsuzaki¹⁷, Tsutomu Mibe¹⁰, Katsumi Midorikawa², Satushi Mihara¹⁰, Yasuhiro Miyake¹⁰, William M. Morse³, Jiro Murata^{17,13}, Ryotaro Muto¹⁰ Kanetada Nagamine^{23,10,18}, Takashi Naito¹⁰, Hisayoshi Nakayama¹⁰, Megumi Naruki¹⁰, Makiko Nio²¹, Hajime Nishiguchi¹⁰, Daisuke Nomura¹⁰, Hiroyuki Noumi¹⁵, Tomoko Ogawa², Toru Ogitsu¹⁰, Kazuki. Ohishi¹⁷, Katsunobu Oide¹⁰, Masahiro Okamura³, Art Olin^{22,26} Norihito F. Saito², Naohito Saito^{10,14}, Yasuhiro Sakeni⁷, Ken-ichi Sasaki¹⁰, Osamu Sasaki¹⁰, Akira Sato¹², Aurore Savoy-Navaro⁵, Yannis K. Semertzidis³, Yuri Shatunov¹², Koichiro Shimomura¹⁰, Boris Shwartz⁴, Wilfrid da Silva²⁵, Patrick Strasser¹⁰, Ryubei Sugahara¹⁰ Michinaka Sugano¹⁰, Ken-ichi Tanaka¹⁰, Manobu Tanaka¹⁰, Nobuhiro Terumuma¹⁰, Nobukazu Toge¹⁰, Dai Tonomo¹⁷, Eiko Torikai¹², Toshiyuki Toshito¹¹, Akihisa Toyoda¹⁰, Kyo Tsukada¹², Tomohisa Uchida¹⁰, Kazuki Ucno¹⁷, Vlasov Vrba¹, Satoshi Wada², Akira Yamamoto¹⁰, Kaoru Yokoya¹⁰, Koji Yokoyama¹⁷, Makoto Yoshida¹⁰, Mitsuhiro Yoshida¹⁰ Koji Yoshimura¹⁹

Muon g-2/EDM@J-PARC : Status

J-PARC PAC

Conceptual Design Report at J-PARC PAC (13 Jan 2012) Stage 1 approval as E34 (21 Sep 2012) Most recent PAC report highly recognized our progress in muon source.

Collaboration Meeting held every half year. 9th C.M. will be in 6-8 Nov at KAIST in Daejon, Korea

Technical Design Report to be made this year Expect to start running in 3~4 years (dep. on budget)

Several small grants obtained for development. Overall budget is still a issue.

Summary

New muon g-2/EDM measurement is under preparation at J-PARC. Since last year, there has been significant progresses.

Muon Source (x 10 Mu emission) Practical Mu ionization study will follow

New Lyman- α Laser progressing in collaboration with USMM group

Also progress in accelerator, storage magnet, injection, detection.