Using electron scattering to constrain the axial-vector form factor

<u>R. González-Jiménez</u> (1), J. A. Caballero (1), T. W. Donnelly (2)

(1) Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, España

(2) Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusets Institute of Technology, USA

NUFACT2014, XVIth International Workshop on Neutrino Factories and Future Neutrino Facilities

University of Glasgow, 25th to 30th of August, 2014

OUTLINE

- I. Introduction/Motivation
- II. Parity violating electron-proton scattering
- III. Parity violating QE electronnucleus scattering

I. Motivation

- All neutrino scattering experiments involve nuclear/nucleonic targets. Thus, a good understanding of the neutrinonucleon/nucleus reaction mechanism is essential to reduce systematic errors in neutrino-oscillation experiments.
- → Many of these experiments (MiniBooNE, Minerva, NOMAD, <u>T2K, etc.</u>) are placed at the intermediate energy regime (from hundreds of MeV to a few GeV) where **nucleon form factors** are a main ingredient in the description of the process.
- → We aim to show how the electron-nucleon/nucleus scattering reaction can be used as tool to study the form factors that enter in the <u>Weak Neutral Current (WNC)</u> in the nucleon.
- \rightarrow In particular, we focus on:
 - → <u>Vector strange form factors</u>: $\langle f|\bar{s}\gamma^{\mu}s|i\rangle$

→ <u>Axial-vector form factor</u>: $\langle f | \bar{q} \gamma^{\mu} \gamma^{5} q | i \rangle$

Advantages of using electron beams vs neutrino beams?

- Easily produced and accelerated
- Easily detected
- Monochromatic beams

II. Parity violating electron-proton scattering

Cross section:

 $\sigma \sim |\mathcal{M}_{EM} + \mathcal{M}_{Z}|^{2} = |\mathcal{M}_{EM}|^{2} + 2\mathcal{R}e(\mathcal{M}_{EM}^{*}\mathcal{M}_{Z}) + |\mathcal{M}_{Z}|^{2}$

Definition of the parity violating asymmetry

$$\mathcal{A}^{PV} \equiv \left(\frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-}\right) = \frac{\sigma^{PV}}{\sigma^{PC}}$$

$$\sigma^{PC} \sim |\mathcal{M}_{EM}|^2$$

$$\sigma^{PV} \sim 2\mathcal{R}e(\mathcal{M}_{EM}^*M_Z) + |\mathcal{M}_Z|^2$$

$$\mathcal{M}_{EM} = j^{\mu}_{EM} \left(\frac{-ig_{\mu\nu}}{Q^2} \right) J^{\nu}_{EM}$$

$$\mathcal{M}_{Z} = j_{Z}^{\mu} \left(\frac{ig_{\mu\nu}}{M_{Z}^{2}}\right) J_{Z}^{\nu}$$

Vector strange and axial-vector form factors of the nucleon

$$J_{Z}^{\mu} = \langle N_{f} | \left[\tilde{F}_{1} \gamma^{\mu} + i \frac{\tilde{F}_{2}}{2M} \sigma^{\mu \alpha} Q_{\alpha} + G_{A} \gamma^{\mu} \gamma^{5} + \frac{G_{P}}{M} Q^{\mu} \gamma^{5} \right] | N_{i} \rangle$$

Considering charge symmetry and at tree level:

$$\widetilde{G}_{E,M}^{p,n} = (1 + \sin^2 \theta_W) G_{E,M}^{p,n} - G_{E,M}^{n,p} + G_{E,M}^{(s)}$$

$$G_A = G_A^{(T=1)} \tau_3 + G_A^{(s)}$$

$$CC \text{ (isovector)} \text{ reactions}$$

There exist a large number of PV elastic electron-proton scattering data.

Figure: PV electron-proton asymmetry data. Each panel correspond to a different scattering angle.

The PVep asymmetry can be written as follows:

$$\mathcal{A}_{ep}^{PV}(\theta_{e},Q^{2}) = a Q_{W}^{p} + b Q_{W}^{n} + c G_{M}^{s}(Q^{2}) + d G_{E}^{s}(Q^{2}) + e G_{A}(Q^{2})$$

<u>Statistical</u> χ^2 analysis of the full set of exprimental data to estimate the quantities: × μ_s= G^s_M(0) × $\rho_{s} \sim \left[dG_{E}^{s} / dQ^{2} \right]_{Q^{2}=0}$ × G (0)

(dipole shapes assumed)

Figure: PV electron-proton asymmetry data. Each panel correspond to a different scattering angle.

The PVep asymmetry can be written as follows:

$$\mathcal{A}_{ep}^{PV}(\theta_{e},Q^{2}) = a Q_{W}^{p} + b Q_{W}^{n} + c G_{M}^{s}(Q^{2}) + d G_{E}^{s}(Q^{2}) + e G_{A}(Q^{2})$$

<u>Statistical χ^2 -</u> analysis of the full set of exprimental data to estimate the quantities: × μ_s= G^s_M(0) $\rho_{s} \sim \left[dG_{E}^{s} / dQ^{2} \right]_{Q^{2}=0}$ × G (0)

(dipole shapes assumed)

Figure: PV electron-proton asymmetry data. Each panel correspond to a different scattering angle. $\chi^2/dof = 1.30$.

 $\hat{\rho_s}$

-

-

Can we extrapolate these results to neutrino reactions?

At tree-level (first order), the axial-vector form factor reads:

$$G_A = \left[G_A^{(T=1)} \tau_3 + G_A^{(s)} \right] G_D^A(Q^2)$$

If one considered Radiative Corrections (RC, higher order contributions):

$$G_{A}^{eN} = \left[(1 + R_{A}^{T=1}) G_{A}^{(T=1)} \tau_{3} + R_{A}^{T=0} G_{A}^{(8)} + (1 + R_{A}^{(s)}) G_{A}^{(s)} \right] G_{D}^{A} (Q^{2})$$

It is assumed that RC are small in neutrino induced reactions where only weak couplings are involved.

However, for electron induced reactions these RC could be of great importance:

$$G_A^{(T=1)} \equiv g_A = -1.27 \qquad \qquad R_A^{T=1} = 0.258 \pm 0.34 \qquad \qquad \blacktriangleright (1 + R_A^{T=1}) G_A^{(T=1)} = -1.04$$

Can we extrapolate these results to neutrino reactions?

At tree-level (first order), the axial-vector form factor reads:

$$G_A = \left[G_A^{(T=1)} \tau_3 + G_A^{(s)} \right] G_D^A(Q^2)$$

If one considered Padiative Corrections (PC higher order contributions):

Summary

- PV elastic electron-proton scattering is an excellent tool to study the WNC form factors, in particular, the vector strange form factors.
- Strong correlation between μ_s , ρ_s and $G_4(0)$.
- Unexpectedly small value of G₍₀₎. This suggests:

+ Alternative prescriptions of the Q² dependence of the axial-vector form.

+ Strong effects of Radiative Corrections.

- More studies on "Radiative Corrections" in the axial-vector sector of the current are essential to solve the problem.
- References: Phys. Rep. 524, 1 (2013) Phys. Rev. D 90, 033002 (2014)

OUTLINE

- I. Introduction/Motivation
- II. Parity violating electron-proton scattering
- III. Parity violating QE electronnucleus scattering

III. Parity violating QE electronnucleus scattering

 $\frac{d\sigma}{d\varepsilon_f d\Omega_f} \propto \left| \mathcal{M}_{ff} \right|^2 \qquad J_N^{\mu} = \int d\mathbf{p} \,\overline{\phi}_F(\mathbf{p} + \mathbf{q}) \,\widehat{\Gamma}_N^{\mu} \,\phi_B(\mathbf{p})$

$$\mathcal{A}_{QE}^{PV} \equiv \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-}$$

III. Parity violating QE electronnucleus scattering

Can this process help us? $G_A^{eN} = \left[(1 + R_A^{T=1}) G_A^{(T=1)} \tau_3 + R_A^{T=0} G_A^{(8)} + (1 + R_A^{(s)}) G_A^{(s)} \right] G_D^A(Q^2)$

III. Parity violating QE electronnucleus scattering

 $G_{A}^{eN} = \left[(1 + R_{A}^{T=1})G_{A}^{(T=1)}\tau_{3} + R_{A}^{T=0}G_{A}^{(8)} + (1 + R_{A}^{(s)})G_{A}^{(s)} \right] G_{D}^{A}(Q^{2})$

Figure: Effect of μ_s , ρ_s and $R_A^{T=1}$ in \mathcal{A}_{QE}^{PV} at forward (left) and backward (right) scattering angles.

Table: Impact of nuclear and nucleonic (FF) effects in \mathcal{A}_{QE}^{PV} .

	forward	backward
RPWIA <i>vs</i> RMF-FSI		
<i>vs</i> EMA-FSI <i>vs</i> RFG	1%	5%
Off-shell effects		
(CC1 <i>vs</i> CC2)	15 - 30%	5%
Magnetic Stangeness	4%	3.5%
Electric Stangeness	13%	tiny
Axial-vector FF ($R_A^{T=1}$)	tiny	10%
MEC, correlation currents (*)	Very important factor × 2	< 0.5%

(*) J. E. Amaro et al. Phys. Rep. 4 (2002), 368.

Summary

- Study of the sensitivity of the PVQE asymmetry with nuclear and nucleonic effects
- A measurement of the asymmetry at backward scattering angles and momentum transferred around 500-1000 MeV would be very useful to constrain RC that enter in the isovector sector of the axial-vector form factor of the nucleon.
- The determination of these RC would improve significantly the current knowledge on the Weak Neutral Current in the nucleon.

• References:

+ "Parity Violation in elastic and quasielastic electron scattering off nucleons and nuclei." Ph.D. Thesis by Raúl González Jiménez, Universidad de Sevilla.

+ Article in preparation.

Than you for your attention!

Backup Slides

Backup Slides

