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Measurement of the hyperfine splitting energy
of the ground-state muonic hydrogen
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Proton Radius Puzzle

Muonic atom is a good probe of proton structure
because muon is 200 times closer to the nuclei than electron .

Precise measurement of Lamb shift lead to an unexpected "proton radius puzzle".
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Proton radius from pp Lamb shift was 10 times more precise
and 5 times off from other measurements
(hydrogen atom and e-p scattering) allows.




Proton Radius Puzzle

Further measurement and analysis did not ease the discrepancy.

R. Pohl et al., Ann. Rev. Nucl. Part. Sci. 63 (2013)242001
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Errors in measurement?
Theoretical corrections wrong?
Broke lepton universality? new physics?

Year

=> So far, no satisfactory explanation is given.
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Zemach radius

What about other radius (magnetic)?

Zemach radius 1°s, (F=1)
R, = fd3rrj AB3r'og ey —1") 1S
Another good quantity determined AENFS
from atomic hyper fine structure (HFS)
and e-p scattering ,
(spatial distribution of magnetic moment 1'S, (F=0)
smeared out by charge distribution
[d3rpy(r) [o(r)]?) F : total angular momentum




Zemach radius

up result from 2s state HFS at PSI (from two lines).
was not contradictory, but the error was large.

R, = 1.082(37) fm

(A. Antognini, et al., Science 339 (2013) 417)

from e-p : 1.086(12), 1.045(4) fm

from H spectroscopy : 1.047(16), 1.037(16) fm
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Independent measurement is highly desirable.
We plan a direct measurement of 1s HFS energy.



HFS splitting energy
How a proton radius determined?

It is, in first order, proportional to muon and proton magnetic moments (1/mM and )
and to 1/Rup3 but with correction terms, some are structure dependent

AE:{)]S"?‘ - EF(l + 8QED + Ozemach t Orecoil T 8pol + 8hvp)

term: 8 4 MueMp
Fermi term: Er ==-a* = Uy
(Muey +mp)
qen: higher order QED correction (well known)

Zemach ~ -ZOLmMpRZ + O(az)

recoil - Fecoil (well known)

ool - Proton polarizability (internal dynamics of protons)
: hadron vacuum polarization (small)

Rz ={(Er (1 + 8gep + 8recoir + Spor + Snwp) — AEre}/1.281



Expected Precision of Zemach Radius

Rz = {(Er (1 +8gzp + Srecoir + Opor + Onp) — AEjps}/1.281(10?)

Dupays et al., Phys. Rev. A 68, 052503 2003

Hydrogen Muonic hydrogen

Magnitude Uncertainty Magnitude  Uncertainty

EF 1418.84 MHz 0.01 ppm 182.443 meV 0.1 ppm

STEL 113%x107° <0001x107% 1.13x10°° 10~ 8
Srigd 30x 108 2% 108 7.5% 1073 0.1x103
greeell gy 1078 1078 1.7% 10773 1076
5pel 1.4%10° 8 0.6x10 8 0461077 0.08x10°
5P 10”8 1077 0.02x107% 0.002x107°

Uncertainty of the polarizability is dominant (~1 % of the Zemach term).
R, = 1.0??(xx) fm (xx <14)
Improvement by factor3 expected.

Zemach



How can we measure it?

Muonic proton ground state HFS energy has never been measured before
(In contrast to precise muonium HFS - see Patrick's talk.)
Proposed method

(2) muon spin is polarized
S, —<=4—

A

(3) detect by muon decay
Q') electron emission direction

(1) excitation by circularly-
1S, —c:_‘::'— — — polarized laser

A

(0) all muons in
up HFS ground state

also,
Another approach using detection of

epithermal muon transfer effect by INFN group
Bakalov et al., Phys. Lett. A 172 (1993) 277



Formation of Muonic Hydrogen atom (up)

Muon stops in hydrogen

Muon capture at high orbit and cascade to ground state

Rapid conversion to lower hyperfine state
=> no muon polarization left

n S o d
3
2
13S; (F=1)

1

AEHFS ~ 0.183

eV

,_11S, (F=0)




Excitation by laser

135S, (F=1)
Laser requirement for up 1S HFS N
0.183 eV = 6.8 um = 44 THz |
tunable by ~1073 (40 GHz) - to cover uncertainty Hp

narrow band width 50 MHz (1 ppm)

1S

AEHFS ~0.183 eV

Magnetic transition ,
B,(t) = (1/v2 B, coswt, 1/v2 B, sinwt, 0) 11S, (F=0)
dP/dt = 2m/R | (1, +11,)Bg |2 /4 8(v-vy)

F . total angular momentum

with convolution of Doppler broadening by up velocity distribution (~VT)
(A. Adamczak et al., NIM B 281 (2012) 72, with correction by 1/4 , private communication)

E
P=2x 107° —
S\T

E/S : laser power density [J/nm¥], T . temperature [K]

High intensity laser is required => pulsed laser and pulsed muon
Doppler broadening (cooling to ~20 K helps => 63 MHz)



Detection of Polarization

Circularly polarized laser gives selection of one sub-state in excitation to triplet state.
=> complete muon spin polarization in excited state.

Muon decays with lifetime of 2.2 us and emits electrons asymmetrically to the spin.
w->evyv

However, ...




Quench of triplet state

Triplet state may convert back to singlet state before muon decay
by external collision (no directly measured rate)

up(™) +p > up(ry) + p
J. Cohen, Phys. Rev. A 43 (1991) 466
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50 ps at liquid hydrogen density (LHD)

50 ns at 0.001 LHD,

500 ns at 0.0001 LHD

The hydrogen density has to be small.



Experimental feasibility

Excitation fast enough (laser power requirement) ?
Detection efficiency (detection before quench)?
Muon rate and event rate?

Background?
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Laser

Tunable infra-red laser (5 mlJ)
was developed by RIKEN laser group

A new laser is feasible
10 mJ x double pulse
and 2 sets

will give 40 m)J



Excitation Rate

P=2x 105 —
SNT
E/S . laser power density [J/n¥] T. temperature [K]

ex. E=40mJ), S=4cm?, T=20K, then P=45 x 104

This is too small.

We need multi-pass cavity
High-reflectivity mirror 99.95%
Cavity design by beam ray tracing program

mirror mirror

Hydrogen

/aser




Target & Detector

Target Requirement

Large muon stopping -> high density, large volume
Small up quenching -> low density
High laser density -> small volume
=> Let's take 0.0001 LHD and 4 cm? x 6 cm

Detector

Solid angle ~28% each

) Asymmetry factor
€ (polarization sensitivity )~0.23

electron counter
(forward)

mirror

Meledron counter
(backward)

| mid-IR laser




Muon beam

We need a pulsed muon beam
<= One laser shot covers as many muons as possible.

We plan a first measurement at RIKEN-RAL Muon Facility.
A dedicated experimental area will be arranged.
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Muon stopping and background

Hydrogen target cell cooled to 20 K by GM-type refrigerator
40 MeV/c muon

Only 0.01% of incoming mons stops in hydrogen.

Other muons stop in target vessel and surrounding materials.
=> We use only high-Z materials so those muons disappear
by nuclear capture (90ns in silver) Ll e
before laser injection. :

total
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Polarization vs time

Calculation includes
Excitation per single pass (4.5 x 104)

Multi-pass laser cavity with loss by reflectivity
and up HFS quenching (500 ns for 0.0001 LHD, 50 ns for 0.001 LHD)
We get average polarization of 0.16 in a time gate 1.33 us (0.0001 LHD)

(0.037 in 0.67 us for 0.001 LHD)

Laser power = 40 mJ, hydrogen density = 0.01 % of LHD
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Yield estimation (statistics)

Take the forward/backward ratio for the polarization effect
N, Ng in time gate

(Ne-Ng)/ (Ne+Ng) = Ag P Salaan
up decay
Beam condition -
Intensity 2.2 x 10* /s @40 MeV/c
Momentum width csp/p0 = 4% =
Target condition 0/
H2 gas 0.0001 LHD, Volume 4cm?x 6 cm At e

Laser
40 mJ, 99.95% reflectivity, cavity length
Detector (solid angle 28% each, polarization sensitivity factor 0.23)

Time gate : laser at 1.0 us after muon + 1.33 us detection gate
statistics in 5 hours
=>signal N.-Ng, ~240

fluctuation AN+AN; ~ V(N +N;g) ~80

significance = (Ng-Ng)/ V(N+Ng) ~36



Resonance hunting & beam time estimate

We plan three steps hunting

of resonance

over region +-5.7 GHz, step 100 MHz
1) 30 peak ~25 days
2) 56 peak ~11 days
3) resonance curve ~8 days
=> 1.5 months beam time
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Beam time estimate (2)

At J-PARC MUSE, we can earn statistics much quicker (x8?).
Same statistics could be obtained in 5 days.
For the moment, long time occupation of the experimental area is "very" difficult.

Beam power [kW] 160 300 (=>1000)
Repetition [Hz] 50 25
Proton energy [GeV] 0.8 3

Prod. target thickness [mm] ? ?x2
Momentum bite [%] 4 107
Double pulse interval [ns] 320 600

Muon rate at 40 MeV/c 2.2 x 10% [/s] 5x 10° [/s]



Collaboration
K. Ishida, M. Sato, M. lwasaki, Y. Ma, T. Matsuzaki, S. Okada, Y. Oishi
RIKEN Nishina Center, RIKEN

K. Midorikawa, N. Saito, S. Wada
RIKEN Center for Advanced Photonics, RIKEN

K. Tanaka, Y. Matsuda
Graduate of School of Arts and Science, The University of Tokyo

S. Kanda
Department of Physics, The University of Tokyo

New collaborators are welcome



Summary

We are planning the first measurement
of the ground state hyperfine splitting energy
in muonic hydrogen using mid-infrared laser

The expected HFS energy accuracy is 2 ppm.
The Zemach radius determination is 1%
(limited by calculation of repolarization term).

Experiment is feasible at RIKEN-RAL Muon Facility

with pulsed muon source.
(J-PARC MUSE is another candidate)
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