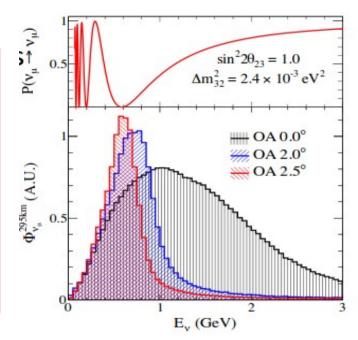
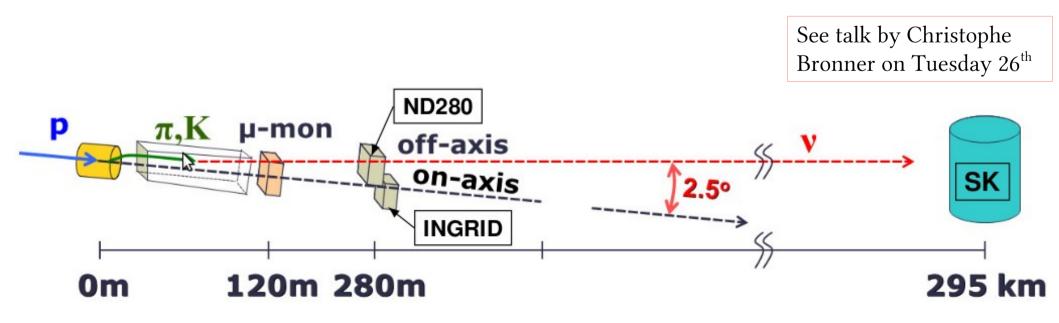

T2K Off-Axis Cross Section Measurements

Raquel Castillo (IFAE) On behalf of the T2K Collaboration NuFact 2014, Glasgow (Scotland)

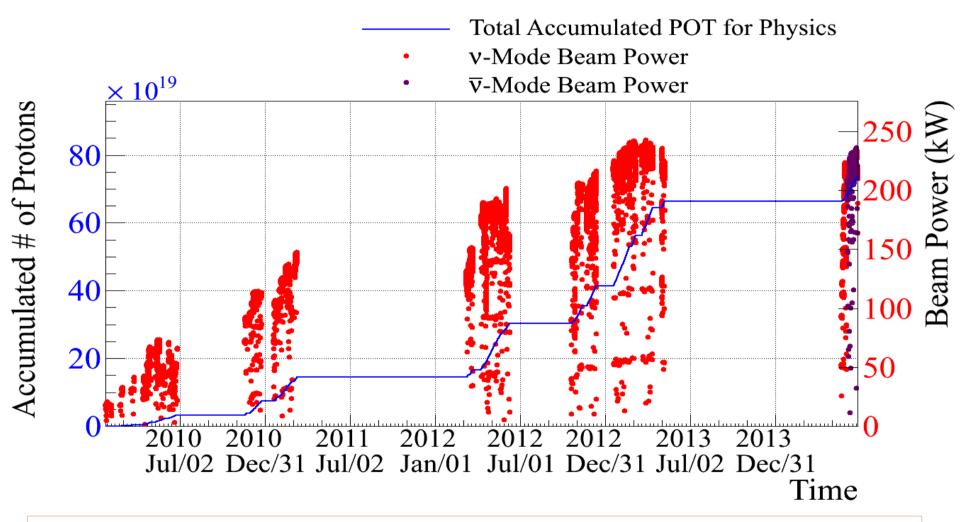
Motivation

- > Understanding how neutrinos interact with matter is critical to reduce the systematic uncertainties in oscillation experiments.
- Published data from other experiments show discrepancies with the most common theoretical models.



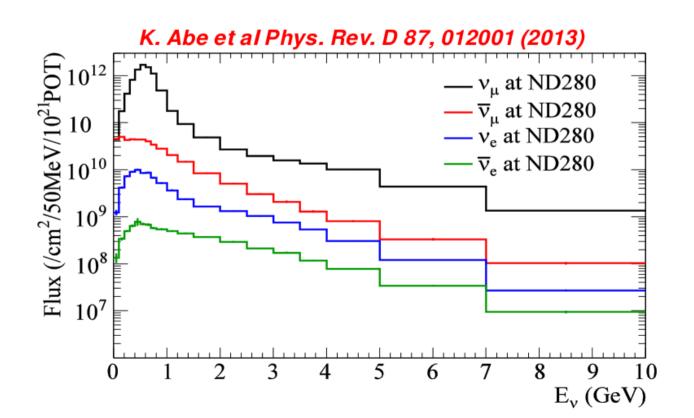

Data collected in the near detector of the T2K experiment provide a coverage of the critical low to intermediate energy region

The T2K Experiment


T2K (Tokai-to-Kamioka) is a long baseline neutrino accelerator based experiment in Japan. Main goal is to measure neutrino oscillation parameters:

- > v_{e} appearance $\rightarrow \sin^{2}(2\theta_{13})$
- > ν_{μ} disappearance $\rightarrow \sin^2(2\theta_{23})$ and $|\Delta m^2_{32}|$
- Look for CP violation

Collected Data in T2K

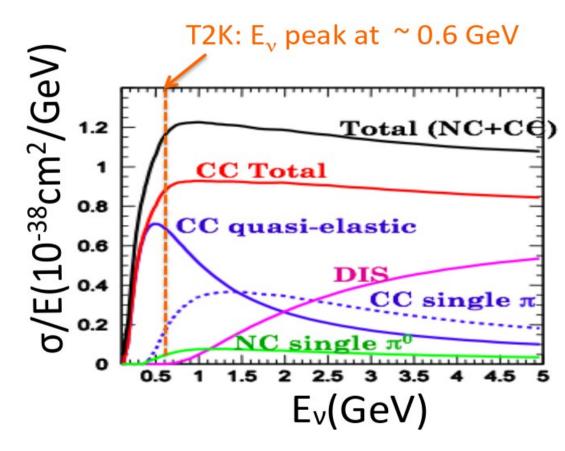

- Beam power reached 235 KW (1.2·10¹⁴ protons/pulse)
- > Data for analysis: $7.39 \cdot 10^{20}$ protons on target (PoT), 8% of final design goal.
 - ▹ v-Mode: 6.88·10²⁰ PoT
 - $\sim \overline{v}$ -Mode: 0.51 \cdot 10²⁰ PoT
- Run 5 started in May 2014

Flux Prediction for ND280

> Narrow band of a pure (92.5%) v_{μ} beam @2.5° off-axis angle.

Flux prediction based on NA61/SHINE hadron production cross section measurements.

Proton beam monitoring.



v_{μ} Interactions in T2K

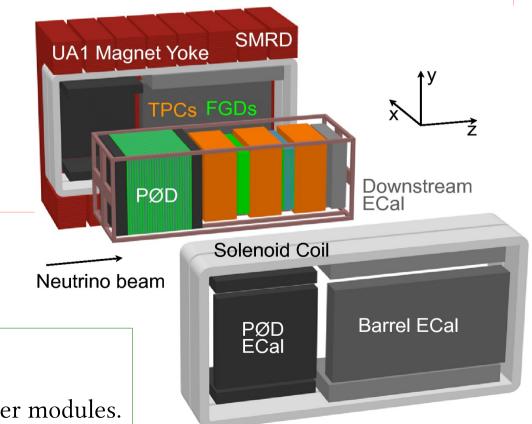
- > CC (Charged Current) QE (quasi elastic)
 - $\nu_{\mu} + n \longrightarrow \mu^{-} + p$
- > CC Resonance single π (CC1 π^+)
 - $\sim v_{\mu} + n(p) \longrightarrow \mu^{-} + \pi^{+} + n(p)$
- CC-DIS (Deep Inelastic Scattering)

$$\sim v_{\mu} + N \longrightarrow \mu^{-} + m\pi^{+/-/0} + N'$$

- > CC Coherent π
 - $> \nu_{\mu} + A \longrightarrow \mu^{-} + \pi^{+} + A$
- > NC (Neutral Current)
 - → NCE (Neutral Current Elastic), NC π^0 ,...

And nuclear effects:

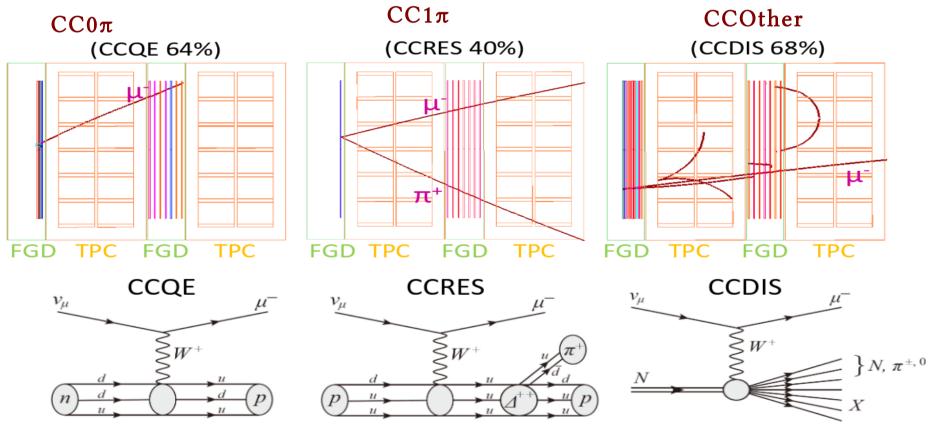
Pion absorption


≻ ...

Multinucleon effects

Off-Axis Near Detector ND280

> 0.2T Magnetic field


- > Tracker Region:
 - > 3 TPC → Gas Argon time projection chambers using MicroMegas detectors. Provides an accurate PID using dE/dx information and a high momentum resolution.
 - > 2 FGD* → Fine grained detectors. Active targets made of layers of scintillator bars.
 Vertex information.
- > **P0D**: dedicated π^0 detector.
- > Electromagnetic Calorimeter: ECal.
- Side muon range detector: SMRD

*2FGDs: First FGD is fully scintillator (CH). Second FGD is divided into scintillator and water modules.

Topologies at ND280

- ND280 is used to constrain uncertainties at Super-K for flux and cross section parameters, jointly with external data.
 - A topological description is used for the event categorization based upon the number of particles leaving the nucleus.
 - Three exclusive samples are defined according the number of pions on the final state.

ND280 Cross Section Measurements

- Cross Section results on Carbon*
 - v_{μ} CC Inclusive (Tracker)
 - v_{e} CC Inclusive (Tracker)
 - ν_{μ} CCQE (Tracker)
 - ν_{μ} CC1 π^{+} (Tracker)
- Cross Section results per nucleon
 v_u NCE (P0D)
- Prospects for Cross section measurements in ND280

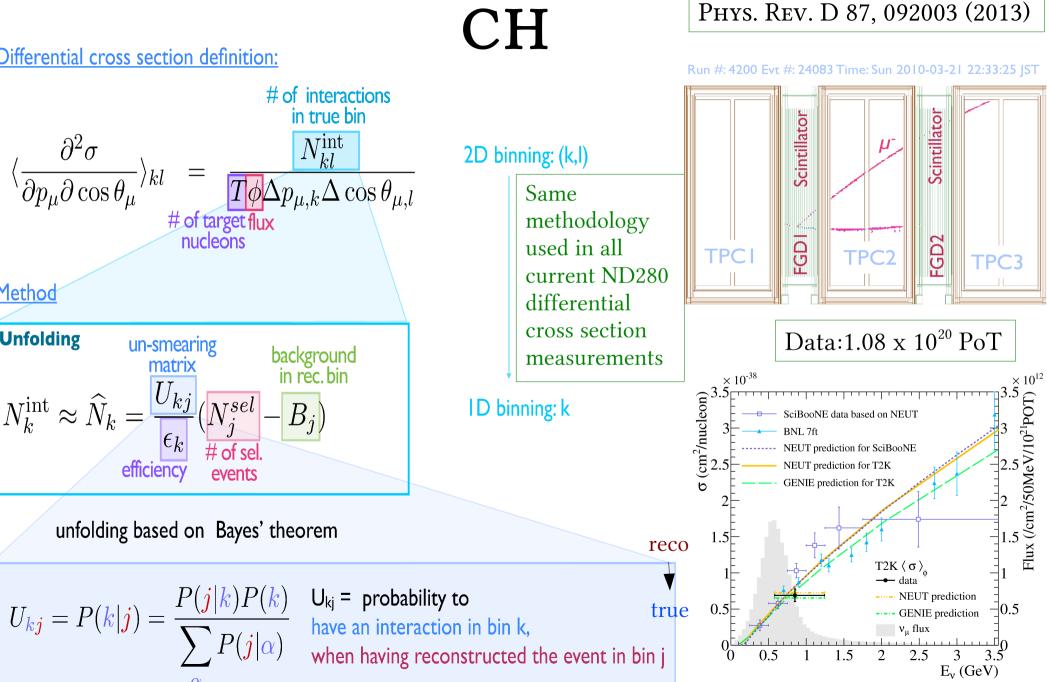
v Differential CC Inclusive on μ

CH

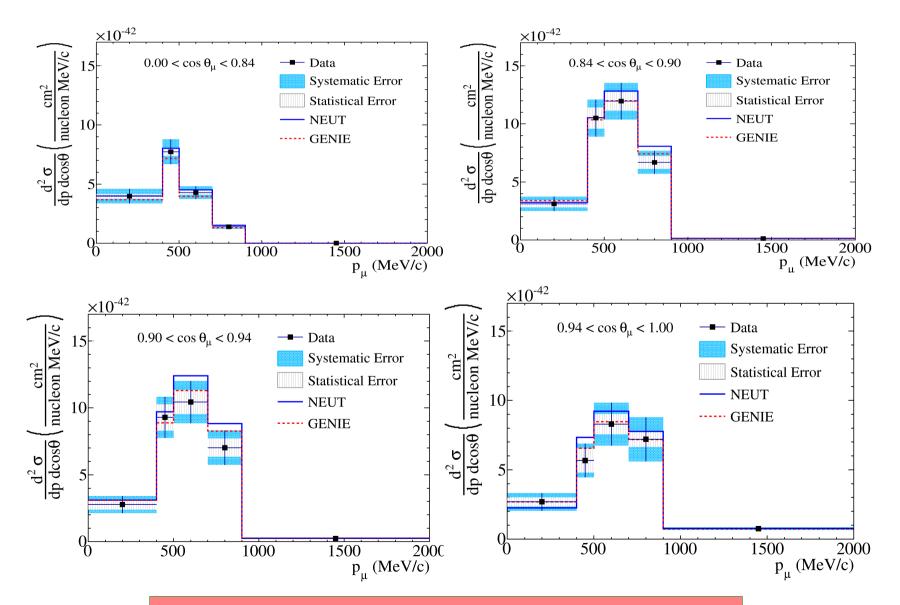
Differential cross section definition:

matrix

efficiency


 α

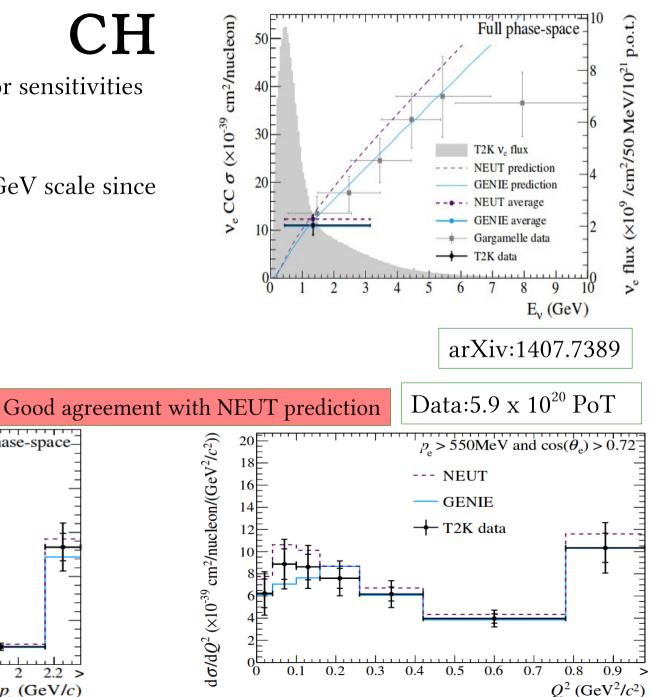
 $\langle \frac{\partial^2 \sigma}{\partial p_\mu \partial \cos \theta_\mu} \rangle_{kl}$

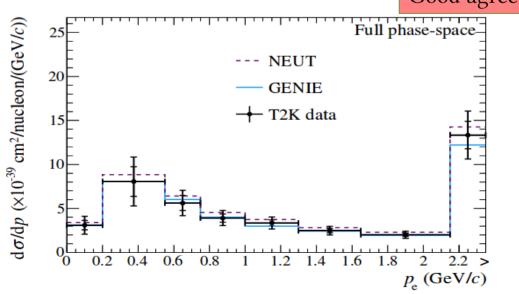

 $N_k^{\text{int}} \approx \widehat{N}_k = \underbrace{U_{kj}}_{\sub}$

Method

Unfolding

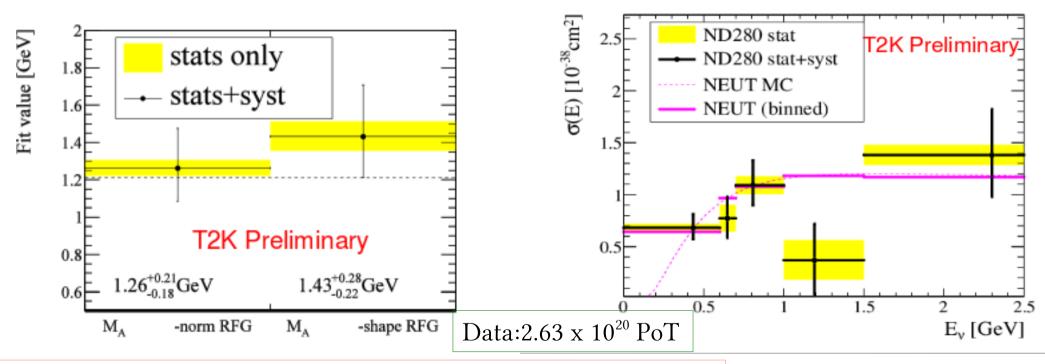
ν_μ Differential CC Inclusive on CH




Data in good agreement with NEUT and GENIE predictions

v Differential CC Inclusive on

CH

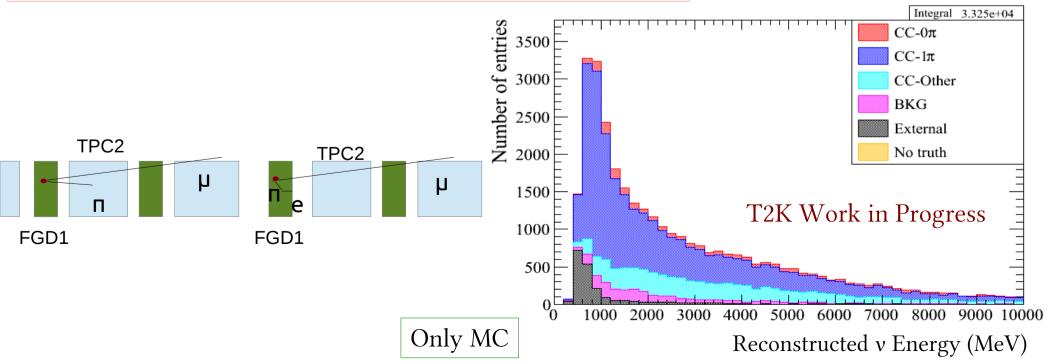

- > Understanding v_{μ} vs v_{e} is crucial for sensitivities studies.
- > Using Bayesian unfolding method.
- > First v_{1} cross section result at the GeV scale since Gargamelle in 1978.
- > Result given differentially in:
 - Electron momentum
 - Electron Angle
 - \sim Q² assuming CCQE interaction.
- > Total flux averaged cross section.

$\nu_{_{\mu}}$ CCQE on CH

- > Fit done in bins of p_{μ} , θ_{μ} , then projected into E_{ν}
- > Events with only 1μ -like track and no pions at the final state are used to fit the MC (NEUT)
- Fitted effective M_A^{QE} value is consistent with previous low energy measurements, MiniBooNE & K2K.

See Callum Wilkinson

13

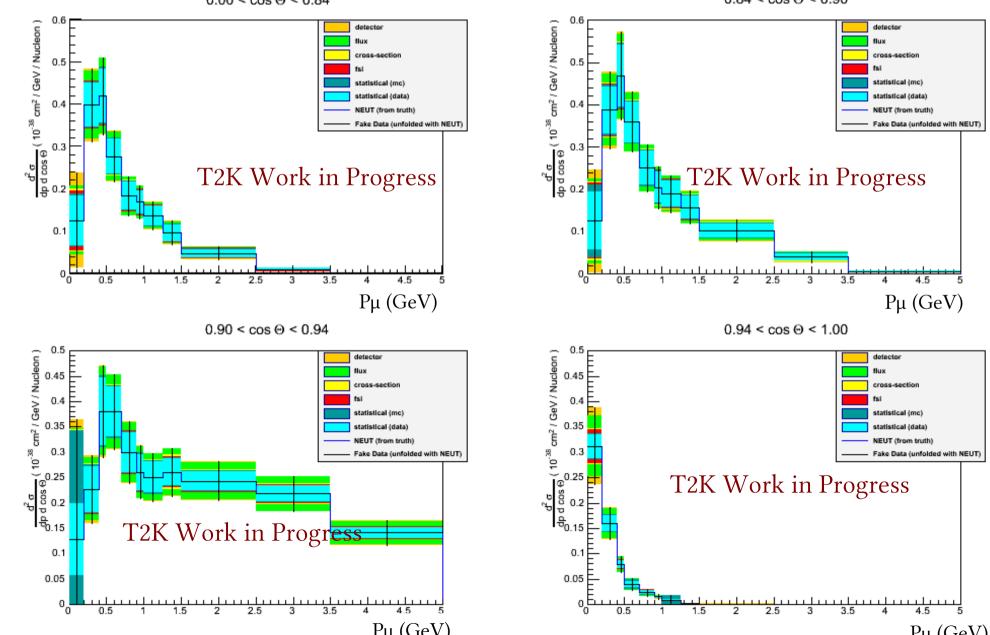

talk

- New T2K analysis ongoing:
- CCQE double differential with improved event reconstruction.
- ✓ 2p2h effect included in next NEUT MC release.
- Dedicated 2p2h analysis ongoing.

v_{μ} Differential $CC1\pi^+$ on CH

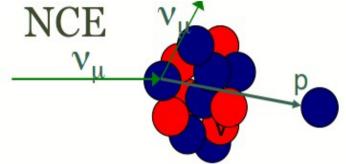
- > Event selection: 1 μ -like and 1 π^+ -like in final state.
- No kinematical cuts applied.
- Cross section result with respect to several variables:
 - E_v, single differentials Q², |Q₃|, invariant mass, double differential (Q²,Q₃)
 - > Double differential (P_{μ}, θ_{μ})
 - > Single differentials P_{π} , θ_{π}
 - respect more angular distributions...

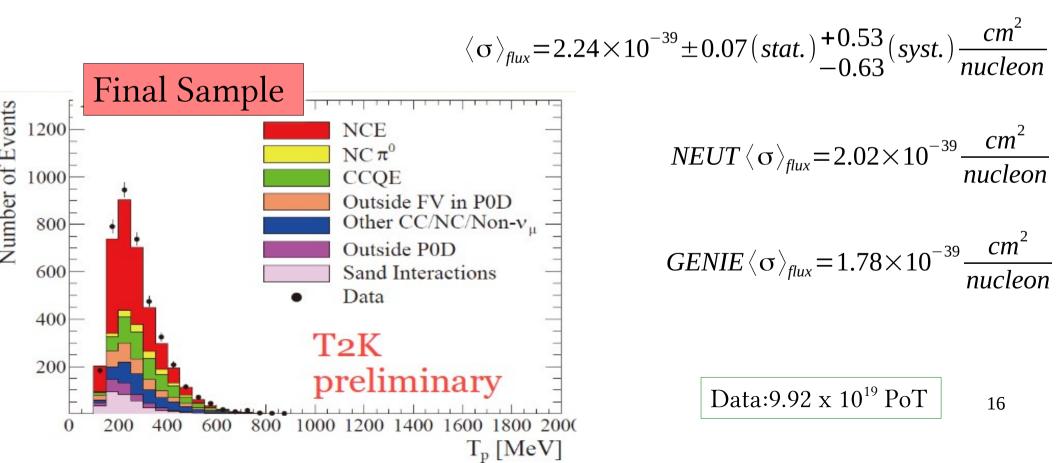
- Control samples to fit the background
- Finalizing systematic calculation
- Result will be ready soon.



v_{μ} Differential CC1 π^+ on CH

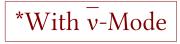
Using MC as fake data before final results with real data


 $0.00 < \cos \Theta < 0.84$


 $0.84 < \cos \Theta < 0.90$

v_{μ} NC Elastic per nucleon

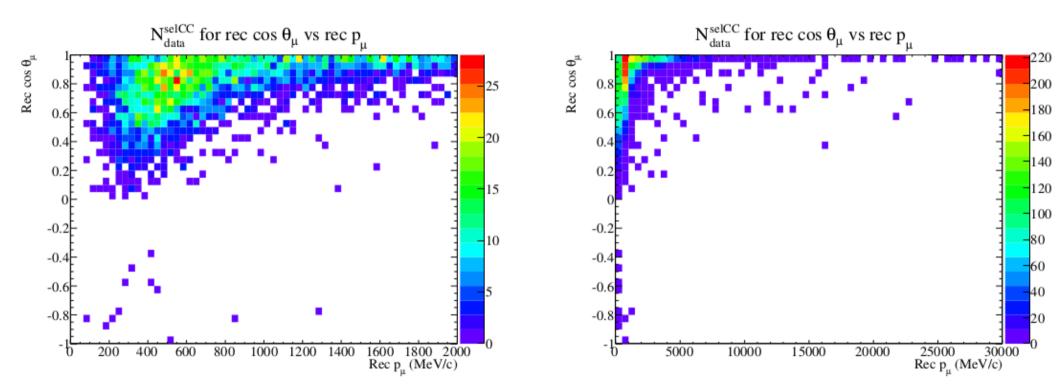
- Selecting proton-like with dE/dx in P0D
- Only one track in the final state
- Consistent with NEUT and GENIE models



Prospects for Cross Section Measurement in ND280

More analysis ongoing in ND280:

- ✓ Differential CC1 π^+ with explicit presence of a proton on carbon.
- CC Coherent pion production on carbon.
- CC1π⁺ on water (P0D) → single energy bin.
- ✓ Improving the CCQE result on carbon → double differential measurement with more statistics and improved event reconstruction.
- Searches of 2p-2h events on carbon.
- Differential CC1 π^+ on water, using the FGD2 water modules.
- Differential CC Inclusive on water, using the FGD2 water modules.
- Anti-Neutrino cross section on carbon*.
- Anti-Neutrino cross section on water*.

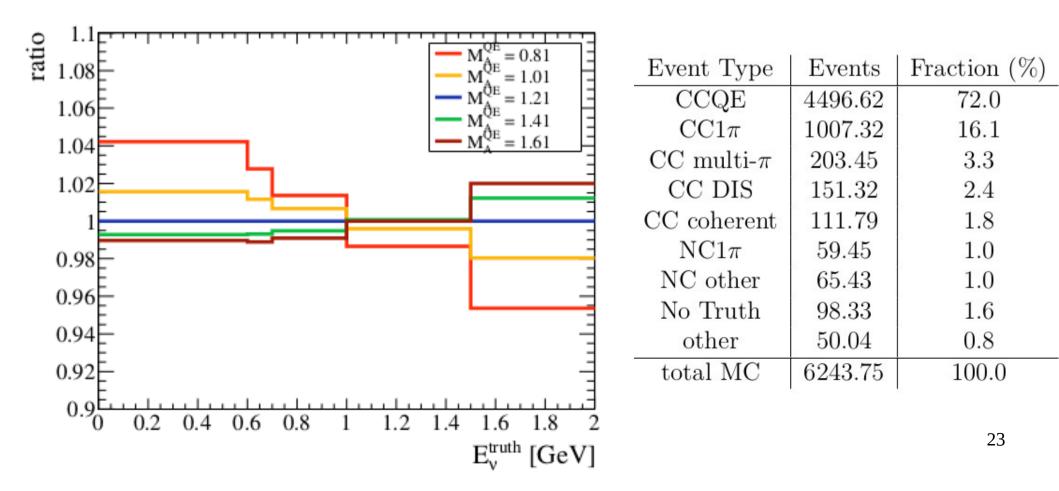

Summary

- Cross section measurements are not only important for neutrino interaction understanding by itself but it is also crucial for oscillation analysis.
- > The intermediate energy range became the most controversial scenario since several distinct neutrino scattering mechanism contribute to the full picture. The products of these neutrino interactions includes a huge variety of final states.
- T2K covers the intermediate energy range and the near detector, ND280, can measure neutrino cross sections in carbon and water targets.
- > CC Inclusive measurements for v_{μ} and v_{e} on carbon have appearer in PRD and referee journal respectively, the v_{e} result being the first one since Gargamelle. v_{μ} CCQE measurement on carbon and v_{μ} NC Elastic on the P0D have also been showed.
- > First look into the next result on v_{μ} CC1 π^+ measurement on carbon. Result will be provided in single and double differential over several interesting variables.
- Additional measurements are ongoing in ND280, on carbon and water. Starting preparation of anti-v cross section.

Thanks!!

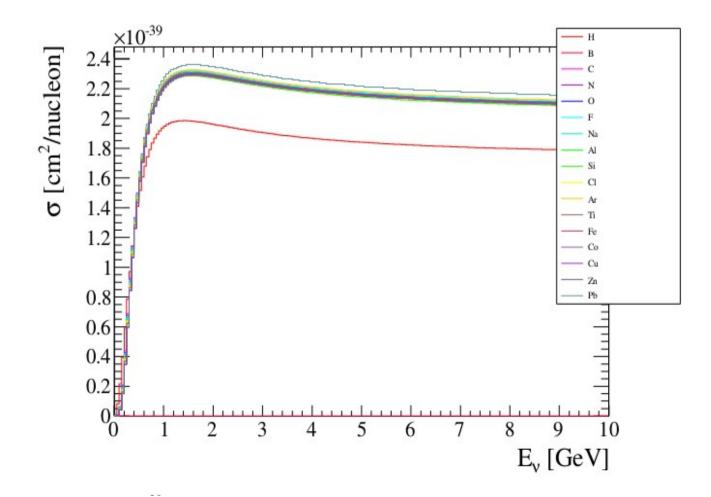
Backup

ν_µ Differential CC Inclusive on CH



v_{μ} Differential CC Inclusive on CH

$P_{\mu} (\text{GeV/c})$	$\cos \theta_{\mu}$	algo.	ϕ	x-s	det.	FSI	syst	stat	tot
		(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
[0.0, 0.4]	[-1,0]	0.53	11.40	17.99	2.13	0.46	21.43	2.04	21.53
	[0, 0.84]	0.62	12.79	5.52	3.65	1.21	14.49	4.95	15.31
	[0.84, 0.90]	0.26	13.13	10.76	2.73	1.41	17.28	9.52	19.72
	[0.90, 0.94]	1.21	14.05	10.73	5.02	3.55	18.78	12.26	22.42
	[0.94, 1]	0.22	14.03	12.94	4.94	2.97	19.96	14.72	24.80
[0.4, 0.5]	[-1,0]	1.32	11.98	39.47	2.72	0.87	41.38	3.19	41.50
	[0, 0.84]	0.17	11.39	5.69	1.30	0.34	12.83	4.20	13.50
	[0.84, 0.90]	0.01	11.36	4.99	1.01	0.42	12.48	8.61	15.16
	[0.90, 0.94]	0.82	11.66	5.38	1.28	0.51	12.97	10.08	16.43
	[0.94, 1]	0.55	13.11	7.19	2.27	0.92	15.19	11.74	19.19
[0.5, 0.7]	[-1,0]	0.63	12.60	46.13	1.86	0.42	47.87	8.48	48.62
	[0, 0.84]	0.33	11.13	3.79	1.09	0.37	11.84	3.78	12.43
	[0.84, 0.90]	0.41	10.85	3.44	0.82	0.30	11.45	6.18	13.02
	[0.90, 0.94]	0.48	11.01	5.73	0.81	0.35	12.48	7.28	14.45
	[0.94, 1]	0.52	11.64	11.45	1.09	0.28	16.39	7.91	18.20
[0.7, 0.9]	[-1, 0]	3.63	13.53	148.34	1.97	0.57	149.02	32.74	152.57
	[0, 0.84]	0.59	11.38	3.17	1.10	0.41	11.91	5.07	12.95
	[0.84, 0.90]	0.56	10.92	5.88	0.83	0.20	12.47	6.84	14.22
	[0.90, 0.94]	0.31	10.72	11.13	1.05	0.46	15.52	7.68	17.32
	[0.94, 1]	0.19	11.00	17.59	0.93	0.39	20.79	6.97	21.93
[0.9, 30.0]	[-1, 0]	-	-	-	-	-	-	-	-
	[0, 0.84]	0.20	11.88	5.61	1.37	0.63	13.26	5.44	14.33
	[0.84, 0.90]	0.03	11.34	2.49	0.87	0.25	11.68	5.85	13.06
	[0.90, 0.94]	0.18	11.13	2.27	0.71	0.36	11.42	5.18	12.54
	[0.94, 1]	0.20	10.93	2.31	0.75	0.26	11.24	2.93	11.61


22

$$\mathbf{v}_{\mu} \operatorname{CCQE}_{\text{on CH}} \operatorname{on CH}_{w_{\text{shape}}(M_{A_{\text{modified}}}^{\text{QE}}) = w_{\text{norm}}(M_{A_{\text{modified}}}^{\text{QE}}) \frac{\sigma(M_{A_{\text{modified}}}^{\text{QE}})}{\sigma(M_{A_{\text{modified}}}^{\text{QE}})}$$

v_{μ} NC Elastic per nucleon

$$<\sigma>_{flux} = \frac{N_{sel.} - B_{mc}}{\frac{\int \Phi(E_{\nu}) dE_{\nu}}{1 \times 10^{21} P.O.T.} \times \text{p.o.t.}_{exposure} \times N_{Targets} \times \epsilon_{mc}}$$

v Differential $CC1\pi^+$ on CHμ

- $> d\sigma/dp_{u}, d\sigma/dp_{u}Cos\theta_{u}$
- > $d\sigma/dp_{\pi}$, $d\sigma/d\theta_{\pi}$
- > $d\sigma/dE_{u}$ (reconstructed neutrino energy formula)
- $\rightarrow d\sigma/dQ^2$
- > $d\sigma/d|Q_3|$, $d\sigma/d|Q_3|dQ^2$
- > $d\sigma/d\theta_{\mu\pi}$
- > $d\sigma/d\theta_{|Q^3|\pi}$
- $d\sigma/d\theta_{planar} = \frac{\overline{|v \times \overline{l}| v \times \overline{n}}}{\overline{v \times |v \times \overline{l}| v \times \overline{n}}}$
- > $d\sigma/dW$ (W \rightarrow invariant mass)

$$E_{\nu} = \frac{m_{\mu}^2 + m_{\pi}^2 - 2m_N(E_{\mu} + E_{\pi}) + 2p_{\mu} \cdot p_{\pi}}{2(E_{\mu} + E_{\pi} - |\mathbf{p}_{\mu}| \cos \theta_{\nu,\mu} - |\mathbf{p}_{\pi}| \cos \theta_{\nu,\pi} - m_N)}$$