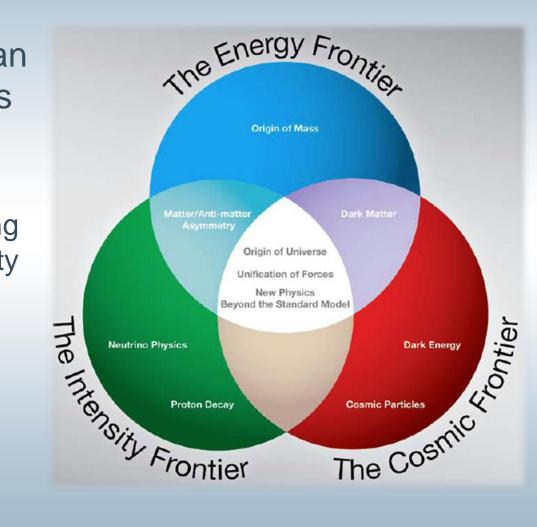


1

Muon Accelerator Program R&D

Diktys Stratakis Brookhaven National Laboratory

Nufact Workshop, Glasgow, UK August 28, 2014


Introduction

- Mission Statement:
 - "The mission of the Muon Accelerator Program (MAP) is to develop and demonstrate the concepts and critical technologies required to produce, capture, transport, accelerate, and store intense beams of muons for Muon Colliders and Neutrino Factories"
 - "The goal of MAP is to deliver results that will permit the high-energy physics community to make an informed choice of the optimal path to a high-energy lepton collider and/or a next-generation neutrino beam facility"

Source: www.map.fnal.gov

Aim of the MAP effort

- MAP accelerator R&D can address critical questions extending two frontiers:
 - Intensity frontier: with a <u>Neutrino Factory</u> producing v beams for high-sensitivity studies
 - Energy Frontier: with a <u>Muon Collider</u> capable of reaching multi-TeV CoM energies

History of MAP

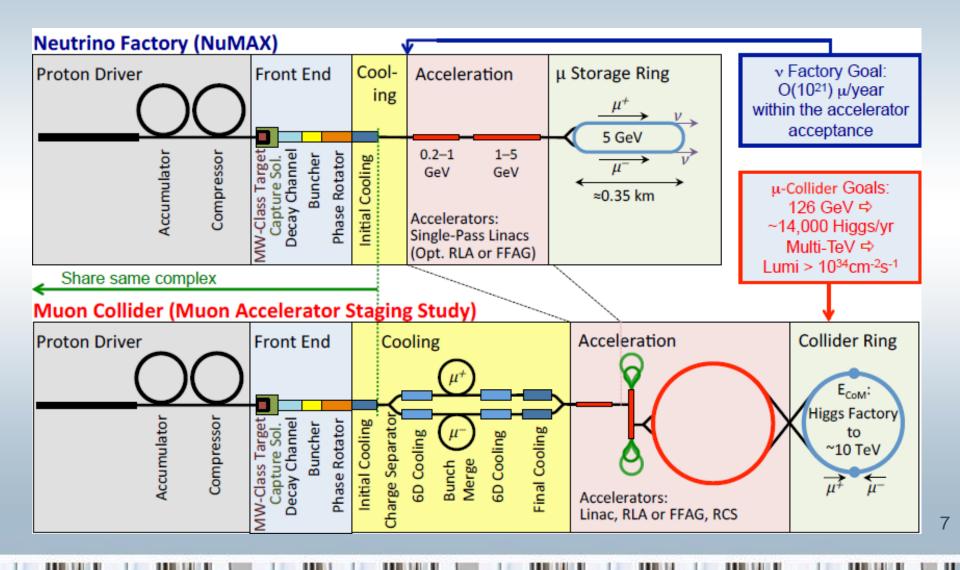
May 2008	P5 Report		
August 2010	DOE Review: MAP Proposal		
March 2011	Approval of national program:	US MAP	
January 2012	Director Appointed		
August 2012	DOE Review: MAP		
	Project-like reorganization		
	R&D Status and plans		
March 2013	DOE Review: MAP		
	Progress on reorganization monitored		
February 2014	DOE Review: MAP	Not diagua	aad
	Program Execution Plan endorsed	Not discus	sea
	Plan for Feasibility Assessment endorsed	<u>in this tal</u> k	
May 2014	New P5 Report		
	"Reassess the Muon Accelerator Program.		
August 2014	DOE Review: US MAP Reasse	essment	
			1

ш

П

4

Ш

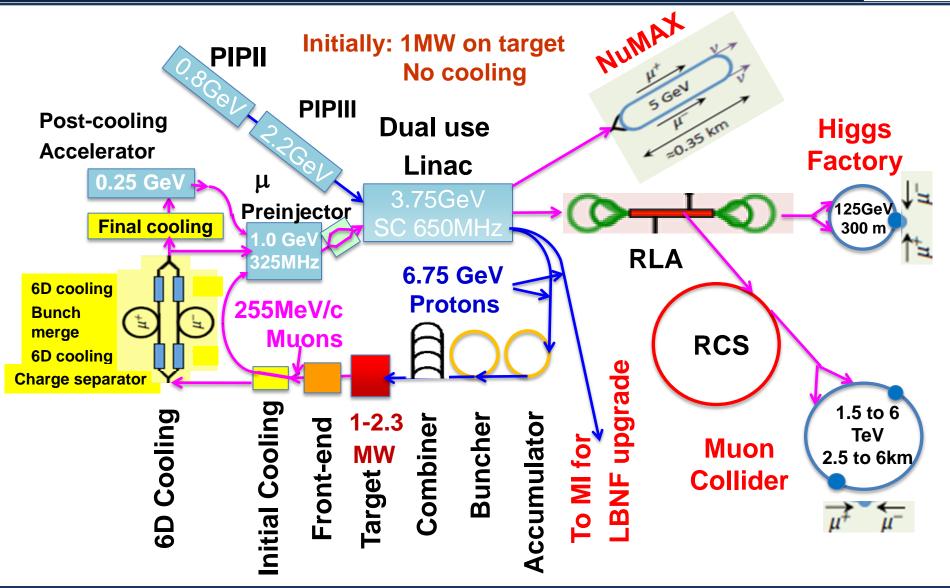

Physics motivations

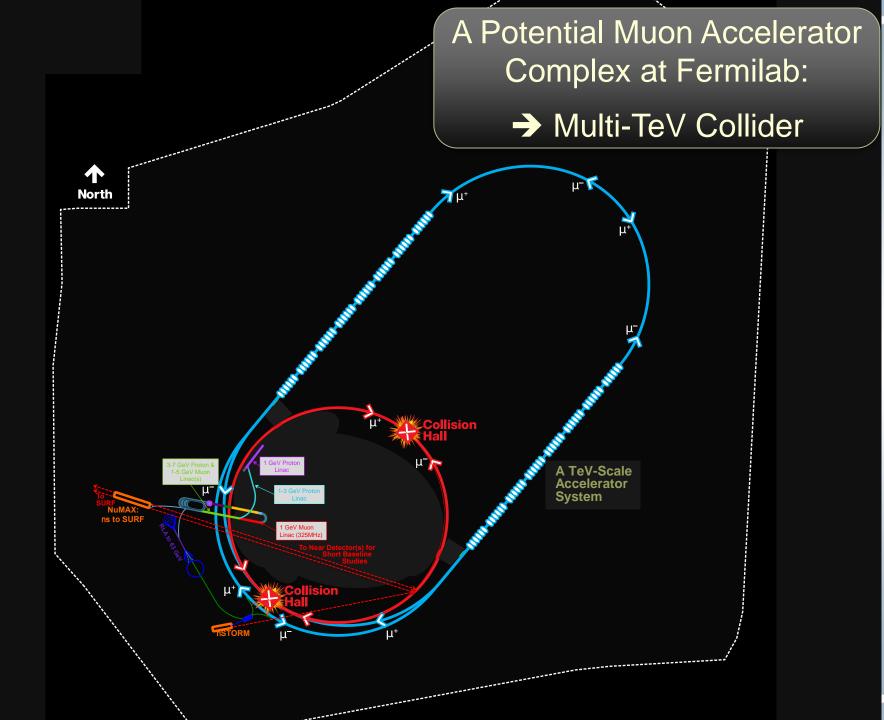
- Muon an elementary charged lepton:
 - 200 times heavier than the electron
 - 2.2 µs lifetime at rest
- Large mass strongly suppresses synchrotron radiation
 - Muons can be accelerated and stored using rings at much higher energy than electrons
 - Higher quality colliding beam with reduced beamstrahlung
 - Therefore, a muon collider would offer a precision leptonic probe of fundamental interactions
- Muon beams, can provide equal fractions of muon and electron neutrinos at high intensity for studies of neutrino oscillations → Neutrino Factory concept

Muon challenges

- Muon beams are born as tertiary beams
 - Protons \rightarrow pions \rightarrow muons
 - Challenge: capture & transport
- Muons are born within a large phase-space
 - To obtain luminosities O(10³⁴) cm⁻²s⁻¹ need to reduce the initial phase-space by 6 orders of magnitude
 - Challenge: Phase-Space manipulation
- Muon decay fast (~ 2 µs at rest)
 - Challenge: Everything must be done fast
 - Must deal with high momentum protons, electrons...

Big picture

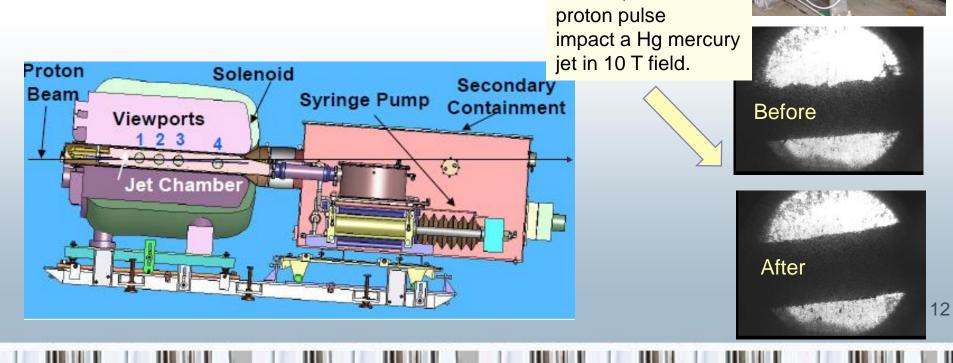



Approach

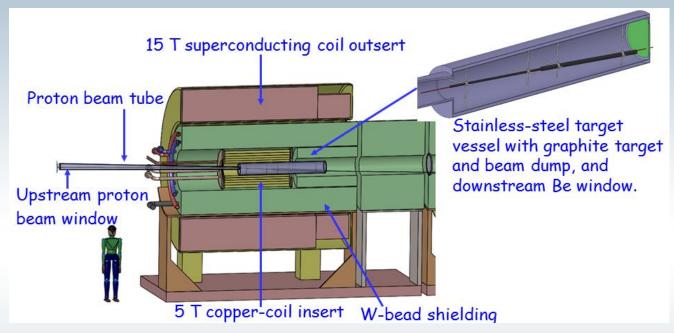
- Three critical program elements
- MASS: The Accelerator Staging Study
 - Provides a new prospective on how to deploy muon accelerator technologies and keep them as economical as possible
- IBS: The Initial Baseline Selection Process
 - Provides a structured approach to clearly identifying the concepts and basic parameters of the required machine elements
- The R&D Demonstrations (focus of this talk)
 - Demonstrate critical concepts

Staging Scenario under MAP

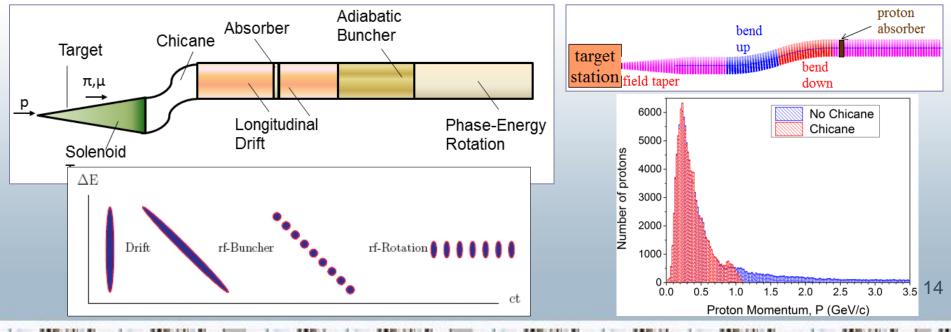
Accelerator R&D effort

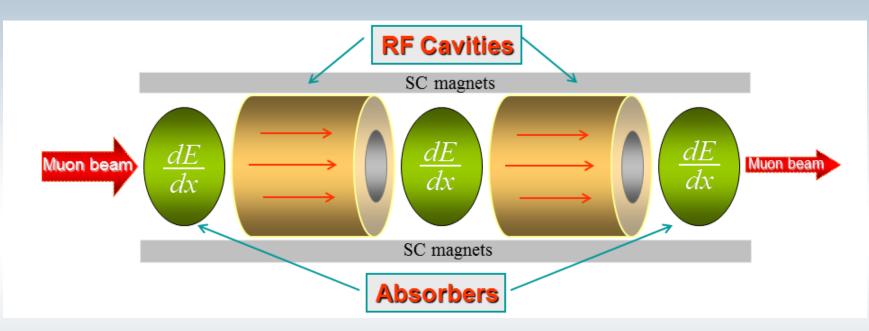

 Design and Simulation Studies Proton Driver Front-End Cooling Acceleration and Storage Collider Machine-Detector Interface 	 Technology R&D MW class target & absorbers RF in magnetic fields (MTA) High field magnets Utilizing HTS technologies Rapid-cycling magnets for the ultra-fast muon acceleration chain 					
Muon Ionization Cooling Experiment (MICE)						

- Major system demonstration
- US effort to provide key hardware: RF cavities and couplers, spectrometer solenoids, coupling coil(s), partial Yoke
- Experimental and Operation support


Target concept

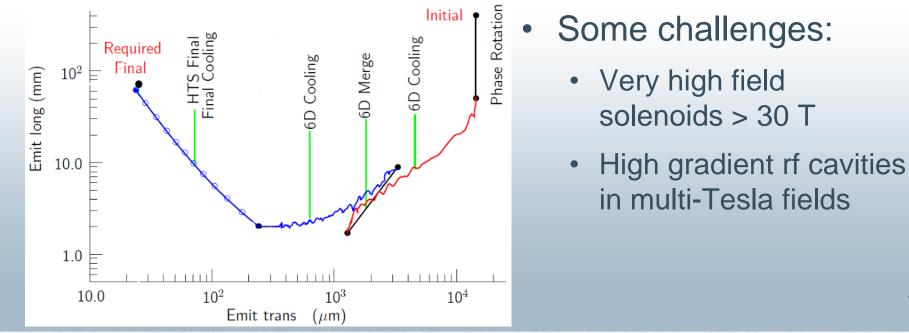
- MERIT Experiment at CERN (2007):
 - Proof-of-principle demonstration of a mercury jet target in a strong magnetic field, with proton bunches of intensity equivalent to a 4 MW beam


Target and capture system

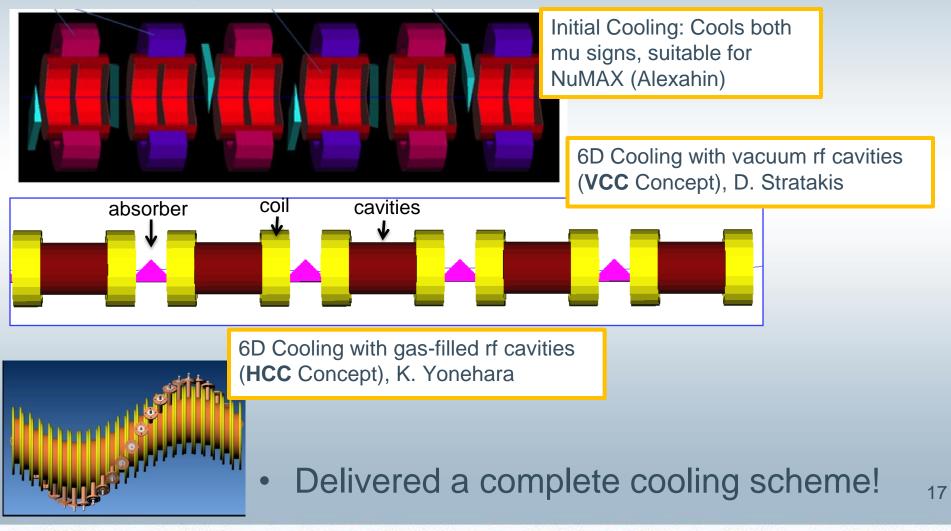

- Graphite target, 1 MW initial beam power, upgradable to 2.3 MW
- Removes technical risks and will benefit from developments at other facilities (e.g. spallation sources)
- More details: Targetry session 11:00-12:30 (Friday)

Front-End

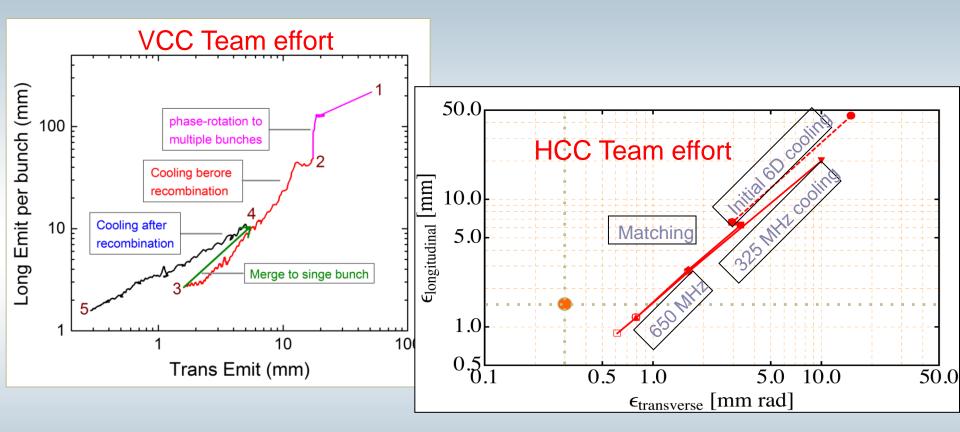
- Front-End concept developed & simulated
 - Redesigned for a 325 MHz base frequency
- One challenge is the energy deposition from unwanted particles in the accelerator components
 - Concepts to mitigate this, have been identified


Ionization cooling concept

- Energy loss in discrete absorbers
- rf cavities to compensate for lost longitudinal energy
- Multi-tesla magnetic field to confine muon beams


Cooling for Muon Accelerators

- Neutrino Factory: "NuMAX with a limited amount of cooling affords a cost-effective, precise and well-characterized neutrino source" (MASS study)
- Muon Collider: Development of a cooling channel design to reduce the 6D phase-space by a factor of $10^6 \rightarrow MC$ luminosity of 10^{34} cm⁻² s⁻¹



6D Cooling channel concepts

• Great progress on D&S over the last year:

Complete "end-to-end" simulation

• End-to End simulation starting from the Front-End

- 6D cooling by 5 orders of magnitude achieved!
- More details: WG3, 2:00-3:30 pm (Friday)

Magnet requirements to tape plane, 4.2 K 6D cooling 1000 —■— Nb-Ti, 1.9 K - 6D Cool (After merger) magnet — 6D Cool (Before Merger) requirements J_E (A/mm²) 00 within Nb₃Sn **50%** technology 25%

Last stages 6D cooling stages are close to the Nb₃Sn limit

5

Nb-Ti

10

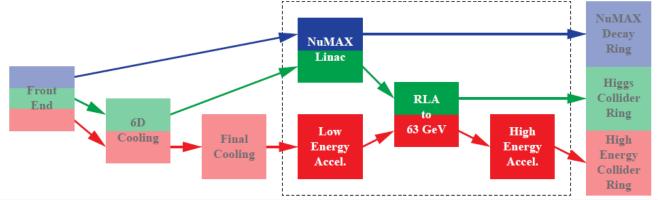
15

Applied Field, B (T)

20

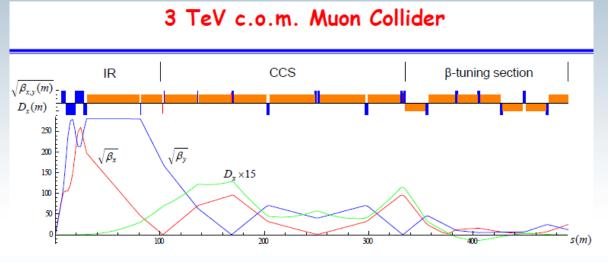
31%

30


35

25

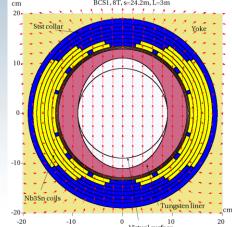
10

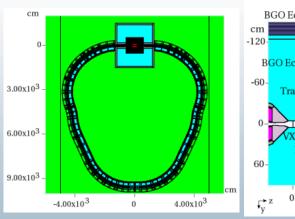

- A path towards a Multi-Tev Collider requires utilizing HTS
 - 15 T on-axis field with YBCO superconductor has achieved
 - Very promising performance with BSCCO-2212 conductor

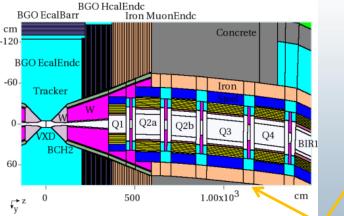
Acceleration

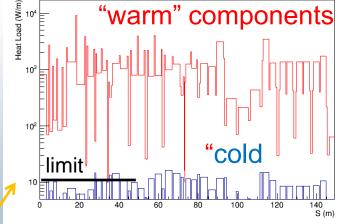
- Three classes of machines
 - 1) NUMAX: neutrino factory to 5 GeV, 2) Higgs Factory: 63 GeV collider, 3) High energy coliders:1.5, 3, 6 TeV
- Four acceleration subsystems
 - Linacs for NuMAX
 - RLA to reach 63 GeV
 - Low energy for colliders
- 5-pass RLA 5–63 GeV (A. Bogacz) 5 GeV 28.2 GeV 28.2 GeV 829 m 11.6 GeV/pass
- High energy acceleration beyond 63 GeV: pulsed synchrotrons
- More details: 2:00-3:30 pm (Tuesday)

Multi-Tev Collider – 3.0 TeV Baseline

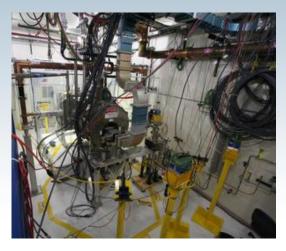



- Lattices for 63 GeV Higgs Factory, 1.5 TeV MC have been designed & simulate
- New: 3.0 TeV MC baseline
- Design Goals
 - High luminosity, acceptable detector backgrounds, manageable magnet heat loads...


High Energy MC parameter	S
Collision energy, TeV	3.0
Repetition rate, Hz	12
Average luminosity / IP, 10 ³⁴ /cm ² /s	4.4
Number of IPs	2
Circumference, km	4.5
β*, cm	0.5
Momentum compaction factor, 10 ⁻⁵	-1
Normalized emittance, π ·mm·mrad	25
Momentum spread, %	0.1
Bunch length, cm	0.5
Number of muons / bunch, 10 ¹²	2
Number of bunches / beam	1
Beam-beam parameter / IP	0.09
RF voltage at 1.3 GHz, MV	150
Proton driver power (MW)	4


Backgrounds in the collider ring

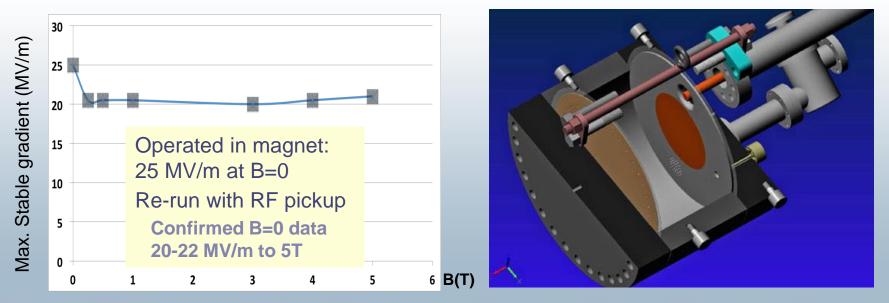
- High field dipoles and quadrupoles must operate in high-rate muon decay backgrounds
- A sophisticated radiation protection system was designed for the Higgs Factory (HF) collider ring



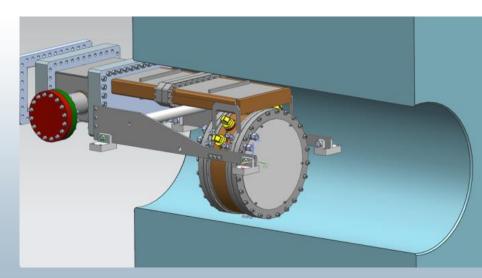

Model of entire HF ring including, magnet, detector, machine-detector interface has been built in MARS15

Mucool Test Area

- Dedicated facility for muon cooling R&D
 - RF power at two frequencies (201/805 MHz)
 - Large-bore 5 T SC magnet
 - Extensive diagnostics for RF cavity tests
 - 400-MeV H- beamline
 - Unique in the world!



RF in magnetic fields


- Is the RF problem in magnetic fields solved?
- Study a new structure: All seasons Cavity
 - Modular pillbox with replaceable end plates
 - 805 MHz frequency
- Significant improvement over old 805 MHz cavity results

New 805 MHz modular cavity

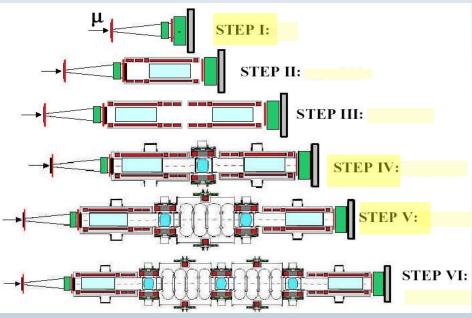
- Significant improved over older designs
 - Removable endplates (initially Cu; Be, other material, treated surfaces)
 - Coupling iris moved to center ring anf field reduced (more realistic to a cooling channel)
 - RF design validated through simulation
- Begin tests within FY 14

MTA: MICE support

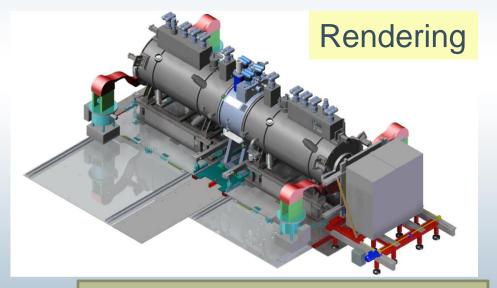
Muon Ionization Cooling Experiment

MICE will demonstrate muon ionization cooling and validate simulation models

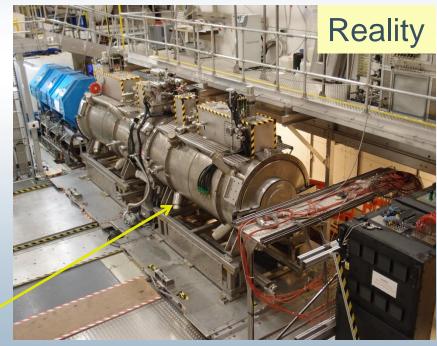
Both spectrometer solenoids have been shipped to RAL


CC cold mass under test at Fermilab

First MICE RF cavity tested at MTA: Conditioned at B=0, reached 8 MV/m


MICE

- The MICE run plan evolved from 6 "Steps" to 3.
 - Step I: Construct muon beam line and characterize with TOF and particle ID detectors -COMPLETE
 - Step IV: Study the cooling equation in the context of energy loss and straggling
 - Measure multiple coulomb scattering, dE/dx, ie, muon interaction physics in appropriate absorbers: LH₂ and LiH
 - Step V: Demonstrate the ability to do cooling with reacceleration between steps.



MICE construction

- We are well on our way to deploying MICE Step IV
- Magnets delivered, Partial yoke fabrication underway, experimental preparations well advanced

Spectrometer Solenoids with Trackers installed in MICE Hall

More Details: MICE Session 2:30-4:00 pm (Monday)

Summary

- The unique feature of muon accelerators is the ability to provide cutting edge performance on both the Intensity and Energy Frontiers
- For the last 3 years US Muon Accelerator Program has pursued options to deploy muon accelerator capabilities
 - Near term (NuSTORM)
 - Long term (NuMAX)
 - Along with the possibility of a follow-on muon collider option
- In light of the recent P5 recommendations that this directed facility effort no longer fits within the budget-constrained US research portfolio, the US effort is entering a ramp-down phase

Extra Material

110

ш

Neutrino Factory Stagging

System	Parameters	Unit	nuSTORM	NuMAX	NuMAX+	IDS-NF
Perfor- mance	Stored µ+ or µ-/year		8×10 ¹⁷	2×10 ²⁰	1.2×10 ²¹	1×10 ²¹
Per ma	v_{e} or v_{μ} to detectors/yr		3×10 ¹⁷	8×10 ¹⁹	5×10 ²⁰	5×10 ²⁰
	Far Detector:	Туре	SuperBIND	MIND / Mag LAr	MIND / Mag LAr	MIND
	Distance from Ring	km	1.9	1300	1300	2000
<u>ā</u>	Mass	kТ	1.3	30 / 10	100 / 30	100
Detector	Magnetic Field	Т	2	0.5-2	0.5-2	1-2
Det	Near Detector:	Туре	SuperBIND	Suite	Suite	Suite
	Distance from Ring	m	50	100	100	100
	Mass	kT	0.1	1	2.7	2.7
	Magnetic Field	Т	Yes	Yes	Yes	Yes
Neutrino Ring	Ring Momentum (P _μ)	GeV/c	3.8	5	5	10
	Circumference (C)	m	480	600	600	1190
	Straight section	m	185	235	235	470
Ž	Arc Length	m	50	65	65	125
	Initial Momentum	GeV/c	-	0.22	0.22	0.22
ц С	Single-pass Linac	GeV/pass	-	0.95	0.95	0.56
ati		MHz	-	325	325	201
Acceleration	RLA I 4.5-pass RLA RLA II	GeV/pass	-	0.85	0.85	0.45
e S		MHz	-	325	325	201
Ac		GeV/pass	-	-	-	1.6
		MHz	-	-	-	201
Cooling			No	No	4D	4D
Proton Source	Proton Beam Power	MW	0.2	1	3	4
	Proton Beam Energy	GeV	120	3	3	10
0 0	Protons/year	1×10 ²¹	0.1	41	125	25
ш о	Repetition Frequency	Hz	0.75	70	70	50

ш

32

Muon Collider Parameters

Muon Collider Parameters								
		Higgs Factory Top Threshold Options Multi			Multi-TeV	/ Baselines		
	1							Accounts for
	1	Startup	Production	High	High			Site Radiation
Parameter	Units	Operation	Operation	Resolution	Luminosity			Mitigation
CoM Energy	TeV	0.126	0.126	0.35	0.35	1.5	3.0	6.0
Avg. Luminosity	10 ³⁴ cm ⁻² s ⁻¹	0.0017	0.008	0.07	0.6	1.25	4.4	12
Beam Energy Spread	%	0.003	0.004	0.01	0.1	0.1	0.1	0.1
Higgs* or Top ⁺ Production/10 ⁷ sec	<u>ا</u> ا	3,500*	13,500*	7,000 ⁺	60,000 ⁺	37,500*	200,000*	820,000*
Circumference	km	0.3	0.3	0.7	0.7	2.5	4.5	6
No. of IPs		1	1	1	1	2	2	2
Repetition Rate	Hz	30	15	15	15	15	12	6
b*	cm	3.3	1.7	1.5	0.5	1 (0.5-2)	0.5 (0.3-3)	2.5
No. muons/bunch	10 ¹²	2	4	4	3	2	2	2
No. bunches/beam		1	1	1	1	1	1	1
Norm. Trans. Emittance, e _{TN}	p mm-rad	0.4	0.2	0.2	0.05	0.025	0.025	0.025
Norm. Long. Emittance, e _{LN}	p mm-rad	1	1.5	1.5	10	70	70	70
Bunch Length, S _s	cm	5.6	6.3	0.9	0.5	1	0.5	2
Proton Driver Power	MW	4 [♯]	4	4	4	4	4	1.6

[#] Could begin operation with Project X Stage II beam