‡Fermilab

nuSTORM: variations on a theme

D Adey on behalf of nuSTORM

NuFact 2014, Glasgow UK 28th August 2014

adey@fnal.gov

Content

- nuSTORM motivations
- A neutrinos from stored muons concept
- Flux calculations and uncertainties
- Pion-decay flux
- Off-axis flux
- Physics studies
- Thanks to A Bross, A Liu, R Bayes, P Soler, D Neuffer, E Santos, JB Lagrange, J Morfin, C Tunnel, P Huber

Motivations

Sterile Neutrinos

- Gallium: 2.7σ evidence for v_e disappearance
- LSND: 3.8σ evidence for v_e appearance
- MiniBooNE: 3.8σ evidence for v_e and v_e appearance
- Reactor: 3σ evidence for ν_e appearance
- Combined cosmology covers 4 DOF
- New limits from MINOS

Something definitive required

- Deficit in electron neutrino cross section measurements at accelerator energy regimes
- Neutrino / anti-neutrino cross section ratios vital for CP sensitivity
- Existing measurements affected by flux precision – future experiments will require ~1% total error to achieve CP coverage aims
- Muon decay offers opportunities to explore all of this

Muon Accelerator Technology

MERIT

Muon-based accelerators and neutrino beams require extensive R&D.

A muon storage ring provides R&D staging platform alongside physics studies

Neutrinos from Stored Muons

226 m

μ́e

- A neutrino factory represents the best sensitivity to current experimental goals, but is technologically challenging and not immediately viable
- R&D is established and on-going as part of MAP and international collaborators
- Muon and electron neutrino beam can be produced from a stored muon beam using existing technology

Pion transport through dipoles – momentum and sign selection Pions injected into ring decay into muons Stored muons decay into directed neutrino beam

- Dipole chicane provides sign and momentum selection of pions
- Stored beam allows for instrumentation and characterization of beam
- Current, momentum, divergence, size, position

 Produces flavor-known beam with high statistics electron neutrinos, with a flux known to better than 1%

Flux at 50 m from end of straight from muon decay

- Muon beam tracked through decay straight using G4Beamline
- Distribution used to generate decays and neutrinos sampled at 50m near detector site
- Likely amplification with horn optimization

<1% error - Beam systematics

nuSTORM issue?
<i>Not really</i> – beam current will be measured although proton contamination will need to be known
<i>No</i> – current and position of pion/muon beam will be measured
No
No
No
No
<i>No</i> – lattice PS will be monitored
<i>No</i> – will be measured

Beam diagnostics

Quantity	Planned Detectors	Comment
Intensity	Beam Current Trans-	0.1% resolution realistic
	former	
Beam Position	Button BPM	1 cm resolution expected
Beam Profile	Scintillating screens	Destructive, 1 cm resolution
Energy	Polarimeter	
Energy Spread	Beam Profile measure-	order of 0.1% resolution
	ment in Arcs	
Beam loss	Ionization or Diamond	
	Detectors	

- Beam can be fully characterized, including destructive methods during a commissioning phase all magnets are DC
- Magnet currents can be monitored and controlled with precision

Beam divergence errors

- Muon beam re-simulated with a divergence inflated by 2%
- Resulting neutrino flux compared to nominal beam
- Less than 1% difference binto-bin

-0.02

Ζ

9000

8000

7000

6000

5000

4000

3000

2000

1000

0.04

Physics opportunities

	$\mu^+ \to e^+ \nu_e \overline{\nu}_\mu$	$\mu^- \to e^- \overline{\nu}_e \nu_\mu$		
05	$\overline{ u}_\mu ightarrow ar{ u}_\mu$	$ u_{\mu} ightarrow u_{\mu}$	disappearance	
	$\overline{ u}_{\mu} ightarrow \overline{ u}_{e}$	$ u_{\mu} ightarrow u_{e}$	appearance (challenging)	
	$\overline{ u}_{\mu} ightarrow \overline{ u}_{ au}$	$ u_{\mu} ightarrow u_{ au}$	appearance (atm. oscillation) disappearance appearance: "golden" channel	
	$\nu_e \rightarrow \nu_e$	$\bar{\nu}_e \to \bar{\nu}_e$		
	$ u_e \rightarrow u_\mu $	$\bar{\nu}_e ightarrow \bar{ u}_\mu$		
	$\nu_e \rightarrow \nu_{\tau}$	$\bar{\nu}_e \to \bar{\nu}_\tau$	appearance: "silver" channel	

Charged and neutral current processes Measurement of v-e induced resonance production

Nuclear effects

Semi-exclusive & exclusive processes

Measurement of Ks0, L & L-bar production

New physics & exotic processes

Test of nm - ne universality

eV-scale pseudo-scalar penetrating particles

p0 production in n interactions

Coherent and quasi-exclusive single p0 production

v_e and v_e-bar x-section measurements A UNIQUE contribution from nuSTORM
Essentially no existing data

Charged p & K production Coherent and quasi-exclusive single p+ production Multi-nucleon final states v-e scattering v-Nucleon neutral current scattering Measurement of NC to CC ratio

Cross section performance at a nuSTORM near detector

- HiResMNu detector combined with nuSTORM beam and errors
- Muon, electron + antineutrino cross sections measured in same experiment to high precision

• To achieve a benchmark of 75% CP coverage at 3σ , systemic precision of ~1% is required

• nuSTORM can contribute significantly in constraining cross-section component of systematic errors

- Far detector 2km
- 1.3kTon magnetized iron sampling calorimeter
- Superconducting transmission line Appearance efficiencies

Disappearance efficiencies

Hybrid neutrino factory

- In a neutrino factory, pions decay into muons far from storage ring to allow for emittance reduction and re-acceleration
- In nuSTORM, pions are injected into muon decay straight
- 50% pions decay in initial straight generating pion decay beam ~10x stored muon decay beam
- Sign, momentum selection, beam characterization all still present

π decay simulation method

- MARS simulation of target and horn
- Particles produced and captured in horn tracked through transport line and into decay straight using G4Beamline
- Resulting neutrinos measured at sampling plane 50m from end of decay straight (near detector hall)
- For long baselines, position and divergence of each beam particle (pion, muon, kaon) to calculate flux of each channel at detector location
- Scaled to 10²⁰ POT full exposure 10²¹ POT

Near (50 m) detector flux from pion decay

μ+ Stored		μ- Stored	
Channel	Events	Channel	Events
$\bar{v}_{\mu}NC$	1,174,710	\overline{v}_{e}^{NC}	1,002,240
v _e NC	1,817,810	$\nu_{\mu}NC$	2,074,930
$\bar{\nu}_{\mu}CC$	3,030,510	veCC	2,519,840
v _e CC	5,188,050	$\nu_{\mu}CC$	6,060,580
π+		π-	
$v_{\mu}NC$	14,384,192	$\bar{\nu}_{\mu}^{}NC$	6,986,343
$v_{\mu}CC$	41,053,300	$\bar{\nu}_{\mu}CC$	19,939,704

• Event rates at 50m per 100T for full exposure of 10²¹ POT

nuSTORM off-axis

• Placing detector off-axis of the nuSTORM beam decreases energy width even further with no high energy tail

• Can be placed in the energy regime of interest to existing off-axis experiments

1km 2.5 deg

Summary

- A muon storage ring is the simplest implementation of a Neutrino Factory
- Better than 1% flux precision measurements limited by detectors
- Neutrino beams from both muons and pions, separated in time, with very pure content
- Off-axis beam narrows beam even further to <100MeV RMS
- Ongoing work on full ring with diagnostics, near detector physics, oscillation studies
- nuSTORM provides a platform to definitively answer sterile neutrino conflicts; measure broad range of cross-sections; with possibility for conventional pion decay, long baseline, off-axis beam

Backups

Far (2 km) detector flux from pion decay

Added channels of electron neutrino appearance and NC disappearance

Very Far (1300 km) detector flux from pion decay

CP violation sensitivity

* Strange muon decay distribution is caused by very low muon statistics in this momentum range

1km 2.5 deg +- 10% π momentum

Muon beam tracking approximation

Approximation

Full Geant tracking of muon beam through decay lattice is computationally intensive.

Beam was sampled a) with a single FODO cell b) over the entire straight and this sample used at decay points along the straight

v_e at SuperBIND

- Muon CC events are primarily identified by their range
- N_eCC and NC events are distinguished by the energy deposition density of shower Moliere radius v. Interaction length
- Combination of variables in MVA will be necessary

Near detector hall

