

# **Neutrino Oscillations**

## in the

## **OPERA Experiment**

### **Umut KOSE** on behalf of OPERA Collaboration

Sections di Pedicus

NUFACT2014, XVIth International Workshop on Neutrino Factories and Future Neutrino Facilities University of Glasgow, 25th to 30th of August, 2014

### **The OPERA Collaboration** 140 physicists, 28 institutions in 11 countries

Belgium IIHE-ULB Brussels



<mark>Israel</mark> Technion Haifa



Korea Jinju





France LAPP Annecy IPHC Strasbourg



Bari Bologna LNF Frascati L'Aquila LNGS Naples Padova Rome Salerno



Russia INR RAS Moscow LPI RAS Moscow ITEP Moscow SINP MSU Moscow JINR Dubna



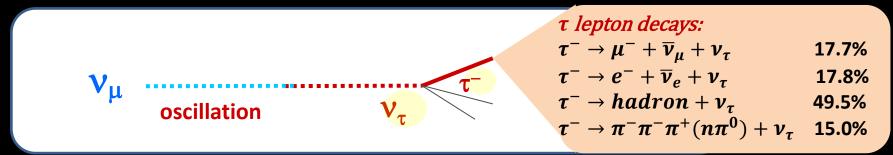
Switzerland Bern





Japan Aichi Toho Kobe Nagoya Nihon

Italy



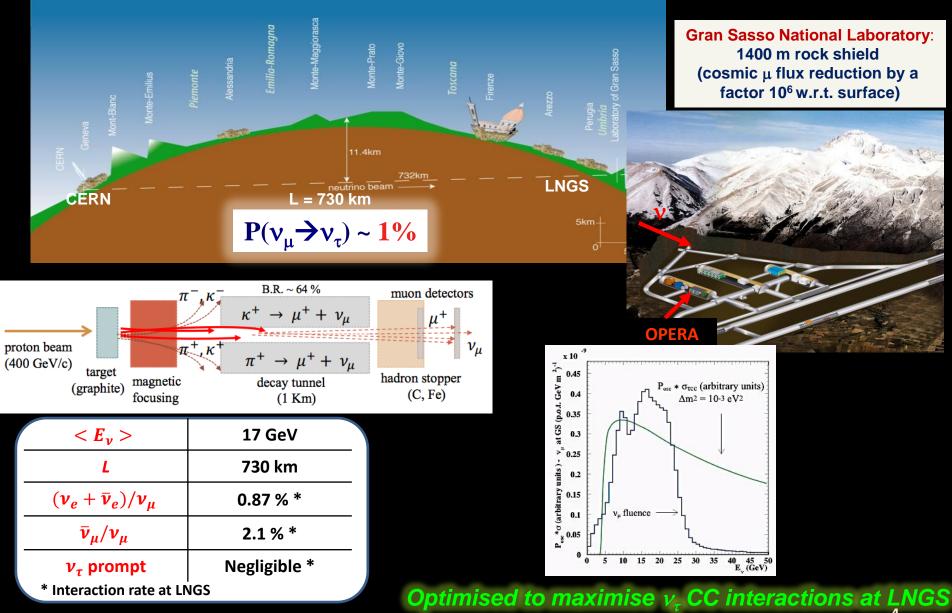

<mark>Turkey</mark> METU Ankara



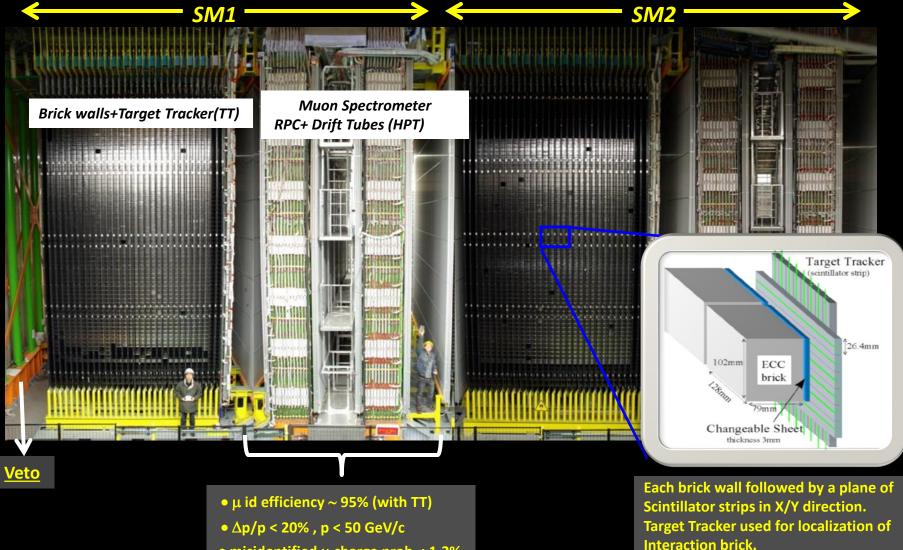
## Oscillation Project with Emulsion-tRacking Apparatus

Aim: establish neutrino oscillations in direct appearance mode in the  $v_{\mu} \rightarrow v_{\tau}$  channel at atmospheric scale, through detection of the tau lepton produced in  $v_{\tau}$  Charged Current (CC) interaction on event-by-event basis. Full coverage of the parameter space indicated by SK, T2K and MINOS.




$$P(\nu_{\mu} \rightarrow \nu_{\tau}) \sim \frac{\sin^2 2\theta_{23} \cos^4 \theta_{13} \sin^2 (\Delta m_{23}^2 L/4E)}{1}$$

### **Requirements:**


- High energy and high intensity neutrino beam
   Conventional ν<sub>μ</sub> beam optimized for ν<sub>τ</sub> appearance
- Long baseline
- Large target mass and submicron resolution

### <u>CERN Neutrino to Gran Sasso Beam</u>

http://proj-cngs.web.cern.ch/proj-cngs/

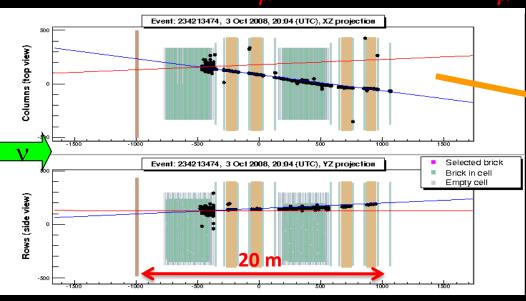


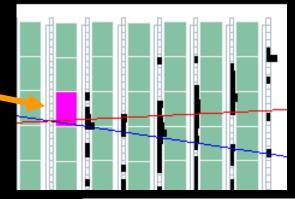
### **OPERA** detector\*



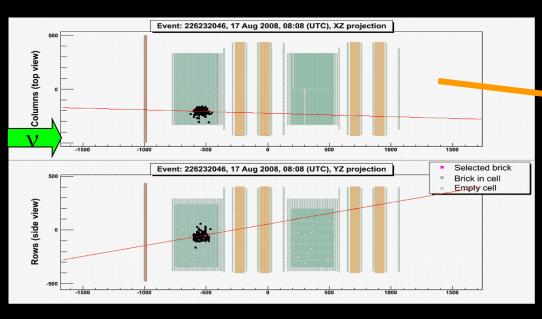
 $\bullet$  misidentified  $\mu$  charge prob. : 1.2%

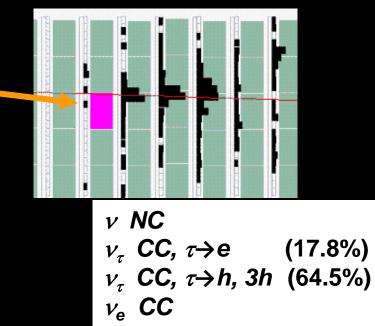
#### ECC brick= 56 lead plates + 57 films ~8kg (10X<sub>0</sub>)


\*JINST 4 P04018, 2009.


U. Kose, Nufact2014, 25-30 August 2014, Glasgow, UK

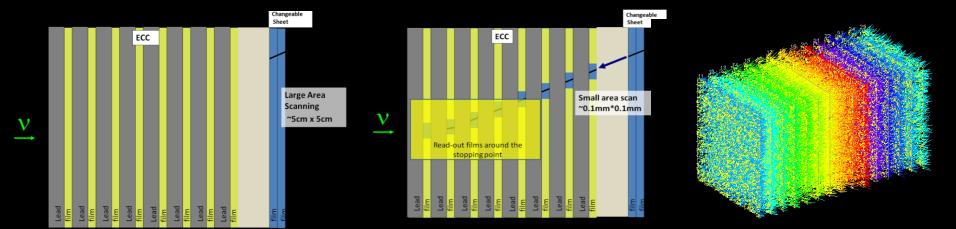
• Trigger efficiency > 99%


• Brick finding :  $\varepsilon \approx 60 \div 80\%$ 


## Typical $v_{\mu}$ CC-like and $v_{\mu}$ NC-like events

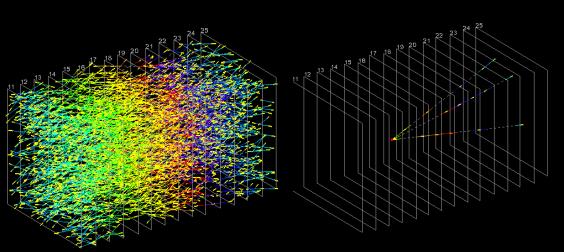




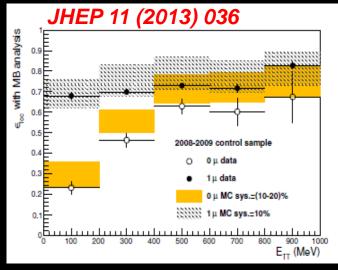

$$\begin{array}{l}
 \nu_{\mu} \ {\sf CC} \\
 \nu_{\tau} \ {\sf CC}, \ \tau {\rightarrow} \mu \end{array} (17.7\%)$$






U. Kose, Nufact2014, 25-30 August 2014, Glasgow, UK

### Neutrino interaction location in ECC




**Step 1:** CS scanning  $\rightarrow$  confirmation of *v* interaction, predictions for brick analysis

**Step 2-4:** CS-ECC connection, ScanBack procedure, Volume data taking



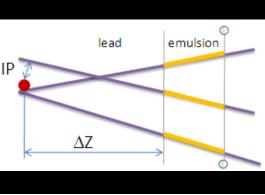




Location efficiency vs event energy

### **Decay search**

### Eur. Phys. J. C 74 (2014) 2986.

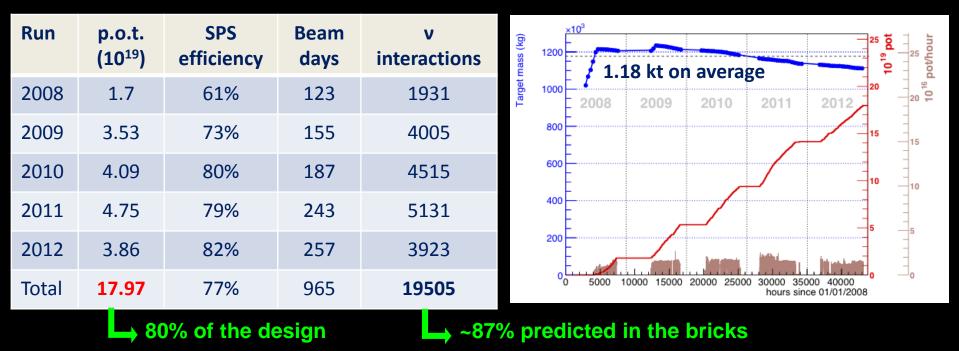

### 





Impact parameter vs. longitudinal distance from reconstructed v interaction vertex

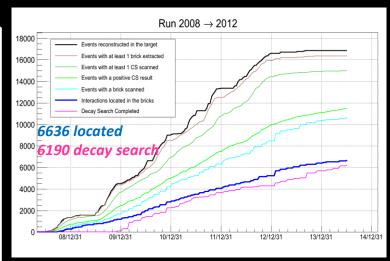





Impact parameter (µm)

20

Δz (μm)


## Status of the Analysis



### **Analysis strategy**

Bricks ordered by the probability to contain the neutrino interaction

- Runs 2008-2009: 1<sup>st</sup> and 2<sup>nd</sup> most probable bricks
- Runs 2010÷2012: 1<sup>st</sup> brick analysed so far. Extension to less probable bricks in progress.



## Search for short-lived particle decays: charmed hadrons as control sample

Charmed hadrons produced by  $v_{\mu}$ CC interactions Eur. Phys. J. C 74 (2014) 2986.  $\rightarrow$  muon at the primary vertex Mass and lifetime charmed hadrons ~ tau lepton → similar decay topology muon Events charm MC charm MC background MC background MC data Kolmogorov-Smirnov test: Kolmogorov-Smirnov test: C.L. 0.219 C.L. 0.069 500 um  $\Phi$  $D, \Lambda_c$ Events Expected Expected Expected Observed Decay topology charm background total 160 180  $21 \pm 2$  $30 \pm 4$ 9 + 319 1-prong Decay length (um)

22

5

4

racks

40 F

30

20

charm MC

C.L. 0.124

data

background MC

 $40 \pm 3$  $14 \pm 3$  $54 \pm 4$ 50 Total 2008-2010 OPERA data set 54 ± 4 charm events expected **50** observed in control sample Good agreement between data and MC.

4 + 1

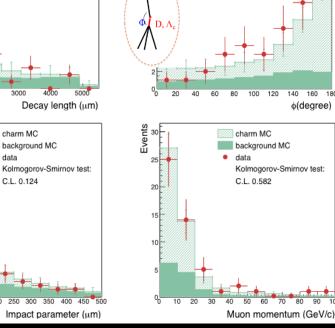
 $1.0 \pm 0.3$ 

 $18 \pm 1$ 

 $5 \pm 1$ 

 $0.9 \pm 0.2$ 

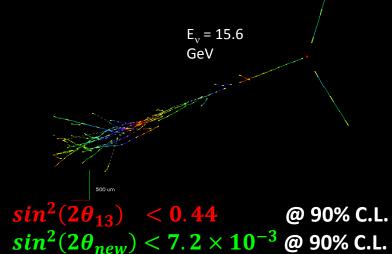
 $14 \pm 1$ 

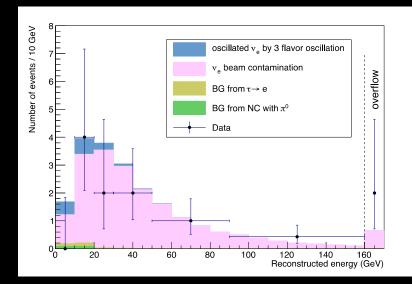

4 + 1

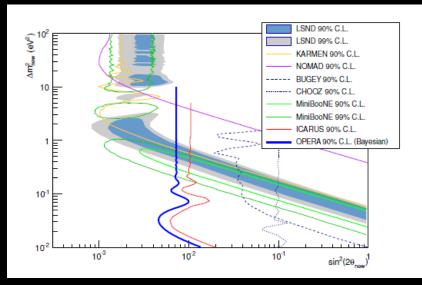
 $0.9 \pm 0.2$ 

2-prong

3-prong


4-prong



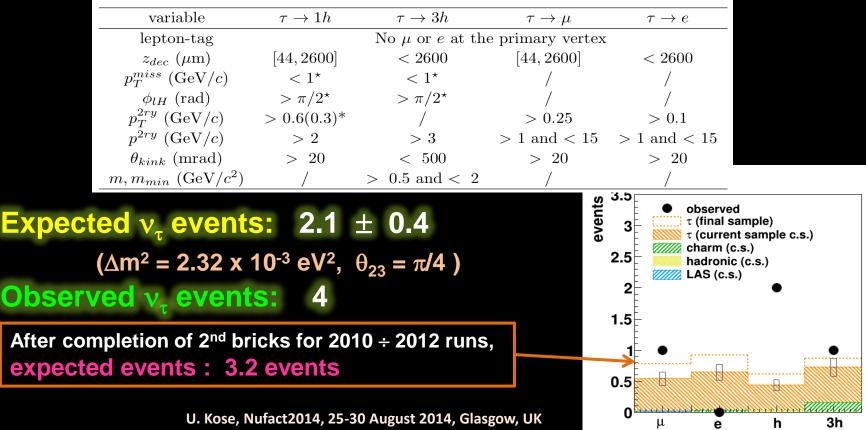


### $v_{\mu} \rightarrow v_{e}$ oscillation results JHEP 1307 (2013) 004

## $v_e$ searched in 505 (data of 2008-2009 run ~ 50% full statistics) neutrino interaction without the muon in the final state. Extension to full statistic in

| proguess.                                           |                                   | $20 { m GeV}$ | $30~{\rm GeV}$ | No cut |
|-----------------------------------------------------|-----------------------------------|---------------|----------------|--------|
| BG common to                                        | BG (a) from $\pi^0$               | 0.2           | 0.2            | 0.2    |
| both analyses                                       | BG (b) from $\tau \to e$          | 0.2           | 0.3            | 0.3    |
|                                                     | $\nu_e$ beam contamination        | 4.2           | 7.7            | 19.4   |
| Total expected BG in 3-flavour oscillation analysis |                                   | 4.6           | 8.2            | 19.8   |
| BG to non-standard                                  | $\nu_e$ via 3-flavour oscillation | 1.0           | 1.3            | 1.4    |
| oscillation analysis only                           |                                   |               |                |        |
| Total expected BG in no                             | n-standard oscillation analysis   | 5.6           | 9.4            | 21.3   |
| Data                                                |                                   | 4             | 6              | 19     |

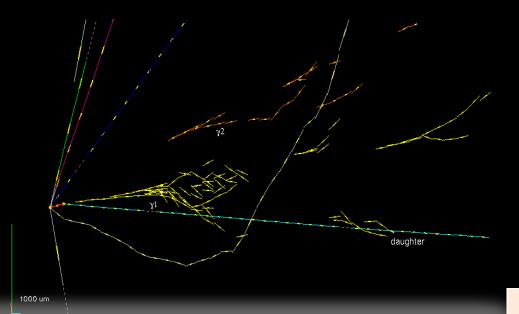


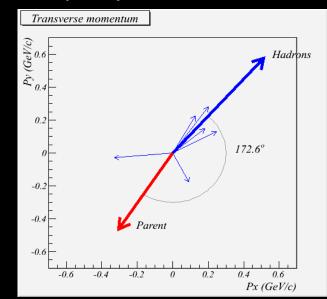





### $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillation analysis

### **Data sample:** 4685 located and fully analysed v interactions

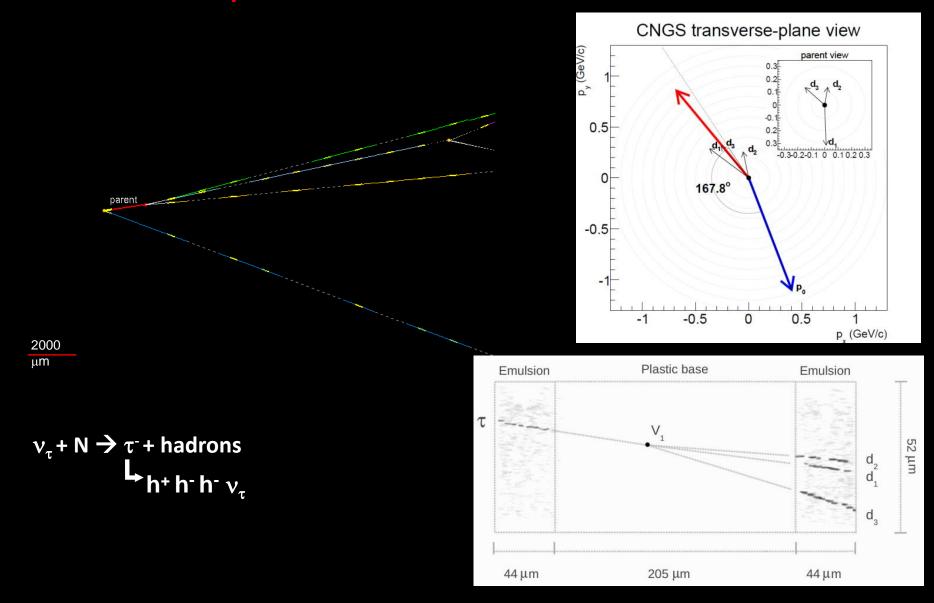

|                                             | 2008 | 2009 | 2010 | 2011 | 2012 | Total |
|---------------------------------------------|------|------|------|------|------|-------|
| pot $(10^{19})$                             | 1.74 | 3.53 | 4.09 | 4.75 | 3.86 | 17.97 |
| $0\mu$ events                               | 148  | 250  | 209  | 223  | 149  | 979   |
| $1\mu$ events $p_{\mu} < 15 \text{ GeV/c})$ | 534  | 1019 | 814  | 749  | 590  | 3706  |
| Total of events                             | 682  | 1269 | 1023 | 972  | 739  | 4685  |


### Kinematical selection cuts kept fixed since beginning of the experiment.



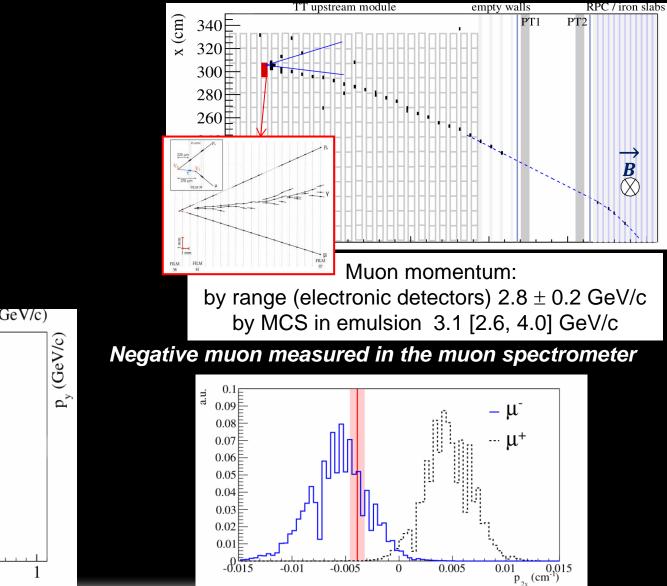
12

## **The first** $v_{\tau}$ **candidate event** Phys. Lett. B (2010) 138

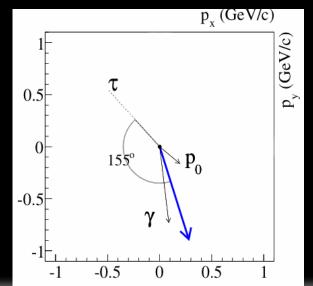





| First direct detection of $v_{\mu} \rightarrow v_{\tau}$ oscillations in appearance mode |
|------------------------------------------------------------------------------------------|
| γ <mark>1 + γ2</mark> 120 ± 20 ± 35 MeV                                                  |
| $\pi^{-} + \gamma 1 + \gamma 2$ 640 + 125 - 80 + 100 - 90 MeV                            |
| $v_{\tau} + N \rightarrow \tau^{-} + hadrons$                                            |
|                                                                                          |
| $\rightarrow \gamma\gamma$                                                               |


| Variable                            | Value                                 |
|-------------------------------------|---------------------------------------|
| Kink angle (mrad)                   | 41 ± 2                                |
| Decay length (µm)                   | 1335 ± 35                             |
| P daughter (GeV/c)                  | <b>12</b> <sup>+6</sup> <sub>-3</sub> |
| Pt (MeV/c)                          | <b>470</b> <sup>+230</sup> -120       |
| Missing Pt at 1ry vertex<br>(MeV/c) | <b>570</b> <sup>+320</sup> -170       |
| φ (deg)                             | 173 ± 2                               |

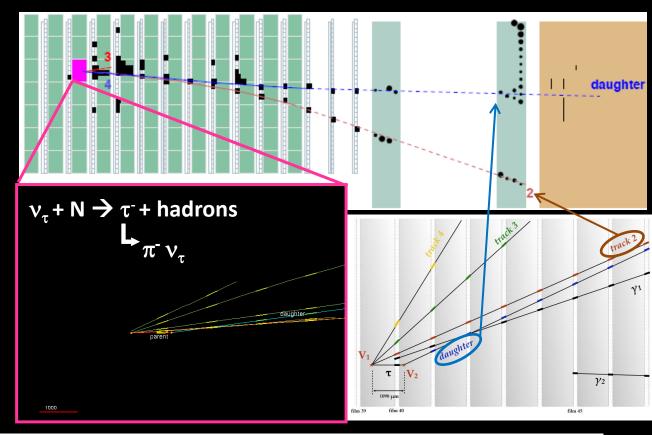
### The second $v_{\tau}$ candidate event JHEP 11 (2013) 036




### The third $v_{\tau}$ candidate event

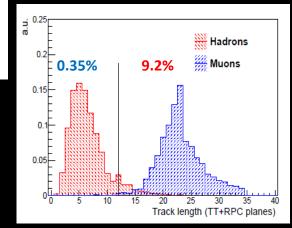
### Phys. Rev. D 89 (2014) 051102(R)

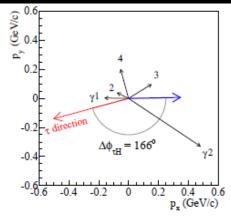



 $\nu_{\tau} + N \rightarrow \tau^{-} + hadrons$  $\mathbf{L}_{\mu^{-} \nu_{\tau} \overline{\nu_{\mu}}}$ 



First measurement of the lepton charge in appearance mode


## The fourth $v_{\tau}$ candidate event

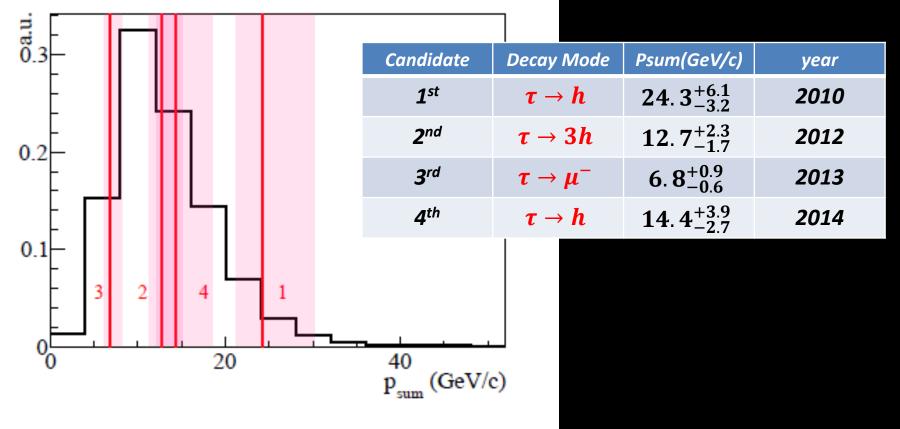

#### arXiv 1407.3513 - Submitted to PTEP



**Track 3** visible interaction in downstream brick #2 **Track 4** crosses 1 wall; identified as a proton based on its ionization

**Track 2** from neutrino interaction vertex, p = 1.9 GeV crossing 9 wall and stopping in first iron slab of the magnet.






| Selection         | Measured value                                  |
|-------------------|-------------------------------------------------|
| > 20              | $137\pm4$                                       |
| < 2600            | $406\pm30$                                      |
| > 2               | $6.0\substack{+2.2\\-1.2}$                      |
| $> 0.6 \ (0.3^*)$ | $0.82\substack{+0.30\\-0.16}$                   |
| < 1               | $0.55\substack{+0.30\\-0.20}$                   |
| > 90              | $166^{+2}_{-31}$                                |
|                   | > 20<br>< 2600<br>> 2<br>$> 0.6 (0.3^*)$<br>< 1 |

## Summary of four events

#### Visible energy of all $v_{\tau}$ events:

Scalar sum of momentum and  $\gamma$  energies



## **Significance**

### The expected signal and background is normalized to the number of located events

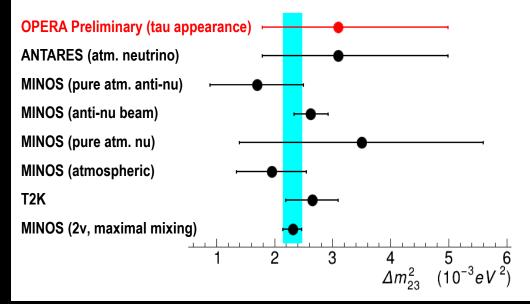
| $n^{0\mu}( u_{	au}^{CC})=$ | $\frac{\left\langle \sigma(\nu_{\tau}^{CC})\right\rangle}{\left\langle \sigma(\nu_{u}^{CC})\right\rangle} \frac{\left\langle \epsilon^{0\mu}(\nu_{\tau}^{CC})\right\rangle}{\left\langle \epsilon^{0\mu}(\nu_{\tau}^{CC})\right\rangle +}$ | $\alpha = \frac{NC}{CC}$ |          |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------|
| Decay<br>channel           | Expected signal<br>Δm <sub>23</sub> <sup>2</sup> = 2.32 meV <sup>2</sup>                                                                                                                                                                   | Total<br>background      | Observed |
| τ <mark>→h</mark>          | 0.41 ± 0.08                                                                                                                                                                                                                                | 0.033 ± 0.006            | 2        |
| τ <mark>→3h</mark>         | 0.57 ± 0.11                                                                                                                                                                                                                                | 0.155 ± 0.030            | 1        |
| τ→μ                        | 0.52 ± 0.10                                                                                                                                                                                                                                | 0.018 ± 0.007            | 1        |
| τ <b>→e</b>                | 0.62 ± 0.12                                                                                                                                                                                                                                | 0.027 ± 0.005            | 0        |
| Total                      | 2.11 ± 0.42                                                                                                                                                                                                                                | 0.233 ± 0.041            | 4        |

### Two statistical methods

- > Fisher combination of single channel  $\rightarrow$  p-value = 1.24 × 10<sup>-5</sup>
- Likelihood ratio

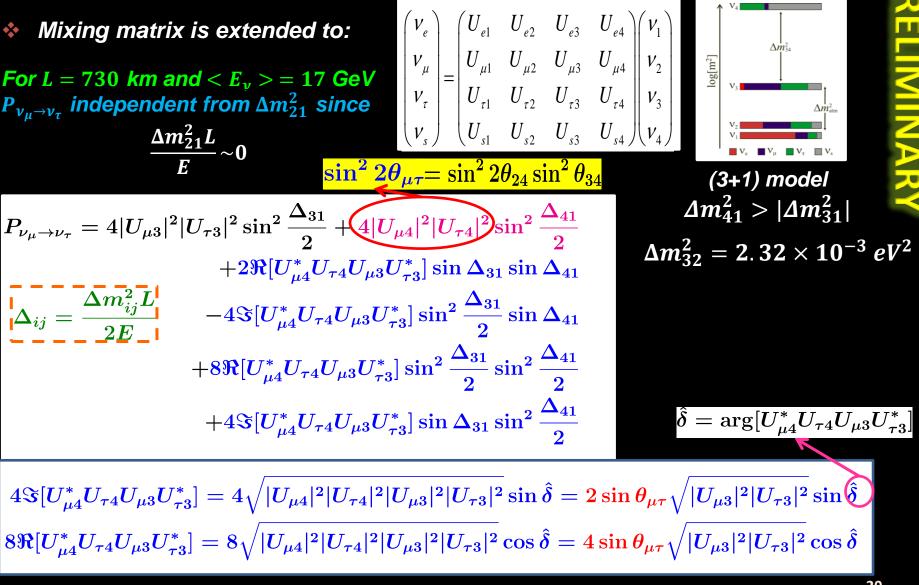
 $\Rightarrow p-value = 1.24 \times 10^{-5}$  $\Rightarrow p-value = 1.03 \times 10^{-5}$ 

Observation of tau appearance with 4.2 $\sigma$ 


## First measurement of $\Delta m_{32}^2$ in appearance experiment

$$N_{\nu_{\tau}} \propto \int \phi(E) \sin^2 \left(\frac{\Delta m_{32}^2 L}{4E}\right) \epsilon(E) \sigma(E) dE$$
$$\propto (\Delta m_{32}^2)^2 L^2 \int \phi(E) \epsilon(E) \frac{\sigma(E)}{E^2} dE$$

OPERA Off-peak L/<E> ~ 43 Km/GeV (L/<E>)<sub>peak</sub> ~ 500 Km/GeV

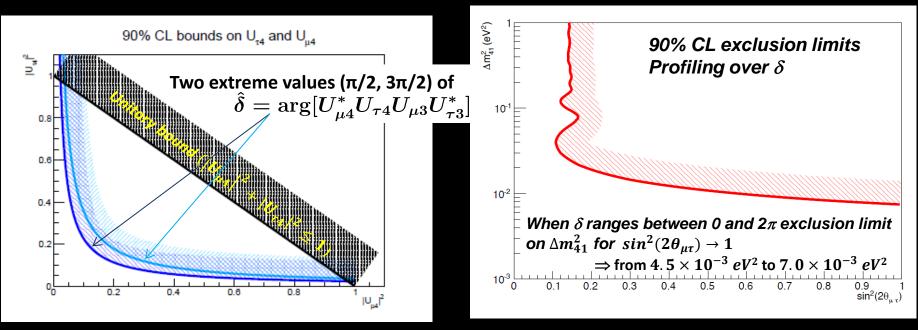

→ Strong dependence on  $\Delta m^2$  → measure  $\Delta m^2$  with counting experiment 90% CL intervals on  $\Delta m_{32}^2$  assuming  $sin^2(2\theta_{23}) = 1$ 

Feldman & Cousin [1.8 – 5] x 10<sup>-3</sup> eV<sup>2</sup> Bayesian [1.9 – 5] x 10<sup>-3</sup> eV<sup>2</sup>



## Sterile neutrino searches through $v_{\mu} \rightarrow v_{\tau}$ oscillation

Assume there is an additional sterile neutrino and an additional mass scale




## An upper limit on $sin^2(2\theta_{\mu\tau})$ at high $\Delta m_{41}^2$ values\*

Profile likelihood  $\tilde{L}(\delta, \sin^2(2\theta_{\mu\tau}) \rightarrow maximazing L(\delta, \sin^2(2\theta_{\mu\tau}), C^2) = \frac{\mu^n}{n!}e^{-\mu}$ on C<sup>2</sup> between 0 and 1,  $C = 2|U_{\mu3}U^*_{\tau3}|$ , *n* number of candidate events (4),  $\mu$  is the expected number of events given by

$$u = N_b + \int A\phi(E) P_{\nu_{\mu} \to \nu_{\tau}}(E) \sigma(E) \epsilon(E) dE$$

Expected number of background (0.23), Normalization factor, neutrino flux, oscillation probability, CC  $v_{\tau}$  cross-section, tau detection efficiency.  $\chi^{2} = -2ln(\tilde{L}(\delta, sin^{2}(2\theta_{\mu\tau}))/L_{0})$  where  $L_{0} = \frac{n^{n}}{n!}e^{-n}$ 



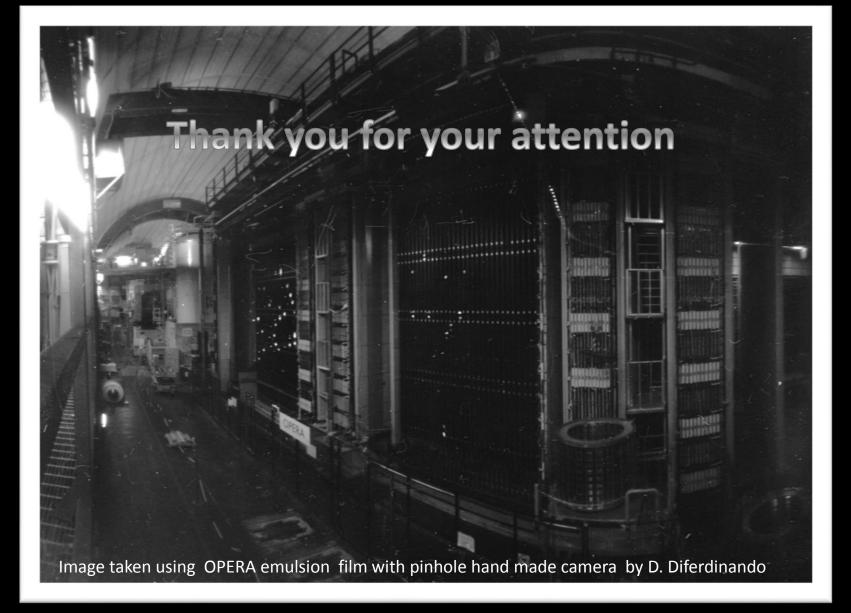
\*Paper in preparation.

## **Conclusions**

### **OPERA experiment:**

successful data taking from 2008 to 2012, 17.97 10<sup>19</sup> pot collected.

### $v_{\mu} \rightarrow v_{e}$ analysis:


- 19 events (4 events with E<sub>rec</sub><20GeV) observed with an estimation of 19.8±2.8 (4.6 with E<sub>rec</sub><20GeV) events.</li>
- At large Δm<sup>2</sup> region, 6 events observed with an estimation of 9.4 ±1.3 events gives an upper limit of 7.2 10<sup>-3</sup> at 90% C.L. on sin<sup>2</sup>(2θ<sub>new</sub>).

### • $v_{\mu} \rightarrow v_{\tau}$ analysis:

- 4685 located events fully analysed
- 4  $v_{\tau}$  candidates observed so far with an expectation of 2.1±0.4 events and 0.23 background.
- No oscillation hypothesis excluded at 4.2  $\sigma$ Observation of  $v_{\mu} \rightarrow v_{\tau}$  oscillation in appearance mode

♦ First measurement of  $\Delta m_{32}^2$  in appearance mode ( $v_\mu \rightarrow v_\tau$  oscillations) :

- $\Delta m_{32}^2 = [1.8 5] \times 10^{-3} \text{ eV}^2$  (90% C.L.) for  $\sin^2(2\theta_{23}) = 1$
- \* Sterile neutrino search in  $v_{\mu} \rightarrow v_{\tau}$  : **PRELIMINARY** 
  - First limits on  $|U_{\mu4}|^2 |U_{\tau4}|^2$  from direct detection of  $v_{\mu} \rightarrow v_{\tau}$  oscillation.

