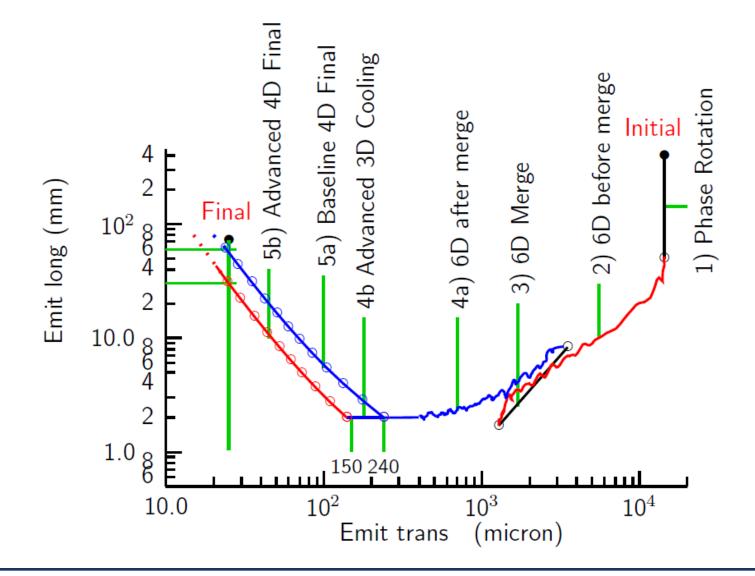


Variations on Final "Cooling"

David Neuffer Fermilab

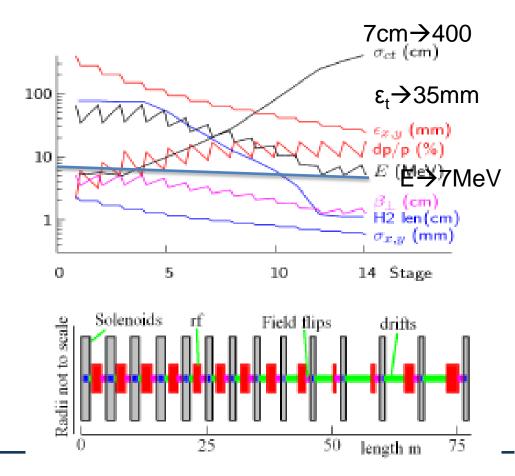
Don Summers, Terry Hart Ole Miss R. Palmer, H. Sayed, BNL



- Final Cooling for a Collider
 R. Palmer
- Final Cooling Simulation – H. Sayed
- Final scenario variation
 - w /D. Summers & T. Hart
 - round to flat and slicing
- Variations on Round to Flat – 1-D cooling …

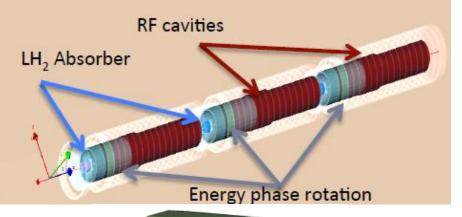
- Baseline High energy collider has final "cooling"
 - $-\epsilon_{x,}\epsilon_{y}: 0.0003 \rightarrow 0.0003m$
 - $-\epsilon_L: 0.001 \rightarrow 0.1m$
 - Mostly emittance exchange...
- Outline
 - Baseline scenario
 - Simulation
 - Variation
 - Can we use the round to flat beam "emittance exchange" ?
 - to change the rules
 - cool, rotate, slice (transverse) recombine (longitudinal)

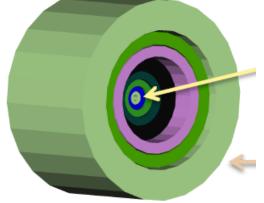
Set up for final cooling


Baseline scenario (2011)

- "Baseline" Muon Collider final cooling stages
 - No actual cooling emittance exchange
 - High magnetic fields
 - Impossible "rf"

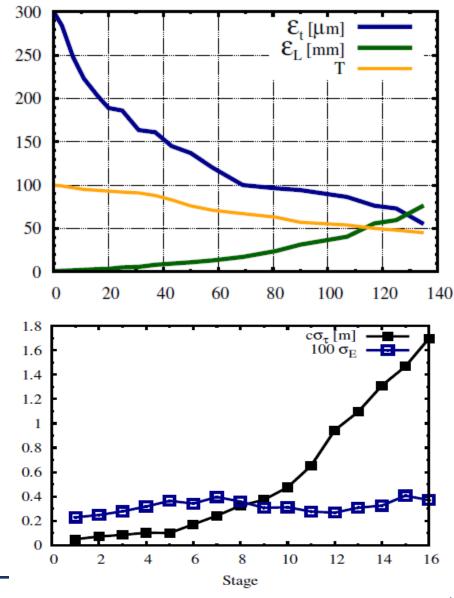
Table 1: Rf Parameters of 40 T Example


	El	E2	freq	grad	ace L
	MeV	MeV	MHz	MV/m	m
NCRF	34.6	66.6	201	15.5	2.1
NCRF	34.8	66.9	201	15.5	2.1
NCRF	36.0	67.1	201	15.5	2.0
NCRF	36.0	54.5	153	11.1	1.7
NCRF	30.6	41.3	110	7.4	1.5
NCRF	24.9	32.4	77	4.7	1.6
NCRF	20.7	25.7	53	2.9	1.7
NCRF	17.4	20.0	31	1.5	1.7
Induction	13.6	15.0	18	1.0	1.4
Induction	10.3	10.7	10	1.0	0.4
Induction	7.5	7.2	6	1.0	0.7
Induction	5.1	7.0	5	1.0	1.8
Induction	5.1	7.4	4	1.0	2.3



Detailed simulation of final cooling (H. Sayed)

- G4Beamline simulation of final cooling scenario
 - absorbers, rf for bunching & reacceleration, magnets
 - 17 stages, 140m long
 - absorbers within strong magnetic fields
- Get smaller ε_N by smaller
 P_µ, larger B
 - $P_{\mu}: 135 \rightarrow 70 \text{ MeV/c}$
 - B: 25 →30 T
 - Palmer used 40 MeV/c, 40T

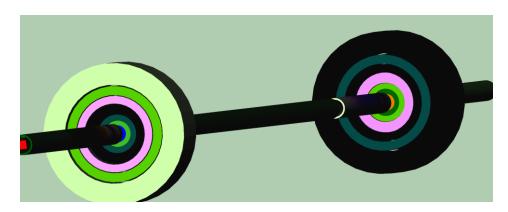


 $\beta_t \cong \frac{2P_{\mu}}{0.2P}$ $\varepsilon_{N,eq} \cong \frac{\beta_t E_s^2}{2\beta mc^2 L_p (dE/ds)}$

Simulation results

- System is ~135m long
 − ε_{t,N} : 300 → 55 10⁻⁶ m
 − ε_L : 1.5 → 75mm
 not quite specs
 − Transmission ~ 50%
 Parameter changes
 - rf 325 → 10 MHz
 - σ_z : 5 cm →180cm
- Could be improved with iteration
 - 40T, induction linac?

Stages


Simulation status

- ~confirms baseline design
- needs a bit further optimization / extension
- uses somewhat extreme components
 - B \rightarrow 40T; f_{rf} \rightarrow < 10 MHz (induction linac)

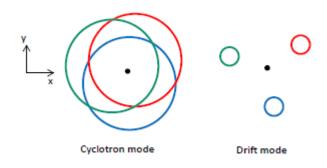
Almost entirely emittance exchange

 $\boldsymbol{\epsilon}_t - \boldsymbol{\epsilon}_L$ exchange

 Obtain exchange without cooling hardware ??

Variant approach: Cool, Round-to-flat, Slice, Recombine (w/ D. Summers, T. Hart)

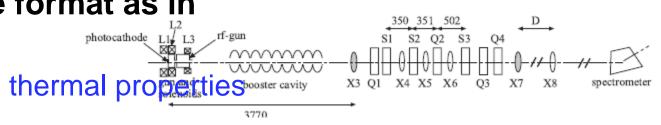
- 1. Cool
 - Cool until system parameters are difficult
 - $\epsilon_{x,y}(\epsilon_t) \rightarrow \sim 10^{-4} \text{ m}, \epsilon_L \rightarrow \sim 0.004 \text{ m}$?
 - set up beam for round to flat transform
- 2. Round to flat beam transform
 - $\epsilon_t \rightarrow \epsilon_x = 0.004; \epsilon_y = 0.00025$?
 - method used in ILC source
- 3. Slice transversely in large emittance
 - using "slow extraction-like" septum to form 16 (?) bunches
 - ε_x =0.00025; ε_y =0.00025
- 4. Recombine longitudinally at high energy
 - bunch recombination in 10 GeV storage ring (C. Bhat)
 - $\epsilon_x = 0.00025; \epsilon_y = 0.00025, \epsilon_L = 0.07m$

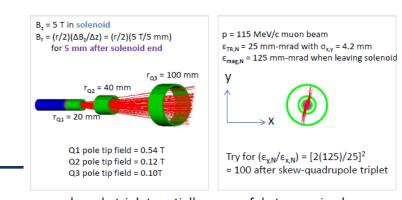


- Start with "final cooling" scenario
- Stop at ~step 5 where parameters are still reasonable..
 - $\epsilon_t \sim 0.0001 \text{m}$
 - $\epsilon_L \sim \sim 0.003 m$
- Beam is at ~100--135 MeV/c
 - $-66 \rightarrow 40$ MeV kinetic energy
- No field flips to obtain highcanonical momentum
 - Nonflip lattices have smaller β^*
 - Small cyclotron mode emittance; Large drift mode
- No more cooling

Table 1: Rf Parameters of 4	0 T Example
-----------------------------	-------------

	El	E2	freq	grad	ace L
	MeV	MeV	MHz	MV/m	m
NCRF	34.6	66.6	201	15.5	2.1
NCRF	34.8	66.9	201	15.5	2.1
NCRF	36.0	67.1	201	15.5	2.0
NCRF	36.0	54.5	153	11.1	1.7
NCRF	30.6	41.3	110	7.4	1.5
NCRF	24.9	32.4	77	4.7	1.6
NCRF	20.7	25.7	53	2.9	1.7
NCRF	17.4	20.0	31	1.5	1.7
Induction	13.6	15.0	18	1.0	1.4
Induction	10.3	10.7	10	1.0	0.4
Induction	7.5	7.2	6	1.0	0.7
Induction	5.1	7.0	5	1.0	1.8
Induction	5.1	7.4	4	1.0	2.3

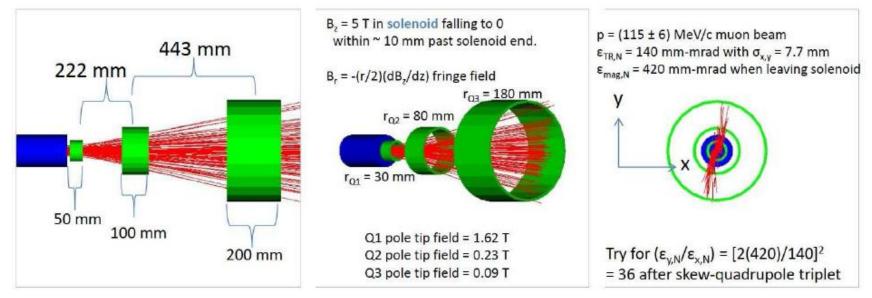

2. Round to Flat beam transform



- Beam has large angular momentum L from non-flip
 - means beam internally has asymmetric emittance
- Beam is in same format as in electron source
 - Beam cooled to thermal properties booster cavity within large B
- Round to Flat beam transform
 - Demonstrated at FNAL (electron injector)
 - ~3 skew quads +

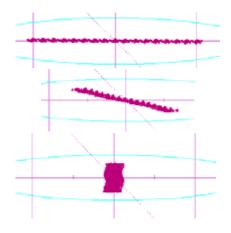
$$-\epsilon_{+}, \epsilon_{-} \rightarrow \epsilon_{x}, \epsilon_{y}$$

$$\varepsilon_{4D} = \varepsilon_T^2 = \varepsilon_+ \varepsilon_- = (\varepsilon_P + L)(\varepsilon_P - L)$$


Simulation: Round to flat

• Simulated at T. Hart at Muon final cooling parameters

- 115 MeV/c


- symmetric emittance within B=5T solenoid

- Factor of 16 transform ratio:
 - ε_x ~ 4-10⁻³ m; ε_y ~ 2.5-10⁻⁵ m (ε_x \star ε_y constant)
 - $\epsilon_L \sim 3.10^{-2}$ m (unchanged)

- Flat beam is accelerated to Slicer
 - match into slicer optics (~linear or ring)
 - small storage ring (?) with slow extraction-like optics
 - slicer is electrostatic; slices in large emittance
 - N slices \rightarrow string of N bunches
- recombine Longitudinally
 - to High Energy Storage ring
 - snap coalescence
 - C Bhat (R. Johnson et al. PAC07)
 21 GeV storage ring, 55µs, 19→1
 - modeled on pbar coalescence

Variant without Round to Flat transform:

- 1. Cool bunch to ~10⁻⁴m ϵ_T
 - $\sim 3 \times 10^{-3} \epsilon_{L}$
- 2. Slow extraction slice to 10 bunches:
 - $-10^{-4}\varepsilon_x \times 10^{-5} \text{m} \varepsilon_y$
 - Separated longitudinally
- 3. Accelerate as bunch train; recombine longitudinally
 - 10^{-4} m $\varepsilon_x \times 10^{-5}$ m ε_y
 - $\sim 3 \times 10^{-2} \epsilon_{L}$
- Collide as flat beams;
 - luminosity ~ same as $\epsilon_t = ~3 \times 10^{-5}$

High Energy Collisions of flat beams

- IF x-y emittance product same as for baseline (round) Collider scenario
 - Can obtain ~ same luminosity
- Flat beam lattice easier to design
 - Chromatic correction easier
 - 10/1 emittance aspect ratio ?
- Some disadvantages
- Flat beam may be more natural result of cooling with round to flat transform as well

Round to flat and beam eigenmodes

- Most ionization cooling scenarios use solenoidal focusing
- beam dynamics within solenoids is not x-y
 more like r θ (cyclotron drift)
- Exploring eigenmodes to understand cooling and develop variations

Beam Dynamics: Eigenmodes in solenoid

- Round to Flat transform requires round beam formation in a solenoid
- In solenoid:
 - Coordinates are x, $p_{x_{y}}$ y, p_{y}

$$p_x = k_x + \frac{eB}{2c}y$$
 $p_y = k_y - \frac{eB}{2c}x$

•
$$\mathbf{k_x} = \mathbf{myv_x}$$

 $\begin{pmatrix} d_x \\ d_y \end{pmatrix} = \begin{pmatrix} x - \frac{c}{eB}k_y \\ y + \frac{c}{eB}k_x \end{pmatrix}$

- References
- A. Burov, S. Nagaitsev, A. Shemyakin, PRSTAB 3 094002 (2000)
- A. Burov, S. Nagaitsev, Y. Derbenev, Phys. Rev.
- E 66, 016503 (2002)
- ^DK^N9^{uff} Kim, PRSTAB 6 104002 (2003)

- Alternative canonical coordinates:
 - Cyclotron mode

$$\begin{pmatrix} \kappa_1 \\ \kappa_2 \end{pmatrix} = \sqrt{\frac{c}{eB}} \begin{pmatrix} k_y \\ k_x \end{pmatrix} = \sqrt{\frac{c}{eB}} \begin{pmatrix} p_y + \frac{eB}{2c} x \\ p_x - \frac{eB}{2c} y \end{pmatrix}$$

Drift mode

$$\begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \sqrt{\frac{eB}{c}} \begin{pmatrix} d_x \\ d_y \end{pmatrix} = \sqrt{\frac{eB}{c}} \begin{pmatrix} \frac{x}{2} - \frac{c}{eB} p_y \\ \frac{y}{2} + \frac{c}{eB} p_x \end{pmatrix}$$

- Round to flat transforms
- (k, d) to (x, y)

Cooling within solenoids

Ionization cooling

- Absorbers within solenoids
 - Cools k₁, k₂
- Cyclotron mode is preferentially cooled
- With

$$\varepsilon_{x} = \sqrt{\left\langle x^{2} \right\rangle \left\langle p_{x}^{2} \right\rangle - \left\langle x p_{x} \right\rangle^{2}}$$

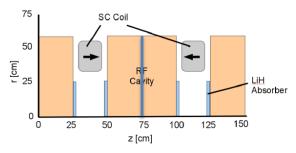
and
$$\ell = \frac{1}{2} \langle x p_y - y p_x \rangle$$

then:

$\varepsilon_1 \varepsilon_2 = \varepsilon_x \varepsilon_y - \ell^2$

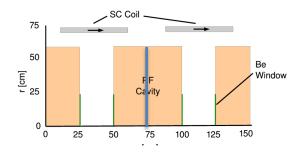
- Typically (at $\varepsilon_x = \varepsilon_y = \varepsilon_t$)
 - $\varepsilon_1 \varepsilon_2 = \varepsilon_k \varepsilon_c = (\varepsilon_t \ell) (\varepsilon_t + \ell)$

- With field flips:
 - $k_{1,} k_{2}$ and d_{1} , d_{2} change identities with each flip
 - Both modes are equally damped
 - Angular momentum is damped


Without field flips

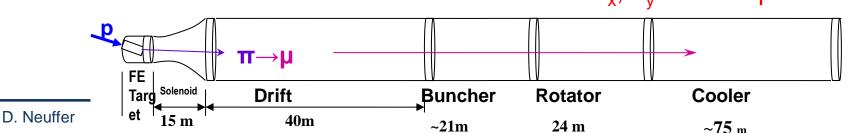
- One mode is preferentially cooled
- Canonical angular momentum not damped

Example: Front End Cooling



• With field flip

- 75m of cooling:
 - ε_{⊥,N} : 0.016→0.0064
 - ℓ damped:0.27→0.05
 - x_{rms}, y_{rms} p_{xrms}, p_{yrms} all damped


Without field flip

- 75m of cooling
 - $ε_{\perp,N} = (ε_+ ε_-)^{1/2}$:0.016→0.0085
 - ℓ increases:0.27→1.44

•
$$\varepsilon_+ / \varepsilon_- = \sim 9$$

- k_{x,k_y} are damped
 - d_x, d_y not damped

Comparison of flip and non-flip cooling

- Buncher/Rotator ends and Cooling starts at L=102m
 - obtain "1-D" cooling --- useful in other applications ?

flip mode (~NF)

non-flip mode (B=constant)

L	ε _t cm	L/ε _t	ε _t	ε _c	ε _d	L/ε _t
102	1.61	0.27	1.61	1.44	2.1	0.27
120	1.21	0.21	1.21	1.08	2.1	0.67
135	1.01	0.18	1.02	0.85	2.2	0.96
150	0.82	0.15	0.89	0.69	2.3	1.21
165	0.71	0.11	0.85	0.58	2.4	1.36
180	0.64	0.08	0.84	0.50	2.4	1.44
195	0.57	0.045	0.81	0.44	2.5	1.54
210	0.54	0.035	0.78	0.38	2.6	1.60

Summary

- Final Cooling for a high-energy collider
 - G4Beam line simulation presented
 - Close to desired values
 - does have high-field magnets; very low frequency
 - mostly "emittance exchange"
- Alternative to "baseline low energy" cooling
 - emittance exchange from slicing
 - Could use round to flat transform
- Solenoidal focusing \rightarrow 1-D cooling
 - 2-D from field flips; 3-D from emittance exchange

Final Cooling System variations

