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For oscillation results see 
C. Bronner’s talk this morning



Layout of T2K

2



T2K Experiment
Near detector suite Far detector

� Muon monitor (MUMON) 
behind beam dump
� monitors beam direction and 

stability

� On-axis detector (INGRID)
� monitors beam profile and 

neutrino interaction rate

� also measures some cross-
sections

� Off-axis detector (ND280)
� monitors unoscillated off-axis 

beam

� measures intrinsic νe

� measures ν cross-sections

� Super-Kamiokande

� 50 kton water Cherenkov

� 39.3 m Ø × 41.4 m high

� 11,129 20” PMTs in inner detector

� outer detector (1885 8” PMTs) 
acts as cosmic muon veto

� Operation as T2K far detector in 
parallel with non-accelerator  ν
physics

� atmospheric and solar ν

� supernova ν watch

� also proton decay
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T2K beam spectrum

� 2.5° off-axis orientation gives 
narrow-band beam tuned to 
oscillation peak
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spectrum is broader for other 
neutrino species (νμ mode)

cut made in νe

appearance analysis 
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Energy reconstruction in SK
� Input data

� Charge and timing 
information for each PMT

� Known detector properties

� PMT response, photon 
attenuation in water, etc.

� Output data

� Vertex position

� Particle ID (e/μ/π)

� Particle momentum
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Energy reconstruction in SK
Standard method New method 

Vertex
• Find event vertex from timing 

information

Rings
• Use Hough transform to find 

rings, assuming 42° cone

PID

• Use Gaussian PDF for PMT 
charge based on expected shape

• Readjust angle if needed

Fit p

• Sum all charge in 70° cone

• Adjust based on particle ID

� Single step maximum likelihood

� � � � ∏ ���	unhit|�������
� �

		∏ � �	hit � �� �� � �����|��
���
�

� Vector x contains

� vertex position (x,y,z,t) 

� track momentum p

� track direction (θ,φ)

� Charge pdf fq factorised into

� predicted charge (# of photons)

� PMT response
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sequential, multi-step method



Fitter performance: muons
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new fitter

standard fitter

new fitter 1.91°

standard fitter 1.92°

new fitter 20.1 cm

standard fitter 23.2 cm

New fitter has slightly better 

momentum and vertex resolution 



Fitter performance: electrons
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new fitter

standard fitter

new fitter 2.42°

standard fitter 2.52°

new fitter 20.0 cm

standard fitter 27.8 cm



New fitter performance: π0

� Key issue in νe appearance measurement is effective 
rejection of NCπ0 background

� π0 with one missed γ misidentified as electron

� New fitter has dedicated π0 fit with 12 parameters

� (x,y,z,t); (p1,p2); (θ1,φ1,θ2,φ2); (c1,c2)

� c = conversion length: distance from 
decay point to track start

� methodology

� add 50 MeV e to single-electron fit and scan for best direction

� refit, floating p1 and p2

� use result as input to full 12-parameter fit
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π0 rejection
� Cut on likelihood 

ratio and π0 mass

� signal region 
inside triangle

� cf. previous cut on
π0 mass only 
(black line)

� Reduces remaining π0 background by 75% with no loss 
of signal efficiency

� this produces significant reduction in systematic error 
since π0 production cross-section has large uncertainty
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SK Calibration and monitoring
� PMT gain and timing

� stable light source permanently deployed inside SK tank
� nitrogen-driven dye laser with diffuser ball to produce isotropic 

light source

� 398 nm, 0.2 ns pulse width

� Absolute gain
� radioactive source calibration

� 9 MeV γ from 58Ni(n,γ)59Ni; neutrons from 252Cf source

� produces single photo-electron signals (average 0.004 pe/PMT)

� Light absorption and scattering in water
� collimated laser light injected vertically downwards from 

top of tank (λ = 337, 375, 405, 445, 473 nm)
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Detector stability
� Monitored with atmospheric ν data
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T2K

+

Average daily 

number of fully-

contained 

events in SK 

fiducial volume, 

over successive 

2-month periods



Energy scale
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Monitored with stopping muons:
• range of muon
• energy of decay electron

energy scale

±2.4%
(νμ dis.)

recon. π0

mass also 
considered



Final-state interactions
� Multinucleon

interactions

� affect kinematics
of outgoing lepton

� any nucleon exiting
nucleus will be below
Cherenkov threshold
hence event interpreted as CCQE

� NEUT representation of this (pionless Δ decay) 
compared with Nieves model

� biases in oscillation parameters <1%  
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for discussion of cross-section modelling see C. Wilkinson’s talk



Pion secondary interactions
� Secondary interactions of π± in SK detector volume can 

affect event classification and hence ν energy estimate

� charge exchange scattering to π0

� potential source of background for νe appearance

� absorption of π+

� misidentification of event, mismeasurement of total energy

� elastic and quasi-elastic scattering

� additional rings, blurred rings, mismeasured energy/direction

� Investigated by adjusting parameters in 
NEUT pion cascade model

� effect ~ 1%
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FSI+SI

±3.0%
(νμ dis.)

π± π0 γ

γ

π+



Near detectors I
� On-axis detector (INGRID)

� monitors beam profile and 
direction

� 1 mrad change in beam direction 
results in 2-3% change in 
neutrino energy scale

� therefore important to check
stability

� also monitors rate of ν
interactions per number of
protons on target (POT)
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See K. Suzuki’s talk this morning



Beam stability (INGRID)
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neutrino interaction rate per 1014 POT
stable to better than 0.7%

beam direction cf. nominal
within 0.3 mrad since Nov. 2010



Near detectors II
� Off-axis detector (ND280)

� calorimetry and 
tracking (TPCs/FGDs)

� Intrinsic νe content 

� recent measurement:
1.01±0.10 × expectation

� Unoscillated νμCC

� Cross-sections for processes of 
interest, e.g. NCπ0
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SMRD

See R. Castillo’s talk this morning



Tracker analyses in ND280
� Interaction in FGDs

� track momenta 
measured in TPC(s)

� TPC PID by dE/dx

� ECal used for PID and 
energy measurement

� ECal is a lead/plastic scintillator sampling calorimeter

� EM energy derived from maximum likelihood fit to total, RMS 
and skewness of deposited energy (resolution 10% at 1 GeV)

� PID also uses cluster shape, charge distribution and ratio of 
deposited charge in 1st and last quarter of track
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Systematic error budget for 

oscillation analyses (2014)
� Steady improvement 

in systematic errors 
since 2011

� better constraints 
from near detector

� better inputs from 
external data

� more sophisticated 
cross-section models

� more sophisticated 
analyses
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Summary
� T2K benefits from a well-understood far detector with 

mature calibration, reconstruction & analysis tools

� However, performance is still being improved, most 
recently by development of new reconstruction method 
giving superior π0 rejection for oscillation analyses

� Near detector inputs are crucial in reducing oscillation 
systematics by constraining unoscillated flux and 
cross-section models

� Better understanding of all aspects is steadily reducing 
systematic error budget 
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see also talk by 
C. Wilkinson!



Predicted charge distribution

Cherenkov emission profile

Decay electron momentum

Water transparency
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attenuation

Predicted charge
� ���� � Φ� �! " #, cos ( Ω * + * , - d#

� direct light only (scattered light handled 
separately)

� Cherenkov light yield and profile depend on 
particle type

� fiTQun PID comes from likelihood ratio based 
on this

� Ω, T and ε are detector/geometry properties

� independent of particle hypothesis
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Cherenkov emission profile g
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Detector stability
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Momentum of decay electron from stopping muon events



Water transparency
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Attenuation length


