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Introduction 

• MOMENT was launched in 2013 (IPAC13/Nufact2013) as 
the third phase of neutrino experiments in China 

– Neutrino experiments at Daya Bay continues data-taking  

– Jiangmen (JUNO, or DYB-II) will start civil construction end year 

• A dedicated machine to measure CP phase, if other 
experiments (such as LBNF, HyperK) will have not 
completed the task in 10 years 

• As a driving force to attract researchers from China to 
work on neutrino experiments based on accelerators 



Introduction 
- Main concepts 

• Medium baseline with neutrino                                  
energy of about 300 MeV 

– Eliminate 0 background 

• Muon-decay neutrinos instead of pion-decay ones 

• Using a CW proton linac as the proton driver 
–  Simplified design from the China-ADS linac 

–  1.5 GeV, 10 mA  15 MW in beam power 

• A fluidized target in high-field SC solenoid 
– Collection of pions and muons 

• Muon transport and decay channel 
– Pure + or - decay 

• High neutrino flux at a detector of >50 km   
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Schematic for MOMENT 

Detector 

 



A CW linac as proton driver 

• A CW proton SC linac can provide the highest beam 
power, and selected as the proton driver for MOMENT 

• China-ADS project was launched in beginning 2011, with 
a long-term goal to drive a subcritical reactor with 12-15 
MW proton beam; MYRRHA is also developing a CW 
proton linac.    

• One of the main goals in the China-ADS R&D phase is to 
solve the technical problems with the SC proton linac 
working in CW mode  

• If C-ADS R&D successful in CW linac, in early 2020 (DEMO 
phase to about 2040), the accumulated experience will 
allow us to build a proton driver based on the similar CW 
linac in GeV but with much lower requirement on 
reliability 



Design scheme for the proton driver 

• Design goal: 
– Beam power: 15 MW 
– Beam energy: 1.5 GeV  (alternate design: 2.0 or 2.5 GeV) 
– Beam current: 10 mA (lower with higher energy) 

• Simplified design scheme from the China-ADS design 
– Much less redundancy wrt China-ADS 
– 3.2-MeV RFQ (room-temperature) 
– Three sections SC spoke cavities (160 MeV) 
– Two sections SC elliptical cavities (1.5 GeV) 
– In total, 196 SC cavities in 42 cryostats, linac length: ~ 300 m 
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Basic lattice design for MOMENT 
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Envelopes along 
the linac 

rms emittance 
along the linac 
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R&D efforts on ADS linac front-end 
at IHEP and IMP 

• RFQs: 
– IMP completed the commissioning 

test of a 2.1 MeV-10 mA-162.5 MHz 
RFQ in CW mode 

– IHEP is testing a 3.2 MeV-10 mA-325 
MHz (now 10% beam and 50% RF 
duty factors)  



• Low-beta superconducting cavities 
– 325 MHz beta=0.12 Spoke cavities: 2 prototypes finished, both 

vertical and horizontal tests completed  and meeting 
specifications; more under fabrication 

– 325 MHz beta=0.21 spoke cavities: one tested,                   
meeting specifications 

– 162.5 MHz beta=0.09 HWR 
    cavities: several tested and  
    meeting specifications  

• Elliptical cavities: two finished 
     waiting for test.  

HWR 

Spoke-0.12 (upper) 
Spoke-0.21 (lower) 

Elliptical 
(beta=0.63) 



• Near-term goal for ADS linac 

– By 2015, two injector schemes reach 5 MeV, CW operation 

– By 2016, two injector schemes reach 10 MeV-10 mA-CW 
operation 



Target Station 
• Baseline design: Mercury jet target (similar to NF design, 

MERIT) and high-field superconducting solenoids 
– Higher beam power: heat load, radioactivity 
– On the other hand, easier to some extent due to CW proton beam (no 

shock-wave problem) 

• More interests in developing fluidized granular target in 
collaborating with the C-ADS target team, and also waiting for 
study result with fluidized tungsten-powder target by NF 
collaboration 

Trying to work out a feasible 
concept based on granular target 



High-field superconducting solenoids 
• Very large apertures due to collection of secondary 

/tertiary beams and space for inner shielding 
– Based on Nb3Sn superconducting conductors, CICC (Cable-in-

Conduit Conductor) coil (ITER) 

– HTS coils are also under consideration 

– High-field magnet R&D efforts at IHEP (incorporated with SppC) 



• Different field levels have been studied: 7/10/14 T 

– Evident advantage on pion collection with higher field  

• Relatively short tapering section: <5 m 

• High radiation dose level is considered not a big issue 
here (compared with ITER case)(both Nb3Sn and HTS 
conductors are radiation resistant, problems are with 
electrical insulation)  



• Very high heat load from beam-target interaction 
(neutrons, gammas) , strong shielding needed to 
reduce heat load in cryostat and radiation level in 
coils 

– Shielding block thickness: 800 mm (~10 MW, also tough) 

– Heat load in cryostat: 1 kW  

– Dose rate in coils: 61013 /(m2 s), which means a fluence of 
61021 /m2 for 10 years (107 s per year) 



Pion production and collection 

• Pion production rate: 0.10 pion/proton (1.5 GeV, 300 mm Hg) 

• Collection efficiencies of forward/total pions: 82% / 58%  (@14 T) 

 

• Distributions in (X-X’)/(Y-Y’) at 
end of pion decay channel 
(from upper down: 7/10/14T) 

• Higher field increases the core 
density significantly 



Spent protons 

• There are two parts in the spent protons (3 peaks!):  
– one is the scattered protons  from the side of the thin mercury jet and the pass-

thru protons from the jet which have higher energy  (4.7 MW with 30 cm target) 

– the other is from nuclear reactions which have lower energy (1.8 MW with 30 cm 
target) 

• It is advantageous to guide spent proton out of the target station to a 
dedicated dump, to reduce heat load, dose rate level in the target station 
or make troubles to the decay channel 

• It looks that we can only do something on energetic protons (well 
confined), as low-energy protons are difficult to separate from 
pions/muons 

• Work to do: 
– Optimize beam-target intersection for better proton spectrum  

– Find out method to separate energetic protons from pions/muons, such as bent 
solenoids; collimation 
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Pion decay section 
• A straight section in SC solenoids of about 100 m to match 

the SC solenoids at the target, and for the pions to decay 
into muons 

– Adiabatic field transition (tapering section ) from the high 
capture field to the lower focusing field to convert transverse 
momentum into longitudinal 

– Chicane in the beginning to collect scattered protons 

– Very large emittance and momentum spread 

– Longer section for energetic pions to decay 

• Similar beam rigidity assures that pions and muons can be 
transported in the same focusing channel 

– Momentum and emittance of pions most preserved in muons   



More about the pion decay channel 

• SC solenoids form FOFO lattice 
(stop-band at certain energy) 

• Very large acceptance for channels 

• About 0.0052 +/proton for about 
50 mm-rad  at entrance of muon 
decay channel 

 

  muon/proton Portion（%） 

No limit on emittance 9.48E-03 100 

Emittance: 100 πmm-rad 8.04E-03 85 

Emittance:   80 πmm-rad 7.31E-03 77 

Emittance:   50 πmm-rad 5.22E-03 55 

Emittance limit in both (X-X’) and (Y-Y’)  

7 T 



• Try to transport large momentum range / 

• Expected: >±50% centered at 300 MeV/c 

Muon momentum spectrum at the entrance of the 
bending section 



• A selection section to select +/+ from -/-, as either 
+ beam or - beam is used for producing the required 
neutrinos    
– Reverse the fields when changing from + to -  
– Also for removing very energetic pions who still survive 
– Very difficult due to extremely large beam emittance (T/L) 

• Scheme 1: based on 3 SC dipoles with strong gradient 
(DFD triplet focusing, a few meters). For very large 
emittance, large bending angles (40  /-80  /40 ) 
•  FFAG magnets are under consideration to compensate focusing 

of large moment range 

Charge selection 



Advantage Disadvantage 

Scheme-I 1) Second beam extracted 
2) Short section 
3) Smaller emittance 
growth 

1) effectiveness influenced by 
large emittance 
2) Lower transmission 
3) Very large aperture magnets 

Scheme-II 1) Higher transmission 
2) More effective 
separation 

1) effectiveness influenced by 
large emittance 
2) Second beam stopped 
3) Very large aperture solenoids 
and long section 

• Scheme II: by bent solenoids  

– Mixed + and - beams have different rotation directions 
in a  bent solenoid. With a large aperture, the two beams 
can be separated each other at certain phase advances 



Muon transport and decay 
- Muon bending section 

• A bending section is required before the muon decay 
channel, to suppress the background of pion-decayed 
neutrinos at the detector by limiting the momentum 
acceptance when needed  
– Bending angle is adaptable according to the general layout 
– More energetic pions continue to decay in the section 

• Many short SC solenoids aligned with increased angle 
displacement to bend and focus the beam 
simultaneously 
– Short solenoids helps reduce beam centroid excursion (aperture, 

beam loss)   
– Alternate reverse SC field also helps reduce the excursion, and 

emittance coupling 
– A small vertical field component is also helpful to reduce the 

excursion and for momentum selection 



• Beam tracking simulated by G4beamline 

Θ=2° 

Field distribution (left) and beam centroid evolution (right) 

• Bending section by slanted 
solenoids (39*2=78) has 
very good momentum 
acceptance, p/p>50% 

• Small vertical component 
(~0.055 T) helps 



Muon transport and decay 
- Muon decay channel 

• A long decay channel of about 600 m is designed for 
production of neutrinos 
– About 35% (centered momentum: ~300 MeV/c) 

• Important to have smaller divergent angle  
– Neutrino energy spectrum at detector related to the angle 

– Modest beam emittance and large aperture 

– Adiabatic matching from 3.7 T in the bending section to 
1.0 T in the decay section 

Aperture/Field Acceptance  (mm-rad) 
X: in mm; X’: in mrad 

600, 3.7 T 100 (x: 280, x’: 357) 

800, 1.0 T 65 (x: 380, x’: 171) 



Neutrino energy spectra 
dependent on muon momentum 
and divergent angle 



Neutrino flux and possible detector 

• Suitable detector for MOMENT 
is still under study 
– 100-150 km from the 

target/source 

– Mass: 0.1-1 Mton 

– Simultaneous detection of all 
four neutrino types: 𝜈 𝜇 , 𝜈𝑒/𝜈𝜇, 𝜈 𝑒 

• Neutrino spectra at the 
detector centered at about 250 
MeV 

Energy spectra of decayed muons 
and neutrino at detector 



Estimate of neutrino flux 

• Proton on target ( operation 5000 h): 1.125  1024 
proton/year 

• Muon yield: 1.62  10-2  /proton 

• Muon decay probability:  0.35 

• Total neutrino yield: 4.8  10-3  /proton (in pair) 

                                         5.4  1021  /year (in pair) 

                (NF: 1.1  1021  /year ) 

• Neutrino flux at detector: dependent on the distance 

                4.7  1011  /m2/year  (@150 km) 

 



Additional pion-decay neutrino beam 

• We are also investigating the possibility to extract a 
pion beam of narrowly-selected energy range for 
producing pion-decay neutrinos (Alan Bross) 
– Add a charge separation section close to target to extract 

energetic pions (eliminating low-energy muons) 



Summary 
• MOMENT becomes a driving force to attract Chinese 

researchers to collaborate on neutrino experiment based on 
accelerator-based neutrino beams 
– Until today, 6 institutions and about 40 people are involved in the joint 

study 

• Not a facility project yet, just concept study, future uncertain 
• Following studies will focus on 

– Suitable detector  
– Granular target and treatment of used protons 
– Optimization of transport/decay channels  

• Technical difficulties 
– Proton driver: to be solved by China-ADS and others 
– Target and very high field SC solenoids: collaboration and R&D 
– Detector: to be identified 

• Collaboration 
– Seek international collaborations: already established with LBNE, 

interests with IDS/MICE-Neutrino Factory and ESSnuSB 




