Answers to old questions and
new questions to answer

Alex Sousa

University of Cincinnati
Mark Hartz

Kavli IPMU (WPI), University of Tokyo/TRIUMF
Enrigue Fernandez-Martinez

Universidad Autonoma de Madrid/CSIC

With many thanks to all WG1 participants

NUFACT 2014
University of Glasgow, Scotland, still UK
August 30, 2014



Neutrinos and the flavour puzzle

Question from NUFACT ’13: What symmetries can
we identify from the PMNS matrix element relative ;
sizes? Which categories of models can we rule out with |
the current precision of mixing angle measurements |



Neutrinos and the flavour puzzle

From C. Luhn talk, some simple mixing patterns easily obtained
from svmmetries:
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Neutrinos and the flavour puzzle

From C. Luhn talk, some simple mixing patterns easily obtained
from svmmetries:
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Neutrinos and the flavour puzzle

From C. Luhn talk, possible solutions:

0,5 generated from perturbations of the original
simpler pattern

Will show up in perturbation theory. Leads to
testable sum rules...

010 ~ 35.3° + H13 cos o
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Neutrinos and the flavour puzzle

From D. Meloni talk, different models allow different sets of
mixing parameters:
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Neutrinos and the flavour puzzle

From D. Meloni talk, different models allow different sets of
mixing parameters:
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Neutrinos and the flavour puzzle

o B

From D. Meloni talk, different models allow different sets of
mixing parameters:
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Results from current experiments

From M. Vivier talk, DCHOOZ results:

sin2(26,) = 0.092+0.033 | _ (stat. + syst.) D
szin/ndof = 52.2/40 (p—value = 94%)
_ Background rate after fit = 1.38 + 0.14 d"'

From H. Seo talk, RENO results:
C data set ( ~800 days)

Preliminary result
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Results from current experiments

From J. Zhao talk, Daya Bay results:
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Results from current experiments

From A. Holin talk, MINOS/MINOS+ results:
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Results from current experiments

From U. Kose talk, OPERA results:
Decay Expected signal Total Observed
channel Am,,% =2.32 meV? background
7—h 0.41 +0.08 0.033 + 0.006 2 4 v. Cd ndidates seen
z—>3h 0.57+0.11 0.155 + 0.030 1 observation of t
TH 0.52+0.10 0.018 + 0.007 1 appearance at 4.2 o
T—e 0.62+0.12 0.027 £ 0.005 0
Total 2.11+£0.42 0.233+0.041 4
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ANTARES (atm. neutrino) ¢
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Results from current experiments
From J. P. Athayde Marcondes de Andreé talk, IceCube results:
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Results from current experiments

From C. Bronner talk, T2K results (new antinu data not included):
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Results from current experiments

From C. Bronner talk, T2K results (new antinu data not included):
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Results from current experiments

FRe

— 68.3% CL NH

ot 68.3%CLIH = ' ;
o —90% CL NH w b — cua-l
= i ---90%CLIH B TR
B 28f + Global best fit & s
= ) 1 --- 90% CL IH
o 260 — . + Global best fit
E O: ]
F 2 :
< C ]
221 . 2F E
: . ¢ ‘ ) | . . . | : . i ) l 4 : : : : '3__1 { I % peg e pul n\r\ 1 G T Y T O TR ’1”| IV i B [ O o
0.3 0.4 05 0.6 0.7 006 007 008 009 01 0.l 012 0.3 e0.14
2 sin“(20,
PRELIMINARY sin"(6,,) PRELIMINARY (28;5)

Tension translates in preference &

e

for 923 > 450 and d0<0 © _ 90% CL NH
1 --- 90% CL IH

== Global best fit

3]

Normal hierarchy also slightly .3
favoured over inverted 4

'3-_1111 EETIE ETETIER N . TE B 5 I [ BRI S
03 035 04 045

PRELIMINARY




Prospects from current experiments

significance of hierarchy resolution (o)

Stay tuned for future T2K and NOvA results to see
how these hints for 6,5 > 45° and 6 < 0 and NH evolve
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Prospects from current experiments

significance of CP violation (o)

Stay tuned for future T2K and NOvA results to see
how these hints for 6,5 > 45° and 6 < 0 and NH evolve
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Prospects from current experiments

significance of octant determination (o)

Stay tuned for future T2K and NOvA results to see
how these hints for 6,5 > 45° and 6 < 0 and NH evolve

sin?20,.=0.095, sin’20,,=095 8,>m/4  36x10%° POT

LN

45— Normal Hierarchy -3

A ——Inverted Hlerarchy Octant

NOvVA 343 years
from X. Bu talk




Future prospects

10 6 Measurement Uncertainty (degrees)

35

30 ~

From J. Spitz talk:
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Resolution on ‘j{|'

Future prospects

From J. Evans talk:
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Future prospects
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From J. Evans talk:
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Future prospects

Adpp (in degrees)

From R. Bayes talk:
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Results from current experiments

0.77-0.86 0.50-0.63 <0.22
Ueuns| =| 0.22-0.56 0.44-0.73 0.57-0.80 2007
0.21-0.55 0.40-0.71 0.59-0.82

C. Gonzalez Garcia and M. Maltoni 0704.1800

0.79-0.85 0.51-0.59 0.13-0.18
Ueuns| =| 0.21-0.54 0.42-0.73 0.58-0.81 2012
0.22-055 0.41-0.73 0.57-0.80

C. Gonzalez Garcia, M. Maltoni, T. Schwetz and J. Salvado 1209.3023

(0.80-0.85 0.51-0.58 0.14-0.16"
Uems|=|0.23-052 0.44-0.70 0.61-0.79
(0.25-053 0.46-0.71 0.59-0.78,

nu-fit.org C. Gonzalez Garcia, M. Maltoni, T. Schwetz and J. Salvado




Neutrinos and the flavour puzzle

Question from NUFACT °13: What symmetries can
we identify from the PMNS matrix element relative
sizes? Which categories of models can we rule out with

the current precision of mixing angle measurements

The simplest mixing patterns (Tribimaximal, Golden Ratio...)
have already been ruled out by 6,5

This led to realize the role and importance of perturbations,
which in turn lead to sum rules testable by precise
measurements of 0,,, 6,5 and o.

The error bars on these parameter keep improving with new data
and the model parameter space reduces leading to new ideas



Importance of cross sections

Question from NUFACT ’13: Can we reach 1-2% level in systematic
uncertainties for superbeam appearance experiments in order to measure {
leptonic CP violation? What level of optimization of the ND is required? To which |
level do we need to reduce the cross-section uncertainties on neutrino interactions |
in water, argon, carbon? Is NuStorm enough to achieve those reductions? Do we |

1

need a dedicated hadron production effort? e

Question from NUFACT ’13: How do we account for differences in neutrino
interaction generators used by each experiment to model their data when we |

comEare or combine sensitivities or results from different experiments? f




Fraction of 6

Importance of cross sections

0 , SB

B AS at 1o | Systematics Def.

_ § / | Fiducial volume ND 0.5%
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Matter density 2%

Courtesy of P. Coloma

P. Coloma et al 1209.5973



Fraction of 0

Importance of cross sections

+NuSTORM (1% uncorrelated errors on xsecs)
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Matter density 2%

P. Coloma et al 1209.5973



Importance of cross sections

From S. Cartwright talk, T2K error budget:

* Steady improvement
1n systematic errors
since 2011

e better constraints
from near detector

e better inputs from
external data

e more sophisticated
cross-section models

e more sophisticated
analyses

Source of uncertainty

1Ry 6Nsk /Nsk

1Re & A‘rs K / NS‘ K

SK+FSI 5.00% 3.66%
SK 4.03% 2.72%
FSI4+SI(+PN) 2.98% 2.44%
Flux and
correlated cross sections
(prefit) 21.75% 26.04%
(postfit) 2.74% 3.15%
Independent
cross sections 5.00% 4.69%
Total
(prefit) 23.45% 26.80%
(postfit) 7.65% 6.75%
S
4 v dis.
15 & H
= V. app.
10 4 &
v
5 -
o : : :
2011 2012 2013 2014




Importance of cross sections

From F. Terranova talk:

New ideas: try to tag the v, from K_; decays.

This could provide a clean measurement of the v,
cross section without flux uncertainties.




Importance of cross sections

Two joint sessions with WG2 on energy reconstruction.
Talks by N. Raddatz, S. Cartwright, C. Wilkinson,
J. Wolcott, A. Ereditato and S. Boyd

Tension in cross sections at low and
high E between NOMAD and MiniBooNE
probed by new Minerva data

Some tensions between Minerva
and MiniBooNE data, no single

Most recent theoretical  model reproduces well all
models still to be observations
implemented in generators

Neut choice RFG+RPA+MEC

Minerva and ArgoNeuT data for T2K analysis (best fit to
can help! MiniBooNE and Minerva data)



Importance of cross sections

Question from NUFACT ’13: Can we reach 1-2% level in systematic
uncertainties for superbeam appearance experiments in order to measure
leptonic CP violation? What level of optimization of the ND is required? To which
level do we need to reduce the cross-section uncertainties on neutrino interactions
in water, argon, carbon? Is NuStorm enough to achieve those reductions? Do we

need a dedicated hadron production effort? B
Importance of NuStorm is experiment dependent.

Largest improvement for T2HK with errorbars halved in part
of the param space.

LBNF and ESSnuSB would also benefit.



Mass hierarchy

Question from NUFACT ’13:  When will the combined reach of all experiments

resolve the mass hierarchy at more than 30 for all 87 and 507 What impact i
would such measurement have on the design of future large facilities such as |

LBNE T2H§ LBNO or ESS? Can we identify synergies between them? )



Mass hierarchy

From M. M. Devi talk:
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Mass hierarchy

From M. M. Devi talk:
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Mass hierarchy
From J. P. Athayde Marcondes de Andreé talk:
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Sensitivity for 8

Mass hierarchy

From M. Blennow talk:
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Mass hierarchy
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From M. Blennow talk:
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Octant

Question from NUFACT ’13: What are the prospects for determining the 03
octant over the next decade for current facilities? What is the sensitivity to the

023 octant of medium-term atmospheric neutrino experiments such as INO,

PINGU? N

From M. M. Devi talk:

:“ """""""""" NH (true), S0kt-yr 3o
i ] (B, cos0,,EL_, 1-2 o significance for the
&6 —-(E,,c0s,) octant with INO. Waiting for a
&% similar figure from PINGU and
o the combined sensitivity with
2 T2K+NOvA+reactors
1F
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sin’ 6,, (true)



Neutrinos and new physics

Question from NUFACT ’13: If improved precision in
oscillation parameters results in tension between
measurements, which new physics beyond the 3-flavor
mixing paradigm would we be probing (NSI, steriles, ’
unitarity, CPT, etc.)? And between oscillations and other
searches (neutrinoless double beta decay, CLFV, ’

cnsmm'na. . !? |
—_— e ———



Neutrinos and new physics

. Evidence of a non-zero
— .FFO.”.”.J.-. I.".n.k. t.a.”.(T ...... neutrino magnetic moment

250} } ] would appear as a dramatic
increase in the scattering
2 I " rate for the lowest energy
T 1s0] bl recoil electrons.
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5 100 ! | et Y ]
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At LZ Xe DM detector. 100 days x
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Neutrinos and new physics

From O. Yasuda talk:

_SK 3903 days (NH) ~ SK 3903 days ("")
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Neutrinos and new physics

From O. Yasuda talk:
HK 3903 days (NH) 2 HK 3903 days (IH)




Neutrinos and charged leptons

From L. Merlo talk:

Maybe the solution of the flavour puzzle comes from continous

10781

10—10 I

10—12 I

symmetries like the gauge symmetries in the SM
Can explain simultaneously quark and neutrino patterns
Can lead to signals in Charged Lepton Flavour Violation
NORMAI §77(3),, x SU(3)., x O(3)n,, YERTED

B’F—’#’}’ 10-° | JE—
0 = 10710}
10_12 L
L o e — — — — _ _
10714 L. - -
0 0.05 0.1 0 0.05 0.1 0.J15 0.2




Neutrinos and charged leptons

From M. Passera talk, lepton g-2:

E821 - Final Report: PRD73
a,FXP=116592091 (63) x 10-1 (2006) 072 with latest value
of A=pi,/ip from CODATA’10

CLEM X 1011 Aa,‘l fr— CLE.XP . a-i_Nl
116591809 (66) 282 (91) x 10—
116591829 (57) 262 (85) x 10~

116591855 (58) 236 (86) x 10—

with the “conservative” a,"NO(Ibl) =116 (39) x 10" and the LO hadronic from:

[1] Jegerlehner & Nyffeler, Phys. Rept. 477 (2009) 1
[2] Davier etal, EPJ C71 (2011) 1515 (includes BaBar & KLOE10 2n)
[3] Hagiwara et al, JPG38 (2011) 085003 (includes BaBar & KLOE10 2r)

~3 o tension in p g-2
between exp and th

persists. Notice
similar errorbars,
challenge for th to
keep up!

Could be probed in the near future with e g-2. Independent
determinations of o reaching comparable accuracy. Would

imply a test of the QED to the 4 loop level!



Neutrinos and charged leptons

From P. Paradisi talks, lepton g-2:

150§
100§
50

Dur

=507
~100}

10~ 1073 1072
[

10 9 E
10 10 10

Aa, arXiv:1105.5936

Also correlated with CLVF and electric dipole moments.
Can also lead to ~10-3 NSI in the p— sector potentially testable
through precise vu disappearance measurements.



Steriles?

Question from NUFACT ’13: Evidence for sterile neutrinos is dominated by the
LSND result. What are the prospects for rejecting or confirming LSND at more ”

than 50 betore NuStorm is built? B )
Question from NUFACT ’13: What is the effect of results from Daya Bay, y
RENO and Double Chooz on the reactor neutrino anomaly? Can we test the i
gallium anomaly with future projects? B l

Question from NUFACT ’13: What constraints can we place on light sterile <

: . {
neutrinos using direct mass measurements? 'l



Data / Prediction

Steriles?

From F. An and Y. Wang talks, Daya Bay results:
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Steriles?

From A. Holin talk, MINOS/MINOS+ results:
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Steriles?
From U. Kose talk, OPERA results:
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Steriles?

From J. Caravaca talk, T2K results and prospects:
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Steriles?
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Steriles?

From J. Link talk:
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Steriles?

From J. Spitz talk:

Dis/appearance sensitivity with LENA

Disappearance sensitivity with Watchman
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Steriles?
From R. Bayes talk:
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New questions for Nufact 15

= What are the new developments and predictions from
flavour models on neutrino oscillation parameters? What
precision do we need to achieve to probe them? Which
parameters (or combinations of them) are more powerful to
test them?

= Do the current bounds on new physics in the neutrino
sector (NSI, non-unitarity, steriles...) allow for effects large
enough to interfere with CPV searches? Which experimental
setups can improve these bounds?

= Explore the synergy between neutrino oscillations and other
experiments (absolute mass searches, cosmological
constraints, CLFV) to constrain new physics.



New questions for Nufact 15

= Are atmospheric neutrino measurements competitive with
next generation long baseline facilities in the determination of
the mass hierarchy? And the octant of 6,52 How much
complementarity is there between them?

= What is the target for the systematic error budget of next
generation facilities? What do we need to reach this level?
How much improvement in constraining flux uncertainties can
we expect from nuPRISM and dedicated hadron production
efforts?

= What is the best strategy to fully probe the LSND anomaly?
And the reactor/gallium anomaly?

= What can we say about the new Majorana mass scale
implied by neutrino masses? What are the current bounds
and how much will they improve over the next decade?



