WG3 Summary #### Conveners: - J. Pasternak, Imperial College London/RAL-STFC - P. Snopok, Illinois Institute of Technology (presenter) - J. Tang, Institute of High Energy Physics ## Layout - We will - Address the questions we inherited from NuFact'13 - Pose new questions based on the outcome of presentations and discussion during NuFact'14 - Highlight some of the results reported # Target/capture - What is the path to a multi-MW target/capture system? - What are the options to mitigate energy deposition and shielding problems for multi-MW solenoid capture systems? - Depends on the power on target and proton energy - Use carbon target instead of liquid Hg - Preliminary He-gas cooled W-bead shielding has been proposed - Are there outstanding target handling issues for multi- MW designs? How do material properties evolve with time (radiation, strain, stress and temperature)? - Topics of ongoing studies (RaDIATE collaboration). Solid targets are much easier to handle than liquid. Magents are bigger issue than the target itself. - Is our modeling of pion production sufficiently complete to address proposed accelerator projects? - Uncertainties at 20% level were reported previously, no update at this NuFact. - While there is progress, we can't completely eliminate any of the questions above. - New question: what are the limits of the carbon target. #### Target System Concept He-gas cooled W-bead shielding (~ 100 tons) #### Target System Optimizations - High-Z favored. - Optima for graphite target: length = 80 cm, radius ~ 8 mm (with σ_r = 2 mm (rms) beam radius), tilt angle = 65 mrad, nominal geometric rms emittance ϵ_\perp = 5 μ m. $\beta^* = \sigma_r^2 / \epsilon_\perp = 0.8 \text{ m}.$ - Graphite proton beam dump, 120 cm long, 24 mm radius to intercept most of the (diverging) unscattered proton beam. - The 20 T field on target should drop to the \sim 2 T field in the rest of the Front End over \sim 5 m. - However, difficult to deliver a beam of 5 μm emittance with over 1 MW power. #### Future Target Studies Muon Collider/Neutrino Factory studies in the USA being ramped down. Interest remains in high-power targetry for various applications. See, for example, the 5th High Power Targetry Workshop (FNAL, 2014), https://indico.fnal.gov/conferenceDisplay.py?ovw=True&confId=7870 [These workshops were initiated by H. Kirk.] A particular issue: how much beam power can a graphite target stand? - Lifetime against radiation damage much better at high temperature. - Resistance to "thermal shock" from pulsed beams also better at high temperature. Firm up these trends with data from beam irradiations of high-temperature graphite. (The Muon Collider/Neutrino Factory group participated in beam irradiations of water-cooled graphite and many other target materials in 2002-2006.) GARD proposal(s) being generated by BNL and FNAL for such studies. New diagnostic: x-ray diffraction of irradiated samples. #### Heat Removal and Thermal Stress Summary Presentation by C. Densham on Friday, Aug 29 @ 11:20 https://indico.cern.ch/event/300521/session/4/contribution/167/material/slides/1.pdf #### Conclusions Peripherally cooled cylindrical **monolith targets** have limited heat dissipation capability and experience high steady state and dynamic stresses. **Segmented** internally cooled stationary targets can accommodate much higher heat loads and higher power densities. A **pebble bed target** such as that proposed for EURONu or ESS-SB is probably the ultimate segmented target and may be relevant for other facilities where a solid cylindrical target is not viable. R & D in pebble bed and other segmented targets would be beneficial for future neutrino facilities and neutron sources alike. At higher beam powers it may become necessary to employ **flowing** (powder and liquid metals) or rotating targets and that is why research in this area is required. **Physics performance is a function of reliability** as well as optimum particle yield so the simplest target design possible is often the best choice. ### Acceleration - What is the optimum muon acceleration scheme for the Neutrino Factory with respect to feasibility, performance and cost (FFAG, RLAs with FFAG arcs, linac)? - Cost-saving concept: dual-use linac for the NuMAX scheme - Single FFAG type arc replacing multiple arcs in RLA - Studies are ongoing, item persists. ### #### 325 MHz - 650 MHz Transition ### Path-length Delay Chicane $$\Delta S = 2 \times \Delta z \frac{1 - \cos \theta}{\cos \theta}$$ $$\Delta S = \frac{\lambda}{2}$$ $$\Delta z = \frac{\lambda}{4} \times \frac{\cos \theta}{1 - \cos \theta}$$ $$\lambda = 46.122 \text{ cm}$$ $$\theta = 30^{\circ}$$ $$\Delta z = 74.534 \text{ cm}$$ $$\frac{\cos\theta}{1-\cos\theta} = \frac{1}{2} \left(\cot^2 \frac{\theta}{2} - 1 \right)$$ ### Single- vs Multi- pass Droplet Arcs ### nuSTORM - What is the best solution/design for the nuSTORM facility (performance, cost)? - Ongoing analysis of FFAG vs FODO solutions - FFAG ring: DFD triplet vs doublet in the straights, optimization - Item persists - New questions: - How to generate short proton pulse for nuSTORM at CERN? - What is the location of the far detector at CERN? Presented by E. Wildner on Tue, Aug 26 @ 11:40 am, https://indico.cern.ch/event/300521/session/4/contribution/152/material/slides/1.pdf # Lattice option comparison | Parameters | FODO
(Jun. 2013) | RFFAG
"FODO-like" | RFFAG
"low-cost" | |--|---------------------|----------------------|---------------------| | L _{straight} [m] | 185 | 175 | 156 | | Circumference [m] | 480 | 500 | 460 | | Dynamical acceptance A _{dyn} | 0.6 | 0.95 | 0.95 | | Momentum acceptance | ±10% | ±16% | ±16% | | π/POT within momentum acceptance | 0.094 | 0.171 | 0.171 | | Fraction of π decay in one straight (F_s) | 0.48 | 0.47 | 0.43 | | Straight-circumference ratio (Ω) | 0.39 | 0.35 | 0.34 | | $A_{dyn} \times \pi/\text{POT} \times F_s \times \Omega$ | 0.011 | 0.027 | 0.024 | Paris, Jan. 2014 ### Doublet solution Straight: 175 m, maximum scallop angle: 12 mrad From presentation by JB Lagrange on Tue, Aug 26 @ 11:20 https://indico.cern.ch/event/300521/session/4/contribution/151/material/slides/0.pdf # Triplet solution Straight: 180 m, maximum scallop angle: 24 mrad ### Muon experiments - What are the optimum beam designs for next generation muon experiments based on current and future proton beams? - Had a discussion on Thursday, split question into subtopics - Preparing a consolidated table of parameters (example of COMET is shown in the next few slides) - Will draw conclusions based on the results of the exercise [kudos to those who sent their input so far] - New question: - What are the possible applications of (cooled) muon beams? #### Synergies between muon projects - discussion - Cold muon beam applications (besides NF/MC): - ☐ Mu2e or COMET upgrade (event rate in detectors?) - muSR, medical applications, material detection - Polarized muon beams - What are the optimum beam designs for next generation muon experiments based on current and future proton beams? - What proton beam power on target is needed (as a minimum)? - What proton energy is needed? - Can your project benefit from ionization cooling, frictional cooling or both? - Can we design the capture/front end system, which would be beneficial for many experiments? #### New question: Can we design the capture/front end system, which would be beneficial for many experiments? | | Project 1 | Project 2 | |---|--|-----------| | | COMET | | | Proton energy | 8 GeV | | | Proton time structure | 100ns width pulses separated by 1.1–1.6s | | | Target type/technology | Tungsten | | | Pion capture energy | 0-200 MeV | | | Pion capture technology (solenoid, horn, backward or forward, etc.) | Solenoid-
backward going | | | Muon energy at the input to the front end | N/A | | | Muon output energy from the front end | 40+/-30 MeV/c | | | | Project 1 | Project 2 | |--|--|-----------| | Beam manipulations in the front end (RF, collimation, matching, bunching, phase rotation etc.) | Removal of high energy particles and long path length to reduce pion contamination | | | Muon beam time structure at the output from the front end | Same as proton. | | | Is/could cooling be beneficial? | Only reduction of energy spread. | | | Is/could acceleration/deceleration be beneficial? | Only reduction of energy spread. | | | Muon intensity required for the experiment/project | ~10 ¹¹ /s | | | Other comments | | | Please send us the information on your muon project/experiment: Jaroslaw Pasternak [j.pasternak@imperial.ac.uk]; Pavel Snopok [snopok@gmail.com]; Jingyu TANG [tangjy@ihep.ac.cn] ### **ESS** - Is there a possible solution for an ESS driven proton driver for the SB and/or NF? - For SB the answer is definitely 'yes' - For low-energy nuSTORM at ESS: - Should it be based on a storage ring or a straight channel (like MOMENT)? - For NF: - How to provide short bunch structure after accumulator at ESS (do we need a compressor, or accumulator can be used as compressor)? ### How to add a neutrino facility? • The neutron program must not be affected and if possible synergetic modifications • Linac modifications: double the rate (14 Hz \rightarrow 28 Hz), from 4% duty cycle to 8%. • Accumulator (ø 143 m) needed to compress to few µs the 2.86 ms proton pulses, affordable by the magnetic horn (350 kA, power consumption, Joule effect) • H- source (instead of protons) • space charge problems to be solved - ~300 MeV neutrinos - Target station (studied in EUROv) - Underground detector (studied in LAGUNA) - Short pulses (~µs) will also allow DAR experiments neutrino flux at 100 km (similar spectrum than for EU FP7 EUROv SPL SB) 23 ### **ESS Neutrino Super Beam** Available online at www.sciencedirect.com #### **ScienceDirect** Nuclear Physics B 885 (2014) 127-149 www.elsevier.com/locate/nuclphysb arXiv:1212.5048 arXiv:1309.7022 A very intense neutrino super beam experiment for leptonic CP violation discovery based on the European spallation source linac E. Baussan^m, M. Blennow¹, M. Bogomilov^k, E. Bouquerel^m, O. Caretta ^c, J. Cederkäll ^f, P. Christiansen ^f, P. Coloma ^b, P. Cupial ^c, H. Danared ^g, T. Davenne ^c, C. Densham ^c, M. Dracos ^{m,*}, T. Ekelöf ^{n,*}, M. Eshraqi ^g, E. Fernandez Martinez ^h, G. Gaudiot ^m, R. Hall-Wilton ^g, J.-P. Koutchouk^{n,d}, M. Lindroos^g, P. Loveridge^c, R. Matev^k, D. McGinnis ^g, M. Mezzetto ^j, R. Miyamoto ^g, L. Mosca ⁱ, T. Ohlsson ^l, H. Öhmanⁿ, F. Osswald^m, S. Peggs^g, P. Poussot^m, R. Ruberⁿ, J.Y. Tang^a, R. Tsenov^k, G. Vankova-Kirilova^k, N. Vassilopoulos^m, D. Wilcox^c, E. Wildner^d, J. Wurtz^m 14 participating institutes from 10 different countries, among them ESS and CERN ^a Institute of High Energy Physics, CAS, Beijing 100049, China ^b Center for Neutrino Physics, Virginia Tech, Blacksburg, VA 24061, USA ^c STFC Rutherford Appleton Laboratory, OX11 0QX Didcot, UK d CERN, CH-1211 Geneva 23, Switzerland e AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland f Department of Physics, Lund University, Box 118, SE-221 00 Lund, Sweden g European Spallation Source, ESS AB, P.O. Box 176, SE-221 00 Lund, Sweden h Dpto. de Física Téorica and Instituto de Física Téorica UAM/CSIC, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain i Laboratoire Souterrain de Modane, F-73500 Modane, France j INFN Sezione di Padova, 35131 Padova, Italy k Department of Atomic Physics, St. Kliment Ohridski University of Sofia, Sofia, Bulgaria Department of Theoretical Physics, School of Engineering Sciences, KTH Royal Institute of Technology, AlbaNova University Center, SE-106 91 Stockholm, Sweden ^m IPHC, Université de Strasbourg, CNRS/IN2P3, F-67037 Strasbourg, France Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden **EU H2020 Design Study** application to be submitted next week NRS-UdS significantly lower energy than nuSTORM muons good to measure neutrino x-sections around 200-300 MeV ### Low energy muon beam ~ 10^{12} m/pulse in 200 < P(MeV/c) < 500 (for 1 m²) (2.6x10²⁰ μ /year, at the level of the beam dump) Input beam for future 6D m cooling experiments # Muon accelerator concept demonstration - What facilities are needed to demonstrate muon accelerator concepts (MuSIC, MICE, nuSTORM, FNAL-APO, others)? - Continue efforts on MICE, MTA, MuSIC - nuSTORM and EMuS (at CSNS) would be beneficial to the community - additional funding to continue running EMMA - See also "synergies" topic above ### Summary - What is the path to a multi-MW target/capture system? - What are the options to mitigate energy deposition and shielding problems for multi-MW solenoid capture systems? - Are there outstanding target handling issues for multi- MW designs? How do material properties evolve with time (radiation, strain, stress and temperature)? - Is our modeling of pion production sufficiently complete to address proposed accelerator projects - What are the limits of the carbon target. - What is the optimum muon acceleration scheme for the Neutrino Factory with respect to feasibility, performance and cost (FFAG, RLAs with FFAG arcs, linac)? - What is the best solution/design for the nuSTORM facility (performance, cost)? - How to generate short proton pulse for nuSTORM at CERN? - What is the location of the far detector at CERN? - What are the optimum beam designs for next generation muon experiments based on current and future proton beams? - What are the possible applications of (cooled) muon beams? - Is there a possible solution for an ESS driven proton driver for the NF? - Should low-energy nuSTORM at ESS be based on a storage ring or a straight channel (like MOMENT)? - How to provide short bunch structure for NF after accumulator at ESS (do we need a compressor, or accumulator can be used as compressor)? - Can we design the capture/front end system, which would be beneficial for many experiments? # Thank you!