# How neutrino energy reconstruction is affected by nuclear effects? 

Artur M. Ankowski<br>Okayama University

NuFact 2014
Glasgow, 25-30 August 2014

## Outline

(1) Why nuclear effects are relevant for oscillation studies
(2) Does the binding energy in $E_{\text {rec }}$ depend on kinematics?
(3) Pion production and multinucleon processes as CCQE-like backgrounds
(4) How does the binding energy differ in $v$ and $\bar{v}$ scattering?
© Can we improve the energy reconstruction method?
© Summary

# Why nuclear effects are relevant for oscillation studies 

## Neutrino oscillations

In the 2 flavor case, the oscillation probability is

$$
P_{\alpha \rightarrow \beta}=\sin ^{2}(2 \theta) \sin ^{2}\left(\frac{\Delta m^{2} L}{4 \underline{E_{\nu}}}\right)
$$

True neutrino energy

## Neutrino oscillations

In CCQE scattering off free nucleons at rest,

$$
\begin{aligned}
& \nu_{\ell}+n \rightarrow \ell^{-}+p \\
& \bar{\nu}_{\ell}+p \rightarrow \ell^{+}+n
\end{aligned}
$$

the neutrino energy can be determined from

$$
E_{\nu}^{\mathrm{rec}}=\frac{2 E_{\mu} M-M^{2}-m_{\mu}^{2}+M^{\prime 2}}{2\left(M-E_{\mu}+\left|\mathbf{k}_{\mu}\right| \cos \theta\right)}
$$

## Neutrino oscillations

In CCQE scattering off nucleus, the true energy is

$$
E_{\nu}=\frac{2 E_{\mu} E_{N}-2 \mathbf{p} \cdot \mathbf{k}_{\mu}-\left(E_{N}^{2}-\mathbf{p}^{2}+m_{\mu}^{2}-M^{\prime 2}\right)}{2\left(E_{N}-|\mathbf{p}| \cos \theta_{h}-E_{\mu}+\left|\mathbf{k}_{\mu}\right| \cos \theta\right)},
$$

compared to the reconstructed energy ( $\sim$ QE peak)

$$
E_{\nu}^{\text {rec }}=\frac{2 E_{\mu}(M-\epsilon)-(M-\epsilon)^{2}-m_{\mu}^{2}+M^{\prime 2}}{2\left[(M-\epsilon)-E_{\mu}+\left|\mathbf{k}_{\mu}\right| \cos \theta\right)},
$$




## Simplest (unrealistic) case

## Unknown monochromatic beam

Consider the simplest (unrealistic) case:
the beam is monochromatic but its energy is unknown and has to be reconstructed


$$
E^{\prime} \text { and } \theta \text { known }
$$

$$
E=?
$$

## "Unknown" monochromatic $\boldsymbol{e}^{-}$beam



$$
\begin{aligned}
E^{\prime} & =768 \mathrm{MeV} \\
\theta & =37.5 \mathrm{deg} \\
\Delta E^{\prime} & =10 \mathrm{MeV}
\end{aligned}
$$

## "Unknown" monochromatic $\boldsymbol{e}^{-}$beam



$$
\begin{gathered}
E^{\prime}=768 \mathrm{MeV} \\
\theta=37.5 \mathrm{deg} \\
\Delta E^{\prime}=10 \mathrm{MeV}
\end{gathered}
$$

for $\epsilon=25 \mathrm{MeV}$ $E=960 \mathrm{MeV}$ $\Delta E=15 \mathrm{MeV}$
"Unknown" monochromatic $\boldsymbol{e}^{-}$beam


$$
\begin{gathered}
E^{\prime}=768 \mathrm{MeV} \\
\theta=37.5 \mathrm{deg} \\
\Delta E^{\prime}=10 \mathrm{MeV}
\end{gathered}
$$

$$
\begin{gathered}
\text { for } \epsilon=25 \mathrm{MeV} \\
E=960 \mathrm{MeV} \\
\Delta E=15 \mathrm{MeV}
\end{gathered}
$$

## true value $E=961 \mathrm{MeV}$

## "Unknown" monochromatic $\boldsymbol{e}^{-}$beam

| $\theta(\mathrm{deg})$ | 37.5 | 37.1 | 36 | 36 |
| :---: | :---: | :---: | :---: | :---: |
| $E^{\prime}(\mathrm{MeV})$ | 768 | 615.0 | 487.5 | 287.5 |
| $\Delta E^{\prime}(\mathrm{MeV})$ | 10 | 10 | 10 | 5 |
| $\epsilon=25 \mathrm{MeV}$ |  |  |  |  |

$\begin{array}{lllll}\text { rec. } E & 960 \pm 15 & 741 \pm 13 & 571 \pm 12 & 333 \pm 6\end{array}$ true $E$

| 961 | 730 |
| :---: | :---: |
| Sealock et al., PRL 62, 1350 (1989) |  (1987) | PRL 62, 1350 (1989)

O'Connell et al., PRC 35, 1063 (1987)

## "Unknown" monochromatic $\boldsymbol{e}^{-}$beam

$$
\begin{array}{ccccc}
\theta(\mathrm{deg}) & 37.5 & 37.1 & 36 & 36 \\
E^{\prime}(\mathrm{MeV}) & 768 & 615.0 & 487.5 & 287.5 \\
\hline \Delta E^{\prime}(\mathrm{MeV}) & 10 & 10 & 10 & 5
\end{array}
$$

| true $E$ | 961 | 730 | 560 | 320 |
| :---: | :---: | :---: | :---: | :---: |
| $\epsilon$ | $26 \pm 10$ | $16 \pm 10$ | $16 \pm 10$ | $13 \pm 5$ |

## "Unknown" monochromatic $\boldsymbol{e}^{-}$beam

$$
\begin{array}{ccccc}
\theta(\mathrm{deg}) & 37.5 & 37.1 & 36 & 36 \\
E^{\prime}(\mathrm{MeV}) & 768 & 615.0 & 487.5 & 287.5 \\
\Delta E^{\prime}(\mathrm{MeV}) & 10 & 10 & 10 & 5
\end{array}
$$

| true $\boldsymbol{E}$ | $\mathbf{9 6 1}$ | $\mathbf{7 3 0}$ | 560 | 320 |
| :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{\epsilon}$ | $26 \pm 10$ | $16 \pm 10$ | $16 \pm 10$ | $13 \pm 5$ |

$$
\begin{aligned}
\hline \text { different } E & \equiv \text { different } Q^{2} \equiv \text { different } \theta \\
& \rightarrow \text { different } \epsilon
\end{aligned}
$$

Realistic case

## Polychromatic beam

In modern experiments, the neutrino beams are not monochromatic, and the energy must be reconstructed from the observables, typically $E^{\prime}$ and $\cos \theta$ under the CCQE event hypothesis.

## $E^{\prime}$ and $\theta$ known

$E=$ ?

## CCQE events

In practice, CCQE event candidates are defined as containing no pions observed.

CCQE ( $1 p 1 h$ and $2 p 2 h$ )
pion production and reabsorption

+ undetected pions
- CCQE with pions from FSI

CCQE-like events

## Recall the monochromatic beam case



## CCQE events of given $l^{\boldsymbol{l}}$ kinematics



## Difficulties

- Clearly different processes and neutrino energies contribute to CCQE-like events of a given $E^{\prime}$ and $\cos \theta$.
- The backgrounds have to be accurately accounted for and subtracted in Monte Carlo simulations.


## Absorbed or undetected pions

Analyzed within the Giessen Boltzmann-Uehling-Uhlenbeck (GiBUU) transport model [Buss et al., Phys. Rept. 512, 1 (2012)] for hadron-, photon-, electron-, neutrino-, and heavy-ioninduced reactions on nuclei.

- nucleus described as the local Fermi gas in a momentumand coordinate-dependent potential
- emphasis put on final-state interactions, the produced mesons and baryons propagate and collide in mean-field potentials, the evolution of all the channels (61 baryons, 21 mesons) is coupled


## GiBUU results for pions

# $p+A \rightarrow \pi^{+}+X$ 

 (a) mom. $3 \mathrm{GeV} / c$ calcs.:Gallmeister \& Mosel NPA 826, 151 (2009)

| data: |
| :---: |
| Catanesi et al. |
| (HARP Collab.) |
| PRC 77, 055207 |
| (2007) |



## Absorbed or undetected pions

The reconstructed energy typically lower by $\sim 300 \mathrm{MeV}$


| absorbed $\pi$, <br> irreducible | $E_{v} \quad[\mathrm{GeV}]$ | T. Leitner \& U. Mosel <br> PRC 81, 064614 (2010) |
| :---: | :---: | :---: |

## $2 p 2 h$ final states

Final states involving two (or more) nucleons may originate from

- initial-state correlations: $\sim 20 \%$ of nucleons in the nucleus strongly interact, typically forming a deuteron-like $n p$ pair of high relative momentum
- final-state interactions
- 2-body reaction mechanisms, such as by meson-exchange currents

Alberico et al.
Ann. Phys. 154, 356 (1984)

## $2 p 2 h$ final states

Final states involving two (or more) nucleons may originate from

- initial-state correlations: $\sim 20 \%$ of nucleons in the nucleus strongly interact, typically forming a deuteron-like $n p$ pair of high relative momentum
- final-state interactions
- 2-body reaction mechanisms, such as by meson-exchange currents
recently observed in ArgoNeuT, Acciarri et al., D 90, 012008 (2014) see A. Ereditato's talk on Thursday


## 2-body reaction mechanisms



Donnelly et al. PLB 76, 393 (1978)

## Existing approaches

( Martini et al.: local Fermi gas + RPA effects, formalism of Marteau [EPJ A 5, 183 (1999)] $2 p 2 h$ contribution deduced from Alberico et al. [electron scattering off ${ }^{56} \mathrm{Fe}$, Ann. Phys. 154, 356 (1984)], 3p3h from Oset \& Salcedo [NPA 468, 631 (1987)] PRC 80, 065501 (2009); PRC 84, 055502 (2011); PRC 87, 065501 (2013)

- Nieves et al.: dressed local Fermi gas in a mean-field potential + RPA effects; extension of the studies on electron-, photon-, and pion-scattering off nuclei

PRC 83, 045501 (2011) ; PLB 707, 72 (2012); PLB 721, 90 (2013)

## Existing approaches ctd.

- Mosel et al.: GiBUU + well-motivated physically fit to the MiniBooNE data, PRC 86, 014614 (2012)
o Amaro et al.: phenomenological superscaling approach + vector contrib. of MEC; PRL 108, 152501 (2012) on Thursday
- Lovato et al.: ground state wave function of ${ }^{12} \mathrm{C}$ from Green's function MC solution of the Schrödinger eqn. with 2 N (Argonne $v_{18}$ ) and 3 N (Illinois-7) interaction; PRL 112, 182502 (2014)

TEM: Bodek et al. [EPJ C71, 1726 (2012)]: Q² dependent modification of $G_{M}\left(Q^{2}\right)$ brings the RFG model into agreement with $C\left(e, e^{\prime}\right)$ data in the dip region; comparison to the MiniBooNE data analyzed by J. Sobczyk [EPJ C72, 1850 (2012)]

## Comparison with MiniBooNE data



## Consequences for $\boldsymbol{E}_{\text {rec }}$



## Consequences for $\mathbf{x}$-section unfolding



Quasielastic scattering

## How relevant are FSI?



## Description of the approach

Nuclear structure described by the realistic hole SF [Benhar et al., NPA 579, 493 (1994)] calculated in the localdensity approximation, combining
the shell structure from the Saclay ( $e, e^{\prime} p$ ) data the coorrelations constribution resulting from NN (Urbana $\mathrm{v}_{14}$ ) and 3 N interactions

Final-state interactions accounted for in the correlated Glauber approximation [Benhar, PRC 87, 024606 (2013)] including the effect of the real part of the optical potential [Cooper et al., PRC 47, 297 (1993)]

## No free parameters

A. M. A., O. Benhar, and M. Sakuda arXiv:1404.5687

## Comparisons to $\mathrm{C}\left(e, e^{\prime}\right)$ data



Barreau et al., NPA 402, 515 (1983)

Baran et al., PRL 61, 400 (1988)

## Comparisons to $\mathbf{C}\left(e, e^{\prime}\right)$ data



Baran et al., PRL 61, 400 (1988)

## Reconstructed $\boldsymbol{E}$ distributions


$v_{\mu}$ at $\sim 600 \mathrm{MeV}$
For $\epsilon=34 \mathrm{MeV}$, max at 617 MeV , best choice $\epsilon=19 \mathrm{MeV}$

I_FSI yield a $30-\overline{M e V}$ shift
$v_{\mu}$ at $\sim 600 \mathrm{MeV}$
For $\epsilon=30 \mathrm{MeV}$, max at 627 MeV , best choice $\epsilon=6 \mathrm{MeV}$

## Neutrino-antineutrino difference

## deeper binding

deceleration

$$
\begin{gathered}
\nu_{\ell}+n \rightarrow \ell^{-}+p \\
\bar{\nu}_{\ell}+p \rightarrow \ell^{+}+n
\end{gathered}
$$

## Neutrino-antineutrino difference

## deeper binding <br> deceleration

$$
\begin{gathered}
\nu_{\ell}+n \rightarrow \ell^{-}+p \\
\bar{\nu}_{\ell}+p \rightarrow \ell^{+}+n
\end{gathered}
$$

## acceleration

deeper potential

For ${ }^{12} \mathrm{C}$, it gives $2.8+3 * 3.5 \approx 13 \mathrm{MeV}$, the difference relevant for $\mathbb{C P}$ measurements

## Improved energy reconstruction

The standard method uses

$$
E_{\nu}^{\mathrm{rec}}=\frac{2 E_{\mu}(M-\epsilon)-(M-\epsilon)^{2}-m_{\mu}^{2}+M^{\prime 2}}{2\left[(M-\epsilon)-E_{\mu}+\left|\mathbf{k}_{\mu}\right| \cos \theta\right)}
$$

with

$$
\epsilon=\text { const. }
$$

## Improved energy reconstruction

We could use

$$
E_{\nu}^{\mathrm{rec}}=\frac{2 E_{\mu}(M-\epsilon)-(M-\epsilon)^{2}-m_{\mu}^{2}+M^{\prime 2}}{2\left[(M-\epsilon)-E_{\mu}+\left|\mathbf{k}_{\mu}\right| \cos \theta\right)}
$$

with

$$
\epsilon=\epsilon\left(E_{\mu}, \cos \theta\right)
$$

## Improved energy reconstruction



$$
\frac{d \sigma^{e A}}{d E^{\prime} d \Omega}
$$

## Improved energy reconstruction



$\frac{d \sigma^{e A}}{d E^{\prime} d \Omega}$

$$
\frac{d \sigma^{\nu_{\mu} A}}{d E_{\mu} d \cos \theta} \mathrm{n}
$$

## Improved energy reconstruction

Peak positions can be used to determine the function

$$
\epsilon=\epsilon\left(E_{\mu}, \cos \theta\right)
$$

No beam dependence No free parameters



## Rec. $E$ distributions in different $\cos \theta$ bins $E_{v}=600 \mathrm{MeV}$

## Peak position

$\cos \theta \quad$ Const. $\epsilon \quad \epsilon\left(E_{\mu}, \cos \theta\right)$
[0.9; 1.0]
601
602
$[0.5 ; 0.6] \quad 591 \quad 599$
[0.3; 0.4] $581 \quad 591$

## Summary

(1) An accurate description of nuclear effects, including finalstate interactions, is crucial for accurate reconstruction of neutrino energy from charged lepton's kinematics.

2 CCQE-like backgrounds have to be precisely estimated and subtracted.
(3) Coulomb effects yield a neutrino-antineutrino difference which is for determination of the $\mathbf{C P}$ violating phase.
(4) Accurate energy reconstruction over a broad angle range requires improved approach.

Backup slides

## Quick and dirty comparison

## Real part of the OP

- acts in the final state
- shifts the QE peak to low $\omega$ at low $|\mathbf{q}|$ (to high $\omega$ at high $|\mathbf{q}|$ )



## GiBUU results for pions




## Neutrino vs antineutrino

## muon energy 600 MeV

|  | $\cos \theta=0.97$ | $\cos \theta=0.92$ | $\cos \theta=0.87$ |
| :--- | :---: | :---: | :---: |
| neutrino | 633 | 655 | 678 |
| antineutrino | 619 | 639 | 661 |
| difference | 13.9 | 16.0 | 17.6 |

## muon energy 450 MeV

|  | $\cos \theta=0.97$ | $\cos \theta=0.92$ | $\cos \theta=0.87$ |
| :--- | :---: | :---: | :---: |
| neutrino | 476 | 488 | 502 |
| antineutrino | 461 | 474 | 485 |
| difference | 15.1 | 14.5 | 16.9 |

## Neutrino vs antineutrino

## muon energy 700 MeV

|  | $\cos \theta=0.97$ | $\cos \theta=0.92$ |
| :---: | :---: | :---: |
| $\cos \theta=0.87$ |  |  |
| neutrino | 736 | 768 |
| antineutrino | 723 | 752 |
| difference | 13.9 | 15.9 |

## muon energy 500 MeV

|  | $\cos \theta=0.97$ | $\cos \theta=0.92$ | $\cos \theta=0.87$ |
| :--- | :---: | :---: | :---: |
| neutrino | 529 | 542 | 561 |
| antineutrino | 515 | 528 | 544 |
| difference | 14.2 | 14.9 | 16.8 |

