

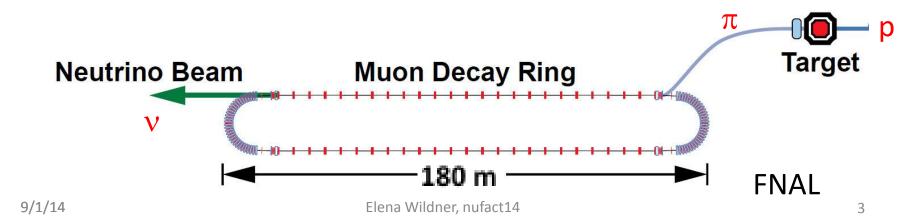
NUFACT 2014 25-30 August 2014

Elena Wildner

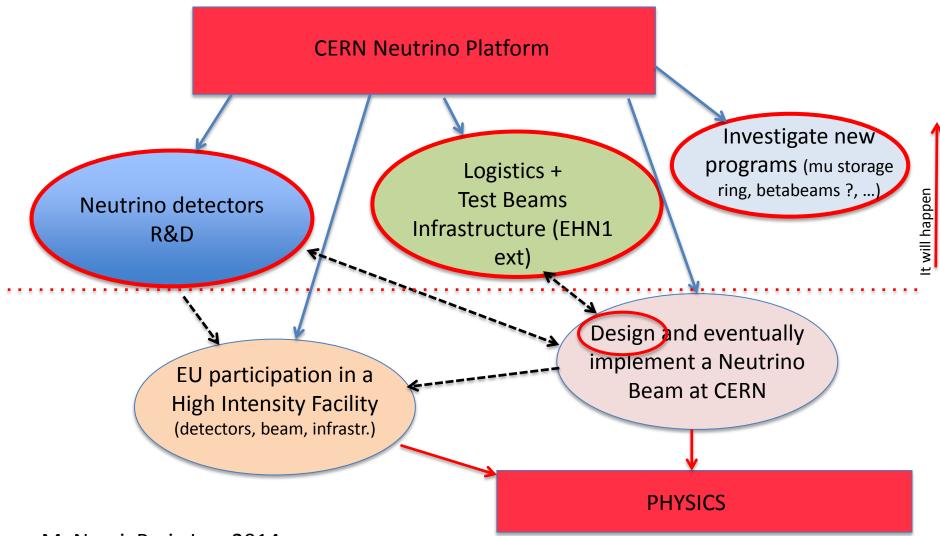
CERN

Material used

- Slides from several recent workshops:
 - 26-27 March 2013, CERN
 - 14-15 April 2013, Virginia Tech
 - 21-22 November 2013, Fermilab
 - ICFA, neutrinos, Paris January 2014
- Material in recent
 - Expression of interest to SPSC, CERN arXiv:1305.1419
 - Proposal to Fermilab PAC arXiv: 1308.6822, plus updates
 - Discussions at CERN around nuSTORM at CERN (K. Long, M.Nessi, E. Wildner)

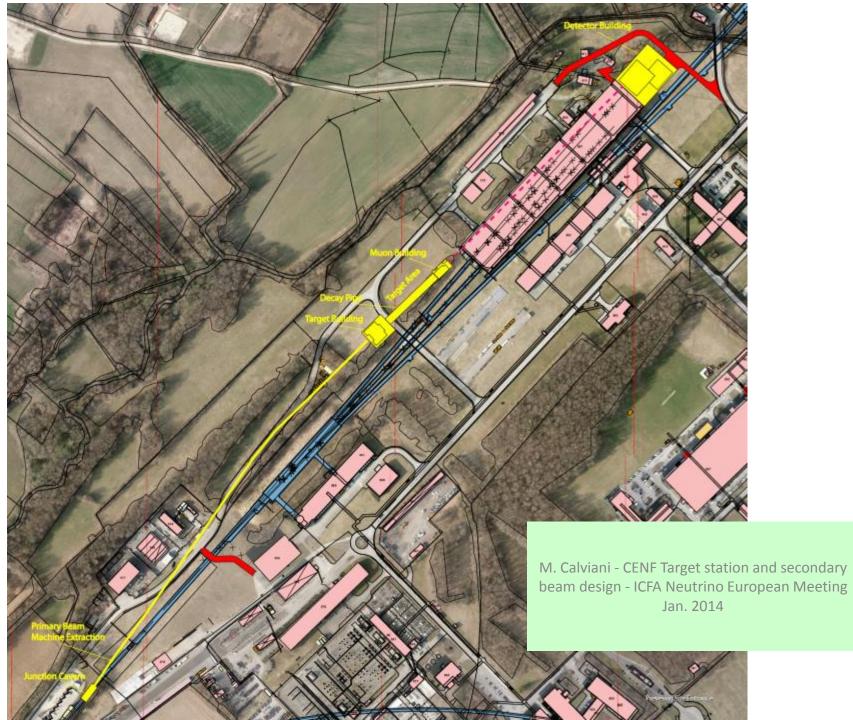


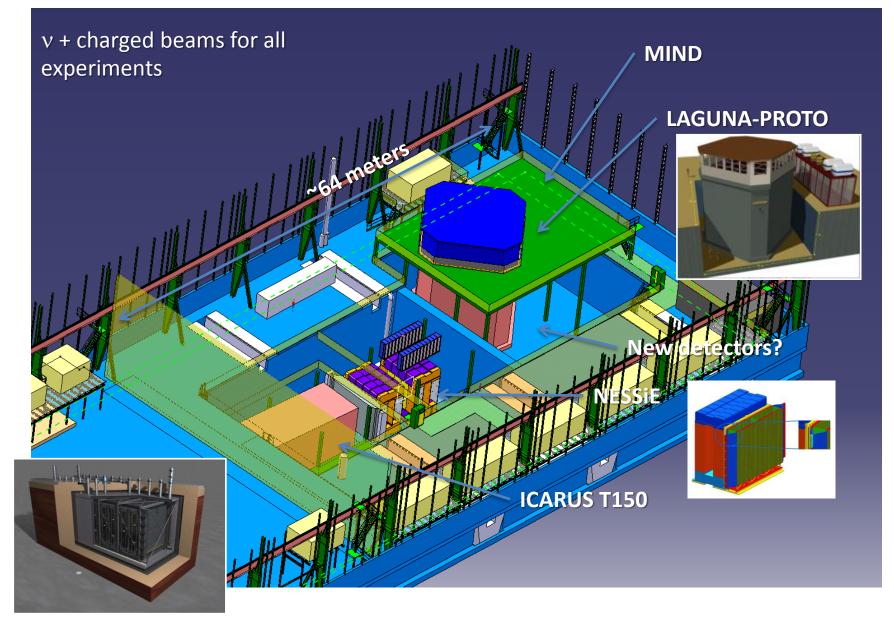
May 8, 2013	₽/STORM Eol
Neutrinos from Stored Muons (vSTOR)	M):
Expression of Interest ¹	52

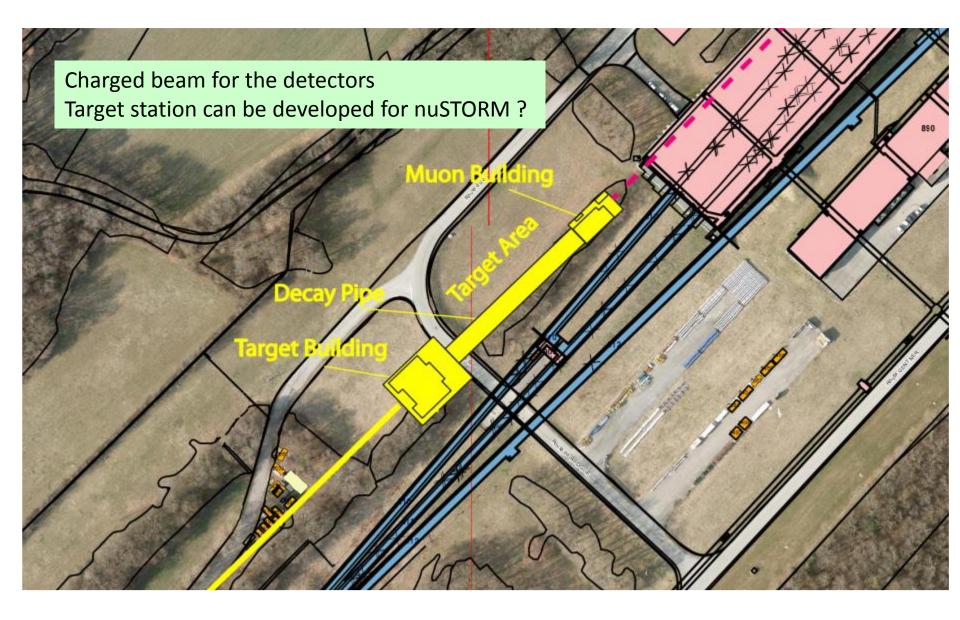


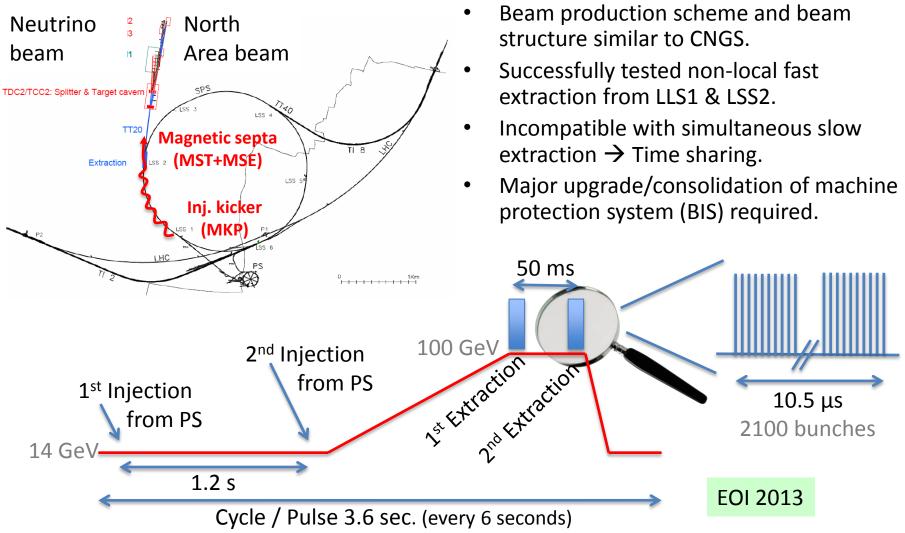
nuSTORM @ CERN

- Concept and design study: Fermilab (A. Bross et al.)
- Fit on CERN site (E. Wildner, Ken Long et al.)
- Existing Infrastructures
 - CERN SPS, North Area
- Add a small storage ring (FODO/FFAG racetrack)
- Several items can be developed independent of site
 - Lattice, instrumentation, magnets, horn and target ...
- Some not
 - Civil engineering, safety, controls system, target station...
- Reuse/upgrade detectors
- Develop generic detector concepts and technologies (Laguna, ...)

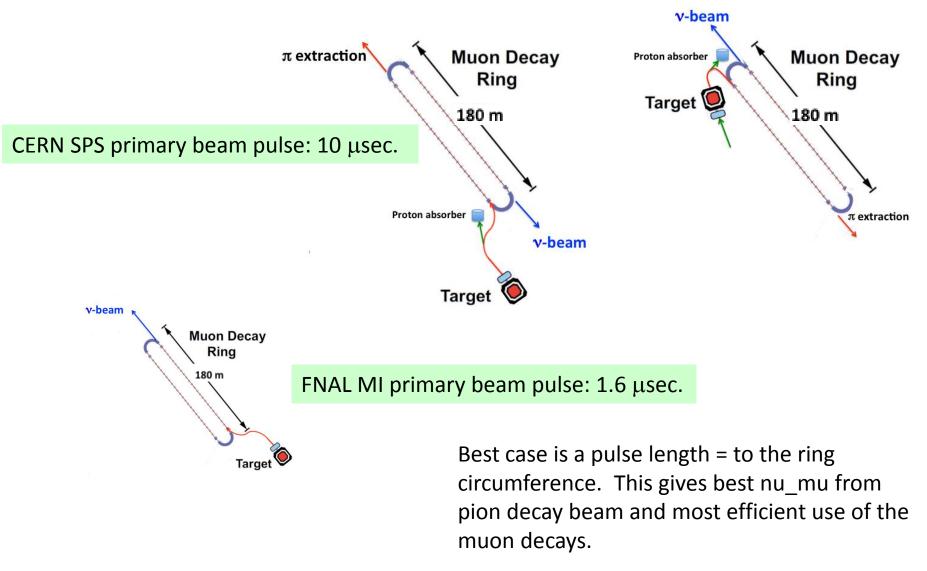

CERN Neutrino Project

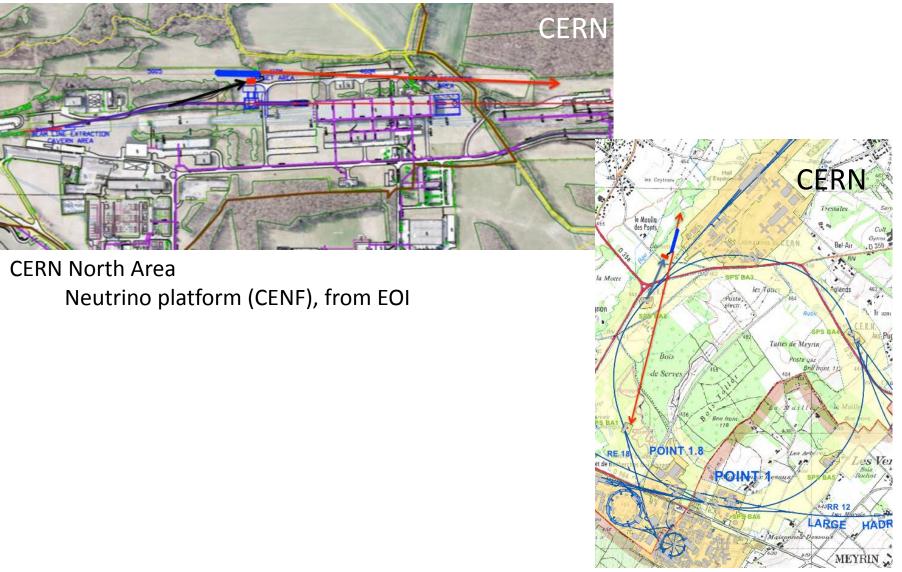

M. Nessi, Paris Jan. 2014

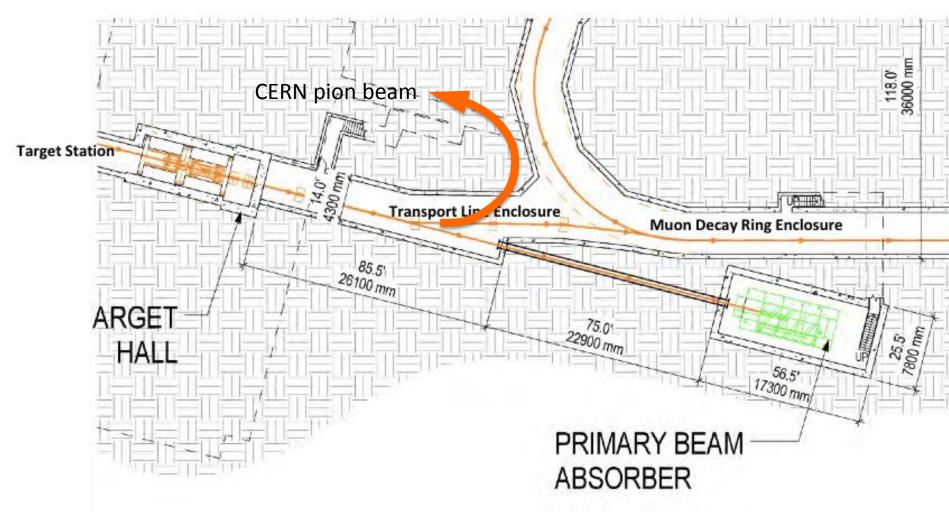

CERN Neutrino Platform



Detectors




Primary Beam: Production & Extraction


Configurations

Siting (from EOI)

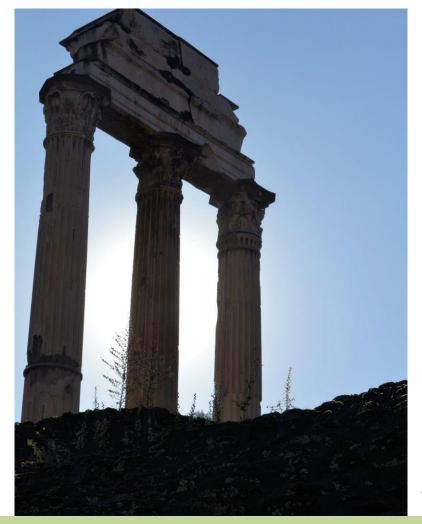

Target&injection region

From project definition report <u>arXiv:1309.1389.</u>

p-flux & v-flux

- FNAL Proposal: 10^{21} 120 GeV POT/10yr -> ~ 1.9 X 10¹⁸ useful μ decays
 - In PIP era, extract one Booster batch/cycle (10²⁰ POT/yr → 10 year run)
 - Baseline FODO ring, C target, NUMI style 1 horn
 - Inconel target + horn optimization + RFFAG → X5 (2 year run)

- CERN (EOI) 4.5 10²⁰ 100 GeV POT/10yr
- CERN EOI, Nov. 2013
- Assuming similar accelerator facility as FNAL (C target)
- Beam from SPS as proposed for the CENF primary beam
- Without any optimization

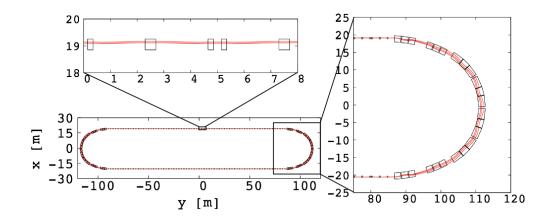

nuSTORM facility: parameters overview

- Collect and transport pions from target: 5 GeV/c ± 10%
- 60% decay on the first straight section to muons
- 40%, up to 5 kW, go to pion dump or pion degrader for cooling experiments
- Momentum of muons in ring 3.8 GeV/c ± 10%
- p-beam: FNAL 120 GeV/c, CERN SPS 100 GeV/c (baseline)
 - CERN SPS can deliver higher momentum, 450 GeV/c

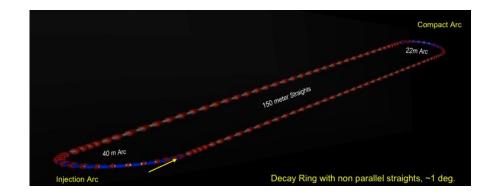
nuSTORM Ring Parameters

Parameter	Parameter Value	Parameters for the DBA FODO decay ring (Preliminary). No full optimization has been
Design Momentum	3.8 GeV/c	studied yet. No nonlinear corrections applied yet.
Circumference	466.44 m	
Production stright length	180 m	Neutrino Beam Muon Decay Ring Target
Total tune (H, V)	9.72, 7.88	180 m →
Natural chromaticity (H, V)	-12.39, -9.24	
Max Dipole field	4.14 T	
Transission Gamma	28.51	Courtesy A. Liu

The Three Pillars of nuSTORM


- Can add significantly to our knowledge of v interactions, particularly for v_e
- Provides an accelerator & detector technology test bed for muons
- Delivers on the physics for study of sterile v

"European Strategy": LBL program & collaboration


Worldwide collaborative efforts paves the way to a high precision neutrino/muon program¹⁶

Lattice options

Racetrack FFAG

FODO

Fermilab layout drawings are for FODO Dynamic aperture, tunes etc. still to be optimized.

Lattice option comparison

Parameters	FODO (Jun. 2013)	RFFAG "FODO-like"	RFFAG "low-cost"
L _{straight} [m]	185	175	156
Circumference [m]	480	500	460
Dynamical acceptance A _{dyn}	0.6	0.95	0.95
Momentum acceptance	±10%	±16%	±16%
π /POT within momentum acceptance	0.094	0.171	0.171
Fraction of π decay in one straight (<i>F</i> _s)	0.48	0.47	0.43
Straight-circumference ratio (Ω)	0.39	0.35	0.34
$A_{dyn} \ge \pi/POT \ge F_s \ge \Omega$	0.011	0.027	0.024

Paris, Jan. 2014

Workpackages @ CERN: SPS

Task Id	Task	Responsibility	Deliverable
1.1	Optimisation of extraction energy	Collaboration/	Report detailing choice of energy.
		CERN	
1.2	Optimisation of bunch structure	Collaboration/	Report specifying bunch structure and
		CERN	describing how this is achieved.
1.3	Design of extraction system	CERN	Report detailing extraction scheme.

Preliminary

Pion Production (FNAL)

- 120 GeV proton beam, beam radius 1mm
- 5 GeV/c π + yield optimization
 - Inconel, Tungsten, Graphite
 - Target length, radius, material and position inside horn. Horn current- 230 kA.
- Yield rises very little with target length. Dependence on target position inside horn is weak. Dependence of yield on target radius is opposite for heavy and light targets.
- Yields better for Inconel and Tungsten
- Realistic horn model slightly decreases predicted yield, but changes distribution is not so marginal (interactions in the horn itself)
- MARS model agrees well with exp. data on carbon in nuSTORM range of interest. MIPP and NA61/SHINE measurements for medium and heavy nuclei will be published in two years.
- Development at CERN?

WP2 @ CERN: Target and collection

Task Id	Item	Responsibility	Deliverable
2.1	Target station design	CERN	Report detailing design of a
			multipurpose target station.
2.2	Target and horn design	CERN	Design of the target/horn layout that
			maximises the pion yield.
2.3	Energy sweep study	Collaboration/	Evaluation of how the target/horn system
		CERN	will be affected by an energy sweep.

Preliminemy

WP3 @ CERN: Collection and Transport

Task Id	Item	Responsibility	Deliverable
3.1	Transport and injection line	CERN	Design report on the transport
			and injection line.
3.2	The proton dump transport line	CERN	Design report on the proton
			transport line layout.
3.3	The proton dump	CERN	Report on the proton-dump design.

Preliminem

WP4 @ CERN: Decay Ring Layout

Task Id	Task	Responsibility	Deliverable
4.1	Definition of stored-muon energy	Collaboration/	Report detailing choice of energy
	range.	CERN	range.
4.2	Review and finalisation of decay	Collaboration/	Report detailing lattice design.
	ring lattice.	CERN	
4.3	Design of pion-injection system	Collaboration/	Report detailing injection scheme.
	ring lattice.	CERN	
4.4	Design of pion-extraction system	Collaboration/	Report detailing extraction scheme.
		CERN	
4.5	Comparison of FODO and FFAG	Collaboration/	Report detailing comparison and
	lattice solutions.	CERN	detailing baseline solution.

Preliminary

WP5 @ CERN: Pion Beam Dump

Task Id	Item	Responsibility	Deliverable
5.1	Pion-beam transport design	Collaboration/	Design report on the transport
		CERN	line layout
5.2	Pion-beam dump design	CERN	Design report on the beam dump

Preliminen

Preliminary magnet considerations, FODO Lattice

- Straights:
 - Resistive quite standard technology.
 - The apertures are quite large, prototyping needed
- Arcs:
 - Superconducting magnets. Most of them coil dominated, possibly a few quadrupoles in between could be iron dominated (superferric), also to avoid warm-to-cold transitions.
 - Lattice to be optimized for quadrupole feasibility (even with Nb₃Sn).
- Space for sextupoles / orbit correctors (in the arcs): large apertures is a challenge (large stored energies per unit length, large forces and significant cross-talk between the magnetic elements)

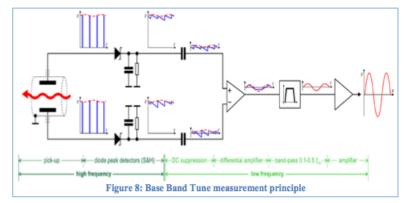
Courtesy A. Milanese

WP6 @ CERN: Magnets

Task Id	Item	Responsibility	Deliverable
6.1	Tune all optics to prepare	Collaboration/	Optics file revised
	for good magnets	CERN	
6.2	Warm magnet choice and	Collaboration/	Warm magnets and
	design	CERN	characteristics.
6.3	Cold magnet choice and	Collaboration/	Cold magnets and
	design	CERN	characteristics.
6.4	Infrastructures	CERN	Cryogenic end electrical
			requirements.

Preliminemy

Instrumentation


Determine the neutrino flux at the near and far end detectors with an absolute precision < 1%, which depends on the number of Neutrinos and their energy distribution.

If the circulating muon flux in the storage ring is known on a turn to turn basis together with the orbit and orbit uncertainties (uncertainty on the divergence), then the neutrino flux can be predicted:

- 1. Circulating muon intensity (on a turn by turn basis) to 0.1% absolute.
- 2. Mean momentum to 0.1% absolute
- 3. Width of momentum spread to 1% (FWHM)
- 4. Tune to 0.01

Accelerator commissioning and running: (turn by turn)

- 1. Trajectory
- 2. Tune
- 3. Beam loss
- 4. Profile

Direct Diode Detection Base-Band Q (3D-BBQ) developed at CERN, by M. Gasior

Figure 2: L4 Beam Current Transformer (BCT)

Intensity, large chamber, challenging precision (0.1%)

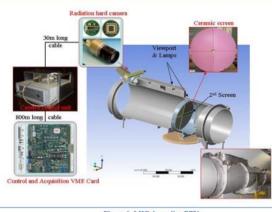
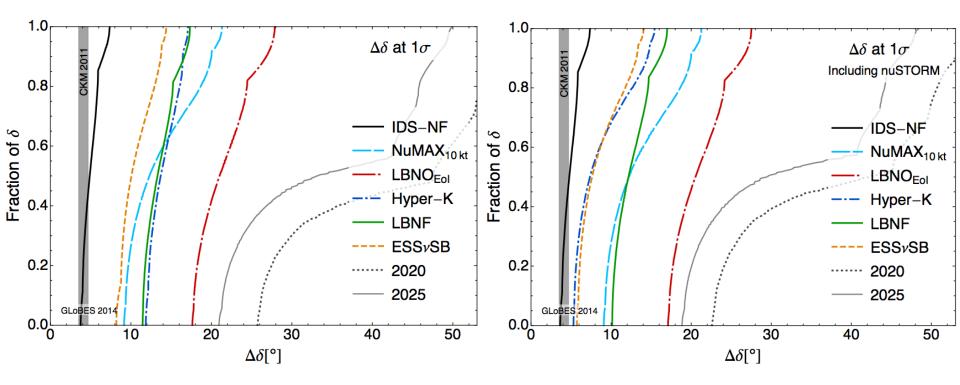


Figure 6: LHC dump line BTV


Profile, low intensities, short lifetime $(100\mu s)$, IPM not feasible, Sc. Screens or SEM strips to be foreseen, wire scanners not possible. Figure : 2m long tank, 60cm diameter, to be adapted.

WP7 @ CERN: Instrumentation

Task Id	Item	Responsibility	Deliverable
7.1	Design of storage-ring instrumentation	CERN/	Design report specifying
	meeting nuSTORM precision requirements.	Collaboration	instrumentation and cost.
7.2	Evaluate positron/electron collimation	CERN	Design report detailing necessary
	and shielding requirements.		collimation and shielding.

Preliminan

Including nuSTORM results

Systematics is the same as before, only that including nuSTORM it is assumed that cross sections are determined at the 1% level of precision, removing the constraint between the cross sections for different flavors, they are all allowed to vary independently in the fit.

LBNF (40 kton detector, 1.2MW beam power)

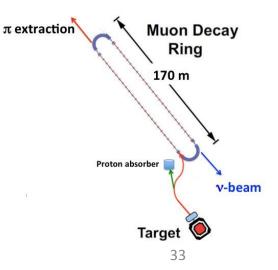
Pilar Coloma et al.

Thank you for your attention !

Stay tuned: a workshop will be held at CERN Nov-Dec 2014

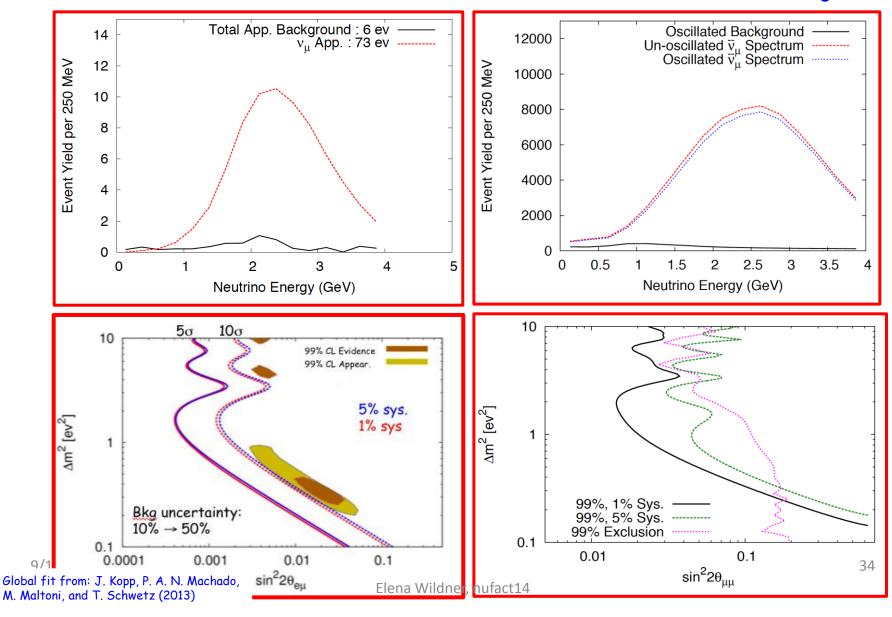
Backup

CERN Beams

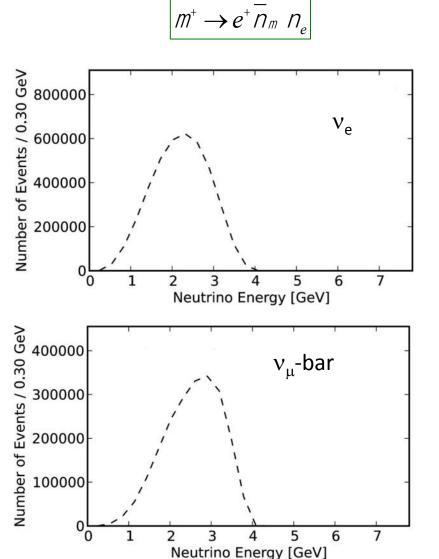

Parameter	SPS operation		SPS record		After LIU 2020	
	LHC	CNGS	LHC	CNGS	LHC	<i>v</i> STORM
Energy [GeV]	450	400	450	400	450	100
Bunch spacing [ns]	50	5	25	5	25	5
Bunch intensity [1011]	1.6	0.105	1.3	0.13	2.2	0.17
Number of bunches	144	4200	288	4200	288	4200
SPS intensity [10 ¹³]	2.3	4.4	3.75	5.3	6.35	7.0
PS intensity [10 ¹³]	0.6	2.3	1.0	3.0	1.75	4.0
SPS Cycle length [s]	21.6	6.0	21.6	6.0	21.6	3.6
PS Cycle length [s]	3.6	1.2	3.6	1.2	3.6	2×1.2
PS beam mom. [GeV/c]	26	14	26	14	26	14
Beam Power [kW]	77	470	125	565	211	156

Beam parameters

Parameter	Value	Comments	
Muon energy	3.8GeV		
Total intensity	1 - 5E11 <mark>?</mark>	Muon	1
Pulse length	10.5µs	From SPS	2
Bunch frequency	200MHz	Before injection	3
Nb of bunches	233-2100?	Phase at injection?	
Bunch length	1-4ns <mark>?</mark>	Has to be simulated	
Bunch intensity	5E7-2E9 <mark>?</mark>	More precise data needed	2
Rev. frequency	851kHz	T = 1.17μs	
Bunch current	2-80mA ?	Injection scheme?	
Average current	14-68mA	At injection	
Circumference	350m		
Beam size	30cm	Diameter	
Aperture	40-60cm		
Beam life time	100 turns		
Vacuum	10E-7		


1. Continuous multi turn (~9 turns) injection.

- 2. No RF
- Injecting on top of circulation bunches NOT foreseen yet, i.e. 200MHz plus any frequency above is possible.
- 4. Structure in beam unknown for the moment



Elena Wildner, nufact14

Sterile-neutrino search sensitivity

Spectra X cross-section (3.8 GeV/c μ^+)

Event rates /100T at ND hall 50m from straight with μ^{+} stored for 10^{21} POT exposure

Channel	$N_{\rm evts}$
$\bar{\nu}_{\mu}$ NC	844,793
$\nu_e { m NC}$	$1,\!387,\!698$
$\bar{\nu}_{\mu}$ CC	$2,\!145,\!632$
$\nu_e \ {\rm CC}$	$3,\!960,\!421$

Channel	Nosc.	N_{null}	Diff.	$(N_{\rm osc.} - N_{\rm null})/\sqrt{N_{\rm null}}$
$\nu_e \rightarrow \nu_\mu \ \mathrm{CC}$	332	0	∞	∞
$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu} \operatorname{NC}$	47679	50073	-4.8%	-10.7
$\nu_e \rightarrow \nu_e \ \mathrm{NC}$	73941	78805	-6.2%	-17.3
$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu} \operatorname{CC}$	122322	128433	-4.8%	-17.1
$\nu_e \rightarrow \nu_e \text{ CC}$	216657	230766	-6.1%	-29.4