Design of NuMAX decay ring

David Kelliher, STFC-RAL-ASTEC

Jaroslaw Pasternak, Imperial College/STFC-RAL-ISIS

Racetrack decay ring

25 GeV design

Design Aims

Reasonable neutrino production efficiency (η)

Low beam divergence in production straight ($<0.1/\gamma$)

Maintain bunch separation (100 ns)

Allow realistic injection scheme

Ensure sufficient momentum acceptance

IDS-NF 10 GeV design

Production straight (562 m)

Injection insertion (46.4 m)

- In IDS-NF wanted to store 3 pairs of counter-rotating muon bunch trains
- Rise/fall time available for injection kicker magnets for n bunch pairs

$$\tau_{rise/fall} = \frac{C}{cn} - t_b$$

- Since there is less than 1μ s rise/fall time available in a 1μ s ring, it was decided to include a dedicated insertion to ease injection.
- This pushed the circumference of the ring to 1555.7 m to achieve a neutrino production efficiency of 36.1%x2.

IDS-NF vs NuMAX

	IDS-NF	NuMAX
Muon energy [GeV]	10	5
Number of bunch pairs	3	1
Bunch train [µs]	250	~170
Normalised acceptance [pi mm rad]	30	20
Ring inclination	10°	5.8°

Beam divergence in production straight

- Want to keep beam divergence << natural decay cone of neutrinos
- Imposes a minimum beta in the production straight

Beam divergence condition

$$x' = \sqrt{\frac{\varepsilon_{rms}}{(\beta_r \gamma_r) \beta}} < \frac{0.1}{\gamma_r} \implies \beta \propto \gamma_r$$

 $\varepsilon_{rms} \sim 5.7 \, \pi \, \text{m} \, \text{rad} \, \text{implies} \, \beta > 25 \, \text{m} \, \text{is required}.$

FODO vs FDDF production straight

- FDDF considered as it allows symmetric injection of both muon signs.
- However, longer straights possible in FODO easing the peak field kicker requirement.

	Length (m)	Gradient
Drift	8	-
QF	1	1.03 T/m
QD	1	-1.03 T/m

	Length (m)	Gradient
Drift	5	-
QF	2	0.65 T/m
QD	2	-0.33 T/m

FODO injection

- Kickers and septa in consecutive cells.
- 6.8 m kicker with 0.09 T peak field
- 3 m septum with 0.4 and 0.2 T.
- Higher kicker field needed when injecting through the F than the D.
- In the FDDF case, the kicker peak field required is 0.14 T.

Kicker magnet design (IDS-NF)

Table XXVIII. Parameters of the kicker system

Kicker total aperture (h×v)	$0.3 \times 0.3 \text{ m}$
Kicker length	4.4 m
Rise/fall time (5-95%)	$1.9~\mu \mathrm{s}$
Kicker max field	≈0.1 T
Kicker pulse duration at the top	$0.3~\mu\mathrm{s}$
Charging voltage	60 kV
Peak current in the magnet	30 kA
Kicker inductance	$5.1~\mu\mathrm{H}$
Kicker impedance	1 Ω
Peak current at switch	10 kA
Repetition rate	$50~\mathrm{Hz}$
Number of sub-kickers	4-5
Number of PFNs per micro-pulse per sub-kicker	3
Total number of PFNs	36 (for 4 sub-kickers)
Total averaged power per kicker	$\approx 1.25 \text{ MW}$
Total peak power per kicker	$\approx 2.5 \text{ MW}$

Ring optics for FDDF case

Straight – High beta values to minimise beam divergence (< $0.1/\gamma$

Matching – 6D matching beween production straight and arcs

Arc – Low beta value to minimise aperture.

Preliminary Lattice overview (FDDF)

Section	Cell lengths (m)	Cell No.	Total length (m)
Production	21	10	210x2
Matching	-	-	18.7x4
Arc	4.34	10	43.41x2
Ring	-	-	581.62
Arc dipole field	2.4 T		Kicker fall time ~ 1.76μs
η	2x36.1%		
transition gamma	6.83		
Ring tune (Qx, Qy)	5.4, 6.13 (ne	eds adjusting)	
Chromaticity (ξx, ξy)	-5.1, 6.1		tum acceptance roughly 0.25
	NUFACT201	August 2014	riately, i.e. ~4%.

Preliminary Lattice overview (FODO)

Section		Cell No.	Total length (m)
Production	18 m (cell length)	9	162x2
Matching	-	-	18.7x4
Arc	4.34 m (cell length)	8	34.7x2
Ring	-	-	468.2
Dipole field	3 T		\(\) Kicker fall time ~ 1.4μs
η	2x34.6%		
transition gamma	6.33		
Ring tune (Qx, Qy)	4.65, 5.7 (needs readjusting)		

Conclusions

- Injecting a single bunch pair, and doing without an injection inserion, allows the NuMAX decay ring circumference to be reduced.
- SC magnets in arc, normal conducting elsewhere.
- Circumference of ring largely limited by kicker fall time.
- Large aperture kicker required for injection into the production straight.
- Special large aperture quadrupoles may be needed in injection region.