



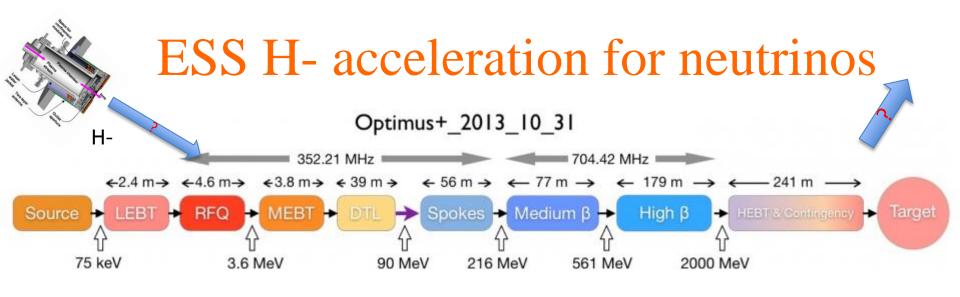
#### 25-30 August 2014



## Accumulator Ring for the ESS Neutrino Super Beam



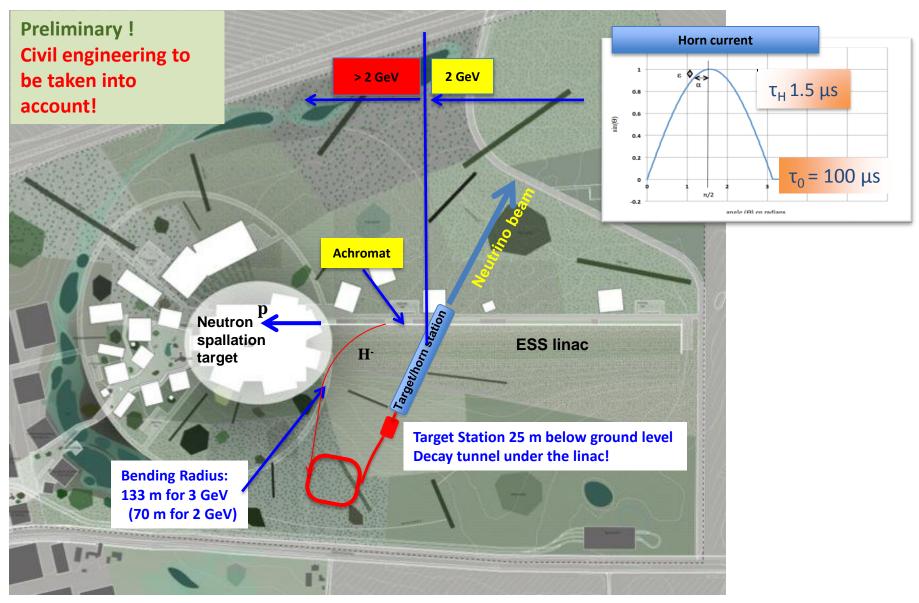



# Contributions



J. Jonnerby, Uppsala Univ./CERN, M. Martini, CERN, H Schönauer, CERN




W. Bartmann, E. Bouquerel, M.Dracos, T. Ekelöf, M. Lindroos, D. Mc Ginnis, M.Eshraqi J.-P. Koutchouk, N. Vassioupolus, G. Lanfranco, Y. Papafilippo, R. Ruber and others



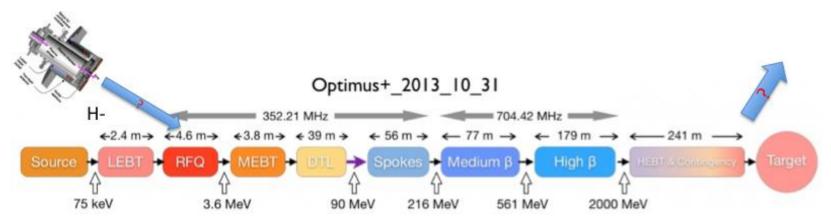
- The ESS Linac will be built for neutron spallation (proton acceleration 14 Hz)
- Duty factor low (4%); some additional capacity is available
- Repetition rate can be increased to 28 Hz, to permit an extra acceleration cycle

ESS Technical Design Report, April 23, 2013 ESS-doc-274 http://europeanspallationsource.se/documentation/tdr.pdf

## **ESSnuSB** Accumulator



### ESS Accumulator for neutrinos


- Constraints on present neutrino target focusing system
- Solution: reduce beam pulse length
  - Compress the linac pulse in an accumulator
  - The pulse length on target  $< 10 \ \mu s$
- Accumulator constraints
  - Reasonably-sized accumulator ring
  - Multiturn injection of p with high intensities
  - High intensities in the ring may cause collective effects and beam loss

## Mitigate Difficulties with High Intensities

- Fraction the Linac pulse and stack the shorter pulses
  - 1. In space: 4 accumulators, arXiv:1309.7022v3

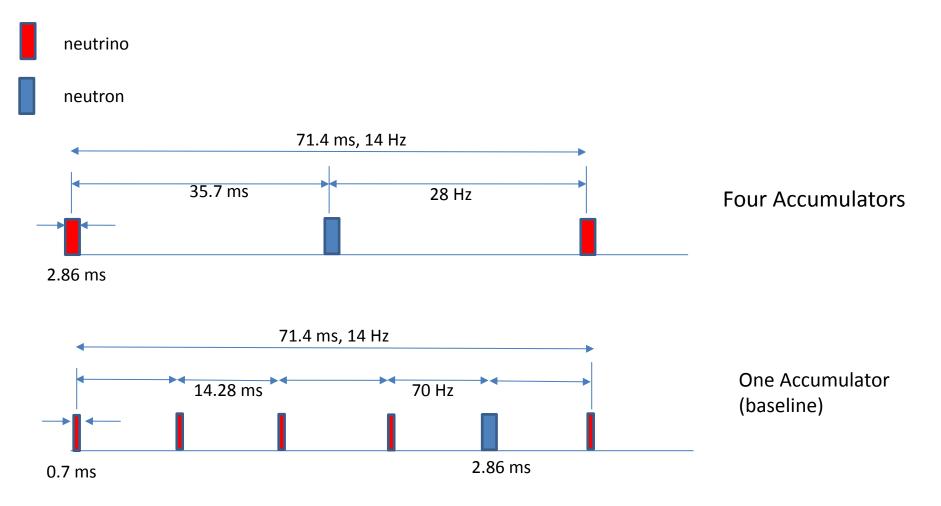
or

- 2. In time: shorter pulses pass consecutively one accumulator, IPAC 14, WEPRO117
- Charge exchange injection to limit multiturn losses: use H<sup>-</sup> ions
  - Needs an extra H- ion source
  - Merging into linac at optimal position (after MEBT?)
  - Intrabeam stripping and Lorentz stripping (linac) ?
  - Radiation



### Less particles in Ring

- ESSnuSB
  - 1.25 MW on each target, 4 targets
  - Reasonable accumulator circumference of  $430 \text{ m} =>1.5 \mu \text{s}$  pulse length
  - 1.1 10<sup>15</sup> p would give SC of -0.67 (round beam, 2.0 GeV, 100  $\pi$  mm mrad)
  - In each ring 1.1  $10^{15}/4 \Rightarrow 2.75 \ 10^{14}$
  - In one ring: For 2.75  $10^{14}$  protons in machine SC < 0.2 (acceptable)
  - Cf SNS, C = 220 m, 200  $\pi$  mm mrad, 2.0  $10^{14}$  protons , ....  $\Delta Q$ =-0.3, Bf = 0.4

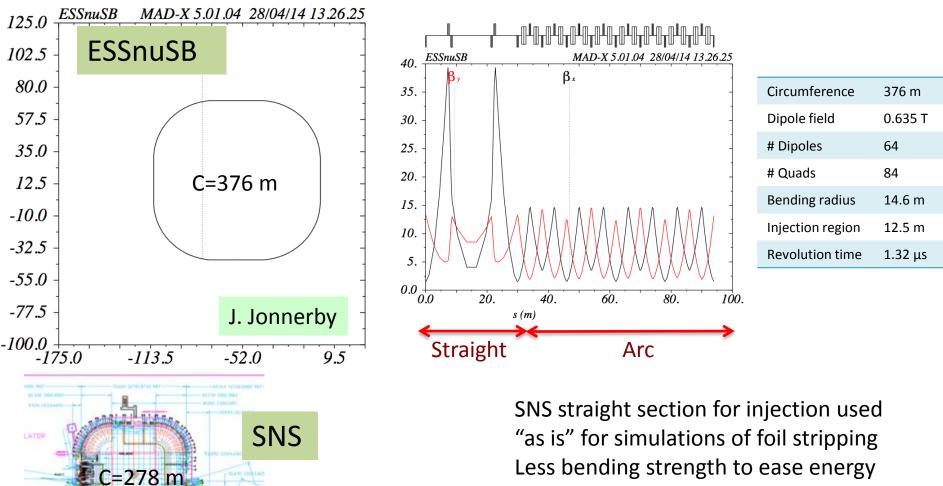

$$\Delta Q_{{
m x},{
m y}}=-rac{r_0N}{2\pi E_{{
m x},{
m y}}eta^2\gamma^3}$$
 .Bf

### One accumulator

- 4 Accelerators for accumulation seem costly and not necessary
  - One accumulator could pulse 4 times with <sup>1</sup>/<sub>4</sub> of the linac pulse length
- The injection bumper is slow
  - Rise time for the PS Booster bumpers is10 ms (same for the fall time)
- We propose to make 4 spaced linac pulses of length 2.86/4 ms (same beam power)
  - They would be injected sequentially into accumulator
  - Linac pulses paced such that bumpers are comfortable
  - However a price has to be payed...

NB: accumulation for ESS neutrons need H- but considerably longer pulses at extraction from accumulator: this is not forgotten but is less straight forward, needs more design work

# Linac Pulsing 70 Hz, baseline



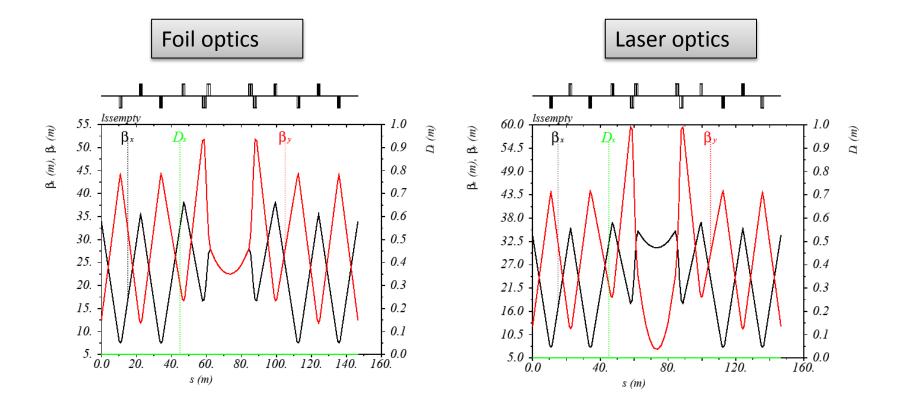

# 70 Hz linac pulsing

Fill time of the superconducting cavities:

- For loaded Q, this is about 0.2 ms
- For two 3 ms beam pulses, this is 6.6% of the beam pulse length This corresponds to an inefficiency of 6.6%
- 4 pulses at 0.75 ms and one pulse of 3 ms:  $5 \ge 0.2 \text{ ms} = 1 \text{ ms}$  filling time, 16.6% inefficiency (10% extra)
- Keep in mind: 4 rings are 4 times operation and maintenance cost, not less
- Can it be technically achieved (see below review by F. Gerigk and E. Montesinos)?
- Foil heating in accumulator (see later)

### **ESSnuSB** Accumulator Lattice




upgrade No magnet considerations yet

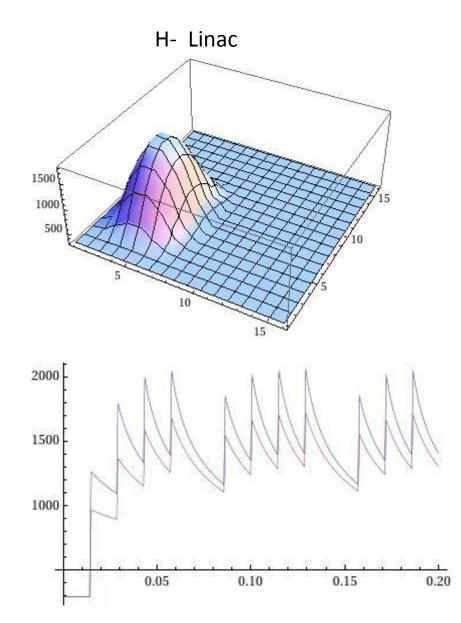
Collective effects not yet completed

13/03

# Injection area optics (foil/laser)

• Contradicting requirements for foil and laser → two different optics settings (however: the layout is the same!)



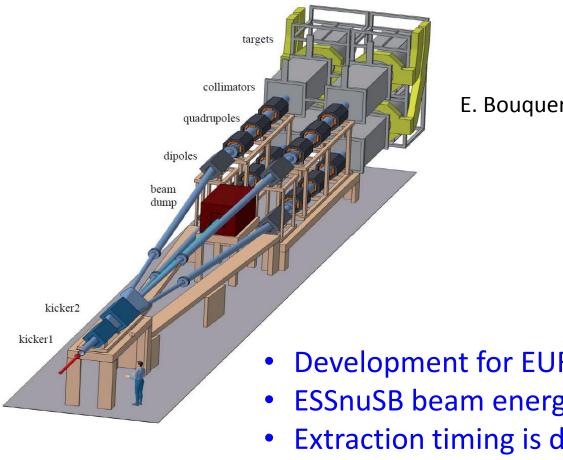

Courtesy W. Bartmann

# Feasibility of Stripping foil injection

- Foil stripping feasibility: first stage approach
  - Simulations of MW accumulator projects have been done with the ACCSIM Code.
  - The results are compared with the ORBIT results (courtesy M. Plum, J. Holmes) for representative SNS beams.
  - Results also compared to a simple analytical model of the heat equations.

#### H. Schönauer & M. MartiniCERN

#### ESS Foil (Extended SNS Lattice): Peak Temperatures




H- Linac+ p circulating

Maximum Foil Temperatures: 1797 K (H- Linac Beam)) 2050 K (H- + p circulating Beam)

H. Schönauer, CERN

# Extraction to 4 targets: Switch-yard



E. Bouquerel

- **Development for EUROSB**
- ESSnuSB beam energy is lower
- Extraction timing is different (50 Hz -> 70 Hz)
- Needs ~ 100 ns gap in Accumulator •
  - Regular gaps in linac beam (chopping)

## Accumulator specific requirements

#### H- injection is needed for efficient Injection into Accumulator

H- source RFQ and MEBT and racks (reserve space)

Beam steering magnets for pulsed operation are included in quads, separate them! Stripping losses max 0.1 W/m

75 % dipole filling, 3 GeV 133 m bending radius (70 m for 2 GeV)

#### Neutrino beam direction

If to the north, target and decay pipe have to be sufficiently deep, crossing of linac Risks for ground water

Urgent study

#### Fast pulsing, 70 Hz

Operation of piezos more difficult (Lorentz-Force induced ringing of the cavities will be more dominant at the beginning of the next pulse). Needs testing!

Check this pulse pattern does not induce HOMs in SC Cavities.

#### Front-End

Assessment of injecting H- before RFQ, this includes study of chopping and matching in the MEBT for p and H-

Check cooling capacity for for RFQ and all normal conducting cavities

Reserve necessary space

#### Extracted from review F. Gerigk, E. Montesinos, 30 June 2014

# Work (-packages) for EU call

- 1. Accumulator design, extraction, collimation and beam dynamics
- 2. Laser stripping of H- (establish collaboration), injection design
- 3. Transfer lines (Lorentz' stripping considered) and switch-yard update
- 4. Layout and civil engineering of accumulator and transfer lines
  - a. Should be done with on-site expertise (local rules and guidelines)

## Summary

- One accumulator: collaboration with ESS linac experts
- Lattice design: based on SNS, used for simulations
- Laser stripping : 2025? CERN synergies ?
- Foil stripping solutions (necessary fallback): possible
- Need to select subjects out of work-list for the EU call
- Accumulator should be flexible (for ESS neutrons ?)