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LBNE

Discovering leptonic
CP violation

● Future experiments will be systematics 
limited

● To meet P5 requirement (75% δCP 
coverage at 3σ):

● Hyper-K = 3% total uncertainty
● LBNF = 1% total uncertainty

● Neutrino interaction uncertainties dominate

Hyper-K

Hyper-K experiment proposal to 
J-PARC PAC 

http://j-parc.jp/researcher/Hadron/en/
pac_1405/pdf/P58_2014_2.pdf

LBNE Collaboration, 
http://arxiv.org/abs/1307.7335

Assumed 3% 
uncertainty
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What if our
models are wrong?

● Simulate a “T2K-like” experiment for muon neutrino disappearance analysis:
● Shaded regions – perform fit using same model as fake data
● Coloured lines – Fit results using a different nuclear model 
● Triangle/Dot – Best fit point

P. Coloma et al.

Phys. Rev. D 89, 073015 (2014)
C.-M. Jen et al.

http://arxiv.org/abs/1402.6651

Fake data - spectral 
function model
MC in fit - relativistic 
Fermi Gas

Fake data - GiBUU
MC in fit - GENIE
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T2K multi-nucleon study
● MC-based analysis using full detector simulation, full systematics etc.
● Three fake datasets

● Nominal NEUT MC
● NEUT + meson exchange current (MEC) events from Nieves' model - 

Phys. Rev. C, 83:045501, Apr 2011 

● NEUT + MEC events from Martini's model -                                          
Phys. Rev. C, 81:045502, Apr 2010

● Perform disappearance fit to extract θ
23 

in each case and compare

● Both models give ~3.5% RMS in sin2 θ
23

,
 
Martini model introduces ~3% bias

● Effects much smaller than current statistical uncertainty, but maybe large for 
future analyses
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The problem
with neutrinos...

● Measuring neutrino interactions is hard

● Want to know cross section as function of interaction variables:

● Neutrino energy
● Momentum transfer (Q2)

● Very hard (impossible) to measure these experimentally – 
usually rely on the models we are trying to tune!

● Is there a better way?
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νPRISM detector concept

ν beam
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νPRISM detector concept

ν beam

1°

2.5°

4°

● Works with any 
neutrino beam from 
pion decay

● So far studied in the 
context of T2K 
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νPRISM detector concept

ν beam

1°
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νPRISM detector concept

ν beam

1°

2.5°

4° νPRISM
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νPRISM detector concept

ν beam
νPRISMMuon p-θ
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νPRISM detector concept

ν beam
νPRISMMuon p-θ

Take linear 
combinations

+1.0

-0.5

-0.2
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νPRISM detector concept

ν beam
νPRISMMuon p-θ

Take linear 
combinations

+1.0

-0.5

-0.2

Muon p-θ for a 
700 MeV 

monochromatic 
neutrino beam

● Using 30 slices of 
νPRISM

● Gaussian neutrino 
flux

● Centred at 700 MeV, 
10% width
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νPRISM detector concept

ν beam
νPRISMMuon p-θ

Or take different 
combinations

-0.8

+1.0

+0.2
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νPRISM detector concept

ν beam
νPRISMMuon p-θ

Or take different 
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νPRISM detector concept

ν beam
νPRISMMuon p-θ

Or take different 
combinations

-0.8

+1.0

+0.2

● Recreate oscillated neutrino flux at SK 
using near detector

● Directly measure muon p-θ for given 
value of oscillation parameters
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νPRISM disappearance
analysis

● Full analysis using νPRISM as near 
detector for T2K

● Take into account:
● Statistical error from linear 

combinations
● Neutrino beam uncertainties – 

direction, flux etc.
● Interaction model uncertainties

Oscillation 
region

Total uncertainty 
on #events at SK

Uncertainty 
correlation matrix

Predict SK events 
using νPRISM data
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Effect of multi-nucleon
events at νPRISMStandard T2K 

analysis
● Add np-nh events (Nieves and Martini 

models) to T2K fake data

● Perform disappearance fit to extract θ
23

● Compare to result from fit to nominal 
fake data
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● Add np-nh events (Nieves and Martini 
models) to T2K fake data

● Perform disappearance fit to extract θ
23

● Compare to result from fit to nominal 
fake data

Standard T2K 
analysis

● Bias and RMS greatly 
reduced

● νPRISM analysis largely 
independent of cross 
section model

νPRISM 
analysis

Martini Model
Bias < 0.1%
RMS = 1.2%

Nieves Model
Bias < 0.1%
RMS = 1.1% 

Effect of multi-nucleon
events at νPRISM
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A neutrino spectrometer

500 MeV 700 MeV 1 GeV

● Gaussian spectra from ~0.4 GeV to ~1 GeV

● Depends on off-axis span of νPRISM: 6° - 0.25 GeV, 0° - 1.2 GeV

● High energy tail cancelled in all cases



22/08/14 Mark Scott, NuFact 2014, Glasgow 21

The problem
with neutrinos...

● Measuring neutrino interactions is hard

● Want to know cross section as function of interaction variables:

● Neutrino energy
● Momentum transfer (Q2)

● Very hard (impossible) to measure these experimentally – 
usually rely on the models we are trying to tune!

● Is there a better way?
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Cross sections with
a neutrino spectrometer

● We now know the neutrino energy!
● Can calculate Q2 directly – lepton information

● For neutral current interactions:
● First ever measurements as a function 

of Eν

● For charged current interactions:
● Measure same cross section across a range of neutrino energies
● Know correlations between energies

100% systematic 
uncertainty on NCπ+

J. Formaggio 
and G. Zeller, 
arXiv:1305.7513

● fiTQun reconstruction 
algorithm → measure 
pion kinematics

● Predicted oscillated 
spectrum at T2K far 
detector – broken 
down by interaction

http://arxiv.org/abs/1305.7513
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Separating models
● Investigate energy dependence of 

interaction models

● Nieves et al. np-nh 
model (blue) with 
NEUT CCQE (red) 
model

● Top - T2K near 
detector flux

● Bottom – νPRISM 1 
GeV monochromatic 
beam

● np-nh model clearly different from CCQE model in νPRISM
● Measure across neutrino energy and lepton kinematic space – lots of 

power to separate models
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νPRISM with ν
e
's

ν beam
νPRISMMuon p-θ

-0.3

-1.0

+1.2
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νPRISM with ν
e
's

ν beam
νPRISMMuon p-θ

Reproduce intrinsic 
ν

e
 flux using ν

μ
s

-0.3

-1.0

+1.2

Intrinsic ν
e
 flux

νPRISM flux fit
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νPRISM with ν
e
's

ν beam
νPRISMMuon p-θ

Reproduce intrinsic 
ν

e
 flux using ν

μ
s

-0.3

-1.0

+1.2

Intrinsic ν
e
 flux

νPRISM flux 
fit

Intrinsic ν
e
 flux

νPRISM flux fit

Muon acceptance

● Measure ν
e
 / ν

μ
 cross section ratio with 

same flux

● Predict expected lepton distribution for 
ν

e
 appearance measurements
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νPRISM-lite
● Water Cherenkov detector spanning 1° – 4° off-axis

● T2K beam points 3.6° downward, so get 4° 
off-axis for free

● 52.5m tall if 1km from neutrino target

● Instrument movable cylinder:
● Inner Detector (ID): 6 or 8m diameter, 10m tall
● Outer Detector (OD): 10m diameter, 14m tall

● OD surrounded by scintillator panels – external veto

OD: 20” 
PMTs

ID: 8” or 5” 
PMTs
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Current status
● Expression of Interest (EoI) document written:

● Detailed ν
μ
 disappearance results

● Discussion of other physics applications 

– (CP violation, anti-ν, sterile neutrinos – See 
talk by J. Caravaca in oscillation session)

● Preliminary detector design

● Currently preparing a full proposal
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Summary
● Precision neutrino physics requires a better 

understanding of neutrino interactions
● The νPRISM detector concept provides this:

● Removes model bias in neutrino 
oscillation measurements

● Measure NC cross section vs Eν

● Separate models that are otherwise 
degenerate

● Directly compare ν
e
 and ν

μ
 cross section

● Hope to have a working example for T2K in 
2019

● Concept useful for any accelerator-based 
neutrino experiment
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Backup Slides
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ν
μ
 Disappearance

Analysis
● Event selection
● νPRISM predicted SK spectrum
● Systematic uncertainties
● Statistical uncertainties
● Oscillation fit
● Effect of multi-nucleon events
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νPRISM Design
● Baseline design used in the oscillation studies

νPRISM
● 3m radius inner detector
● 52.5m tall – spanning 1-4 degrees off axis
● 1km from neutrino target

● νPRISM-lite: 

● Instrument 14m movable cylinder

● Take data at different off-axis angles over run

● Studies assumes 4.5 x 1020 POT in each 
off-axis slice of νPRISM

● Baseline design used in
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Event Selection
● Same event selection as at SK:

● Single ring

● Muon-like

● Fully contained in fiducial volume

● Record the off-axis angle of the interaction, using the reconstructed 
vertex position

1° off-axis

4° off-axis
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Building the oscillated flux
● All based on simulated neutrino flux at SK and νPRISM

● Slice νPRISM into 30 slices of 0.1 degree – assign each a weight

● MINUIT χ2 fit between sum of weighted νPRISM slices and oscillated 
SK flux

C
1

+ C
6

+ C
16

+ C
30

Fit
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Building the oscillated flux
● Perform fit for all combinations of oscillation parameters used in the 

oscillation fit

sin2θ
23

 = 0.61

Δm2
23

 = 2.56x10-3

sin2θ
23

 = 0.48

Δm2
23

 = 2.41x10-3

● Get a set of 30 C
i
 

coefficients for each 
pair of oscillation 
parameters
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SK prediction
● Apply these weights to the selected events in each off-axis slice of 

νPRISM

● Now looking at reconstructed neutrino energy - events smeared into 
oscillation dip by nuclear effects and energy resolution

● To νPRISM data:

● Background 
subtraction

● Efficiency 
correction

● Addition of 
selected SK 
background

● Introduce some model 
dependence
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Additive correction

● Final step – additive correction

● Subtract selected SK spectrum from νPRISM prediction

● Add this difference to the νPRISM prediction

● If our MC exactly reproduces nature, νPRISM prediction will exactly 
match selected SK spectrum
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Systematic uncertainties
● Every correction made to the νPRISM prediction is calculated from 

our nominal MC – all are constant corrections

● To calculate systematic uncertainties:

● Apply a variation to the νPRISM and SK MC

● Changes number of selected events at both detectors

● Apply corrections (from the unvaried, nominal MC)

● Calculate change in the νPRISM prediction

● Use this to calculate fractional covariance matrix for νPRISM 
prediction

● This analysis takes flux and cross section uncertainties into account

● Conservative detector systematics coming soon!
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Flux uncertainty
● Flux uncertainties calculated in same ways as for T2K, evaluated at 1km

● Fractional error on left, correlation matrix on right

● Larger errors at high energy – 
no νPRISM events

● Error at oscillation dip around 
4-5% 
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Flux uncertainty
● Flux uncertainties come from 26 sources

● Proton beam alignment

● Hadron production

● Etc.

● Expect to be independent of one another

● Can calculate a flux covariance matrix in two ways:

● From each source separately, then combine in quadrature

● Apply variation from each source at the same time and calculate 
a covariance for the entire flux uncertainty in one step

● These should give the same answer
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Separate sources
● Oscillation analysis performed using 12 uneven bins in 

reconstructed neutrino energy – the 8 shown cover 0 – 3 GeV
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Simultaneous variation
● Larger errors at high and low energy – no νPRISM events
● Error at oscillation dip (bin 3) around 5% 
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Comparing flux uncertainty
● Source by source matrix on left, simultaneous matrix on right 

● Very good agreement between the two methods

● Confident flux uncertainties are being applied correctly
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Flux and XSec uncertainty
● Xsec uncertainties should largely cancel at νPRISM – amount of 

cancellation depends on how well flux combination matches SK flux 

● Need to throw flux and cross section uncertainties together

● Combined flux and cross 
section uncertainty around 5% 
at the oscillation dip
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Systematic throws
● Look at fake data throws of both flux and cross section uncertainties

● νPRISM - very few events at low or high energy, little variation

● In oscillation region variations similar at SK and νPRISM

● Spectra are ~Gaussian distributed about the central value

● Plots show all 300 throws of the νPRISM prediction (left) and 
selected SK events (right)
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Systematic throws
● Plot difference between selected SK events and νPRISM prediction 

for each throw

● Most of spectrum shows less than 0.5 event difference between SK 
and νPRISM prediction

● Systematic uncertainties are cancelling between the two detectors
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Statistical uncertainties
● Potential to be large due to linear combination

● Smooth linear combination – variations in neighbouring slices 
cancel out to large extent
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Statistical uncertainties

●  Uncertainty maximal in 
oscillation dip – subtracting 
distributions to get zero events

●  Statistical uncertainty ~7% in 
oscillation dip
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Total uncertainty

● Total uncertainty is <10% at oscillation peak

● ~7% statistical, 6% systematic

● Total uncertainty on the predicted event spectrum at SK, including 
statistical and systematic sources
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Oscillation fit
● Calculate covariance matrix and νPRISM prediction for various 

points in θ
23

 and Δm2 phase space

● Use Simple Fitter 
to calculate 
likelihood (L)

● Plot - ln(L) for all 
points in θ

23
 and 

Δm2

● Minimum bin gives 
best fit oscillation 
parameters 



22/08/14 Mark Scott, NuFact 2014, Glasgow 52

Multi-Nucleon effect
● Add meson exchange current (MEC) interactions to the same 

νPRISM and SK fake data sets, using Nieves and Martini models

● Re-calculate νPRISM prediction of SK distribution - do not change 
any of the corrections!

● Find the best fit oscillation point for each fake data set – compare to 
best fit point without MEC

● Plots above show the result of the same analysis performed by T2K

● Using Nieves' MEC prediction on left, Martini mock up on right

● Both show ~3.5% spread, with a bias in the Martini case
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Multi-Nucleon example
● Add multi-nucleon events to the nominal MC to make fake data

● See νPRISM prediction still reproduces oscillated SK spectrum when 
multi-nucleon events are present
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Martini MEC result
● Look at effect of adding MEC events to 300 fake data sets

● Much smaller RMS in θ
23

 (left) and Δm2 (right) than in T2K 

analysis

● No bias seen in θ
23

 plot

● νPRISM will provide the first data driven constraint on the 
effect of multi-nucleon events in oscillation measurements
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Nieves' result
● Look at the difference in best fit oscillation parameters 

between the nominal MC and the MC with additional 
Nieves MEC events

● Much smaller RMS in θ
23

 (left) and Δm2 (right) than in T2K 

analysis 

● Large spike at 0 difference in both plots
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