Global fits from Neutrino Oscillation Experiments

NuFact 2014, 25-30 August 2014, Glasgow, UK
Thomas Schwetz

centre

Content

- Global 3-flavour fit
- Neutrino mass ordering
- CP phase
- Octant of θ_{23}
- Sterile neutrinos

3-flavour oscillations

3-flavour global fit to oscillation data

with C. Gonzalez-Garcia, M. Maltoni
website with up-to-date restuls from global fit current version I. 3 (after Neutrino2014)
version 2.0 (plus publication) in preparation

	Normal Ordering $\left(\Delta \chi^{2}=0.97\right)$		Inverted Ordering (best fit)		Any Ordering
	bfp $\pm 1 \sigma$	3σ range	bfp $\pm 1 \sigma$	3σ range	3σ range
$\sin ^{2} \theta_{12}$	$0.304_{-0.012}^{+0.012}$	$0.270 \rightarrow 0.344$	$0.304_{-0.012}^{+0.012}$	$0.270 \rightarrow 0.344$	$0.270 \rightarrow 0.344$
$\theta_{12} /^{\circ}$	$33.48_{-0.74}^{+0.77}$	$31.30 \rightarrow 35.90$	$33.48_{-0.74}^{+0.77}$	$31.30 \rightarrow 35.90$	$31.30 \rightarrow 35.90$
$\sin ^{2} \theta_{23}$	$0.451_{-0.026}^{+0.051}$	$0.382 \rightarrow 0.643$	$0.577_{-0.035}^{+0.027}$	$0.389 \rightarrow 0.644$	$0.385 \rightarrow 0.644$
$\theta_{23} /^{\circ}$	$42.2_{-1.5}^{+2.9}$	$38.2 \rightarrow 53.3$	$49.4_{-2.0}^{+1.6}$	$38.6 \rightarrow 53.3$	$38.4 \rightarrow 53.3$
$\sin ^{2} \theta_{13}$	$0.0218_{-0.0010}^{+0.0010}$	$0.0186 \rightarrow 0.0250$	$0.0219_{-0.0011}^{+0.0010}$	$0.0188 \rightarrow 0.0251$	$0.0188 \rightarrow 0.0251$
$\theta_{13} /^{\circ}$	$8.50_{-0.21}^{+0.20}$	$7.85 \rightarrow 9.10$	$8.52_{-0.21}^{+0.20}$	$7.87 \rightarrow 9.11$	$7.87 \rightarrow 9.11$
$\delta_{\mathrm{CP}} /^{\circ}$	305_{-51}^{+39}	$0 \rightarrow 360$	251_{-59}^{+66}	$0 \rightarrow 360$	$0 \rightarrow 360$
$\frac{\Delta m_{21}^{2}}{10^{-5} \mathrm{eV}^{2}}$	$7.50_{-0.17}^{+0.19}$	$7.03 \rightarrow 8.09$	$7.50_{-0.17}^{+0.19}$	$7.03 \rightarrow 8.09$	$7.03 \rightarrow 8.09$
$\frac{\Delta m_{3 i}^{2}}{10^{-3} \mathrm{eV}^{2}}$	$+2.458_{-0.047}^{+0.046}$	$+2.317 \rightarrow+2.607$	$-2.448_{-0.047}^{+0.047}$	$-2.590 \rightarrow-2.307$	$\left[\begin{array}{c}+2.325 \rightarrow+2.599 \\ -2.590 \rightarrow-2.307\end{array}\right]$

3-flavour global fit to oscillation data

with C. Gonzalez-Garcia, M. Maltoni
website with up-to-date restuls from global fit current version I. 3 (after Neutrino2014)
version 2.0 (plus publication) in preparation
precision

	Normal Ordering $\left(\Delta \chi^{2}=0.97\right)$		Inverted Ordering (best fit)		Any Ordering	
	bfp $\pm 1 \sigma$	3σ range	bfp $\pm 1 \sigma$	3σ range	3σ range	
$\sin ^{2} \theta_{12}$	$0.304_{-0.012}^{+0.012}$	$0.270 \rightarrow 0.344$	$0.304_{-0.012}^{+0.012}$	$0.270 \rightarrow 0.344$	$0.270 \rightarrow 0.344$	
$\theta_{12} /^{\circ}$	$33.48_{-0.74}^{+0.77}$	$31.30 \rightarrow 35.90$	$33.48_{-0.74}^{+0.77}$	$31.30 \rightarrow 35.90$	$31.30 \rightarrow 35.90$	(14\%)
$\sin ^{2} \theta_{23}$	$0.451_{-0.026}^{+0.051}$	$0.382 \rightarrow 0.643$	$0.577_{-0.035}^{+0.027}$	$0.389 \rightarrow 0.644$	$0.385 \rightarrow 0.644$	(32\%
$\theta_{23} /{ }^{\circ}$	$42.2{ }_{-1.5}^{+2.9}$	$38.2 \rightarrow 53.3$	$49.44_{-2.0}^{+1.6}$	$38.6 \rightarrow 53.3$	$38.4 \rightarrow 53.3$	O
$\sin ^{2} \theta_{13}$	$0.0218_{-0.0010}^{+0.0010}$	$0.0186 \rightarrow 0.0250$	$0.0219_{-0.0011}^{+0.0010}$	$0.0188 \rightarrow 0.0251$	$0.0188 \rightarrow 0.0251$	$0(15 \%)$
$\theta_{13} /^{\circ}$	$8.50{ }_{-0.21}^{+0.20}$	$7.85 \rightarrow 9.10$	$8.52_{-0.21}^{+0.20}$	$7.87 \rightarrow 9.11$	$7.87 \rightarrow 9.11$	$\text { (} 15 \% \text {) }$
$\delta_{\mathrm{CP}} /{ }^{\circ}$	305_{-51}^{+39}	$0 \rightarrow 360$	251_{-59}^{+66}	$0 \rightarrow 360$	$0 \rightarrow 360$	∞
$\frac{\Delta m_{21}^{2}}{10^{-5} \mathrm{eV}^{2}}$	$7.50{ }_{-0.17}^{+0.19}$	$7.03 \rightarrow 8.09$	$7.50{ }_{-0.17}^{+0.19}$	$7.03 \rightarrow 8.09$	$7.03 \rightarrow 8.09$	14%
$\frac{\Delta m_{3 i}^{2}}{10^{-3} \mathrm{eV}^{2}}$	$+2.458_{-0.047}^{+0.046}$	$+2.317 \rightarrow+2.607$	$-2.448_{-0.047}^{+0.047}$	$-2.590 \rightarrow-2.307$	$\left[\begin{array}{l}+2.325 \rightarrow+2.599 \\ -2.590 \rightarrow-2.307\end{array}\right]$	11%

3-flavour global fit to oscillation data

Leptonic unitarity triangle

Farzan, Smirnov, hep-ph/020II 05 Smirnov, 0810.2668

- unitarity is always assumed (no test of unitarity!)

Leptonic unitarity triangle

- still far from knowledge we have on UT in quark sector

1-2 sector

"tension" between solar and Kamland at 2σ level $\left(\Delta X^{2}=4\right)$
missing up-turn of solar neutrino spectrum in SNO and SK

1-3 sector

consistent determination of $\left|\Delta \mathrm{m}^{2}{ }_{31}\right|$ from LBL, ATM, and Daya Bay

Neutrino mass ordering

almost complete degeneracy in present data

normal versus abnormal for inverted ordering lepton mixing is very different from quarks:

normal versus abnormal

 for inverted ordering lepton mixing is very different from quarks:

- the neutrino mass state mostly related to the Ist generation is not the lightest

normal versus abnormal

for inverted ordering lepton mixing is very different from quarks:

- the neutrino mass state mostly related to the Ist generation is not the lightest
- there is strong degeneracy between at least two mass states

$$
\begin{aligned}
\operatorname{deg} & \equiv \frac{m_{2}-m_{1}}{\bar{m}}=2 \frac{\Delta m_{21}^{2}}{\left(m_{1}+m_{2}\right)^{2}} \\
& \approx \frac{1}{2} \frac{\Delta m_{21}^{2}}{\left|\Delta m_{31}^{2}\right|+m_{3}^{2}} \leq \frac{1}{2} \frac{\Delta m_{21}^{2}}{\left|\Delta m_{31}^{2}\right|}
\end{aligned}
$$

$$
1.3 \times 10^{-3}\left(\frac{\sum m_{i}}{0.5 \mathrm{eV}}\right)^{-2} \leq \operatorname{deg} \leq 1.8 \times 10^{-2}
$$

How to determine the mass ordering?

- Matter effect in the I-3 sector
- long-baseline accelerator experiments NOvA, LBNE, LBNO, ESS-SB, NuFact
- atmospheric neutrinos INO, PINGU, ORCA, HyperK
- Interference of oscillations with $\Delta m^{2}{ }_{21}$ and $\Delta m^{2}{ }_{31}$
- Reactor experiment at ~60 km JUNO, RENO50
- other methods: cosmology, supernova,...

Sensitivity comparison

probability to exclude wrong ordering at 3σ ("representative" selection of experiments)

Sensitivity comparison

probability to exclude wrong ordering at 3σ ("representative" selection of experiments)

experimental parameters (event reconstruction abilities / energy scale) crucial (esp for PINGU,JUNO,...)

LBL experiments: sens. depends on true values of θ_{23} and $\delta_{C P}$
atmospheric neutrino exps.: true value of θ_{23}

Explore synergy between different experiments

combine measurements of $\left|\Delta m^{2}{ }_{31}\right|$ from PINGU and JUNO

Blennow, Schwetz, arXiv: I 306.3988
requires more careful investigations wrt to energy scale uncertainties - both for JUNO and PINGU!

CP phase

values of $\delta_{C P} \sim 90^{\circ}$ disfavoured with $\Delta X^{2} \sim 7$ emerges from interplay of T2K and reactor data

Let's suppose that $\delta_{C P}=270^{\circ}$

 global fit ~2020:T2K, NOvA, DayaBay

Octant of θ_{23}

Interplay of Reactor + LBL appearance data

$$
\begin{aligned}
P_{\mu e} & \simeq \sin ^{2} 2 \theta_{13} \sin ^{2} \theta_{23} \frac{\sin ^{2}(1-A) \Delta}{(1-A)^{2}} \\
& +\sin 2 \theta_{13} \hat{\alpha} \sin 2 \theta_{23} \frac{\sin (1-A) \Delta \sin A \Delta}{1-A} \frac{\cos \left(\Delta+\delta_{\mathrm{CP}}\right)}{A} \cos \\
& +\hat{\alpha}^{2} \cos ^{2} \theta_{23} \frac{\sin ^{2} A \Delta}{A^{2}}
\end{aligned}
$$

with

$$
\Delta \equiv \frac{\Delta m_{31}^{2} L}{4 E_{\nu}}, \quad \hat{\alpha} \equiv \frac{\Delta m_{21}^{2}}{\Delta m_{31}^{2}} \sin 2 \theta_{12}, \quad A \equiv \frac{2 E_{\nu} V}{\Delta m_{31}^{2}}
$$

- for large θ_{13} the leading term depends on octant
- beam+reactor combination may be sensitive to octant Minakata et al. hep-ph/02 | | | | I; McConnel, Shaevitz, hep-ex/0409028

CP phase vs octant of θ_{23}

CP phase vs octant of θ_{23}

- some "tendencies" appear at low significance ($\Delta \mathrm{X}^{2} \sim 3$)
- Reactor + LBL appearance prefer second octant
- for NO atmospheric data pushes best fit point to first octant

Global fit $\sim 2020-\theta_{23}$ octant

T2K, NOvA, DayaBay

CP phase - what is the CL?

- complicated non-linear parameter dependence
- $\delta_{C P}$ is a periodic parameter
- poor sensitivity
usual $\Delta \mathrm{X}^{2}$ approximations may not be valid
Schwetz, hep-ph/06/2223
Blennow, Coloma, Fernandez-Martinez, I 407.3274
talk by M. Blennow

CP phase - what is the CL?

generate pseudo data for T2K (appear + disapp) check distribution of $\Delta \mathrm{X}^{2}$ consider $\delta_{c p}$ and θ_{23} as free parameters (all others fixed, incl NO)

T. Schwetz

CP phase - what is the CL?

generate pseudo data for T2K (appear + disapp) check distribution of ΔX^{2} consider $\delta_{C P}$ and θ_{23} as free parameters (all others fixed, incl NO)

Expected sensitivity

Anomalies at the $E / L \sim e V^{2}$ scale

- Reactor anomaly ($\overline{v_{e}}$ disappearance)
- Gallium anomaly (ve disappearance)
- LSND ($\bar{v}_{\mu} \rightarrow \bar{v}_{e}$ appearance)
- MiniBooNE $\left(\bar{v}_{\mu} \rightarrow \bar{v}_{e}, v_{\mu} \rightarrow v_{e}\right.$ appearance)

$$
\sin ^{2} 2 \theta_{\mu e} \approx \frac{1}{4} \sin ^{2} 2 \theta_{e e} \sin ^{2} 2 \theta_{\mu \mu}
$$

- no hint for v_{μ} disappearance limits from SK, CDHS, MiniBooNE, MINOS

Strong tension in global data

- consistency of appearance and disappearance data with p-value 10^{-4}

expect somewhat increased tension due to recent data from MINOS, SK-atm, ICARUS, OPERA
C. Giunti et al find somewhat better fit: p -value 10^{-3} I308.5288

Remark on reactor anomaly

"unexpected" bump in reactor neutrino spectrum
also seen in RENO, DoubleChooz, Chooz
bump seems to be present in ab-initio calculations of the anti-nu spectrum, but problems with beta-spectr? Dwyer, Langford, I407.I28I

Sterile neutrinos at the eV-scale?

- It is important to clarify "anomalies"
- hints for appearance experiments (LSND, MiniBooNE) are in strong tension with disappearance data
- reactor anomaly relies on complicated nuclear physics calculations and/or historical data seem not under sufficient control to predict neutrino spectrum at \%-level precision

Thank you for your attention!

Additional slides

T. Schwetz

CP phase vs θ_{23}

Minakata, Parke, I303.6I78
Coloma, Minakata, Parke, I 406.255 I

new ab-initio calculations

Dwyer, Langford, I 407.I 28 I

fails to predict beta spectr by $\sim 10 \%$
T. Schwetz

$v_{\mu} \rightarrow v_{e}$ hints from LSND \& MiniBooNE

MiniBooNE data

- LSND signal at 3.8σ
- MB antineutrino excess (2.8б) consistent with oscillations
- MB neutrino excess (3.4б) marginally consistent with osc. (p-value 6.1\%)

$v_{\mu} \rightarrow v_{e}$ hints from LSND \& MiniBooNE

MiniBooNE data

- LSND signal at 3.8σ
- MB antineutrino excess (2.8б) consistent with oscillations
- MB neutrino excess (3.4б) marginally consistent with osc. (p-value 6.1\%)

Constrains on v_{μ} disappearance

- CDHS PLB 1984
- SuperK atmospherics Bilenky, Giunti, Grimus, TS 99;

Maltoni, TS, Valle 01

- MINOS 1001.0336, 1104.3922 (CC data most important)
- MiniBooNE $\nu_{\mu}\left(\bar{\nu}_{\mu}\right)$ disappearance 1106.5685

Constrains on v_{μ} disappearance

- CDHS PLB 1984
- SuperK atmospherics Bilenky, Giunti, Grimus, TS 99; Maltoni, TS, Valle 01
- MINOS 1001.0336, 1104.3922 (CC data most important)
- MiniBooNE $\nu_{\mu}\left(\bar{\nu}_{\mu}\right)$ disappearance 1106.5685

expect somewhat increased tension

