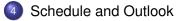
The Physics Programme of MICE Step IV

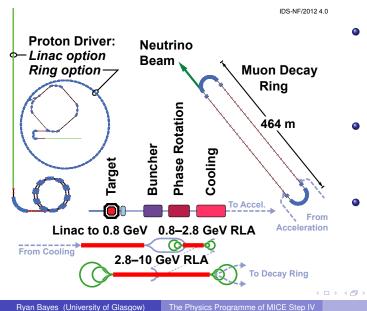
Ryan Bayes for the MICE Collaboration

Experimental Particle Physics School of Physics and Astronomy University of Glasgow

August 25, 2014



(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))


Outline

1 MICE Background

- 2 MICE Step IV in Detail
- The Physics of Ionization Cooling

Cooling at a Neutrino Factory

- Muon beam must be cooled in transverse direction during acceleration.
- Increase the rate of the muon beam in the channel.
- Preferred method is cooling through ionization energy loss.

August 25, 2014 3 / 14

Ionization Cooling

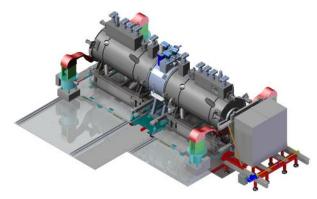
Reduce the beam momentum in absorber material

Change in beam emittance described by;

$$\frac{d\epsilon}{ds} = \frac{-\epsilon_n}{\beta^2 E} \langle \frac{dE}{dX} \rangle + \frac{\beta_t (13.6 \text{MeV})^2}{2\beta^3 E m_\mu X_0}$$

• Re-acceleration results in sustained transverse beam cooling.

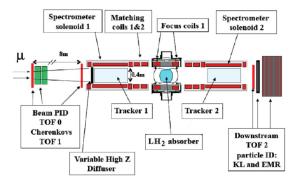
A (10) > A (10) > A (10)


Measurements of MICE

	Step IV	Step $\frac{3\pi}{2}$	
Study of properties that determine cooling performance			
Material properties of LH ₂ and LiH	Yes	LH ₂ and/or LiH	
Observation of ϵ_{\perp}^{n} reduction	Yes	Yes	
Demonstration of sustainable ionization cooling			
Observation of ϵ_{\perp} reduction		Yes	
with re-acceleration			
Observation of ϵ_{\perp} reduction and		Yes	
ϵ_{\parallel} evolution			
Öbservation of ϵ_{\perp} reduction and		Yes ^a	
ϵ_{\parallel} and angular momentum			

^aRequires systematic study of "flip" optics

MICE Step IV in Detail


MICE Step IV Cooling Channel

- Detectors provide independent upstream and downstream measurements of
 - the momentum ($\Delta p/p < 0.1\%$).
 - the PID ($N_{\pi}/N_{\mu} < 0.1\%$).
 - Produce a < 1% emittance measurement.

A (10) A (10)

MICE Step IV Cooling Channel

- Detectors provide independent upstream and downstream measurements of
 - the momentum ($\Delta p/p < 0.1\%$).
 - the PID ($N_{\pi}/N_{\mu} < 0.1\%$).
 - Produce a < 1% emittance measurement.

MICE Detector Capabilities

Cherenkov detectors

- Two different velocity threshold measurement.
- Aerogel volumes with PMT counters; two refractive indices.

TOF (Time of flight)

- Measures particle velocity
- Composed of scintillator slabs; ≈50 ps precision

KL (Kloe Light)

- Scintillating fibres sandwiched between lead foils.
- Induce pion showers.
- Energy deposition: $\sigma_E/E = 7\%/\sqrt{E}$

MICE Detector Capabilities

EMR (Electron Muon Ranger)

- 48 alternating x and y planes of 59 triangular scintillating bars.
- 33 mm base \times 17 mm height \times 1 m length for each bar .

Ryan Bayes (University of Glasgow)

Trackers

- Scintillating fibre tracker in 4 T solenoids.
- 470 μ m position resolution

The Physics Programme of MICE Step IV

Channel Settings

 Will test transport through absorber at various momenta and initial emittance

3π	6π	10 <i>π</i>
140 MeV/c	140 MeV/c	140 MeV/c
3π	6 π	10 π
200 MeV/c	200 MeV/c	200 MeV/c
3π	6π	10 π
240 MeV/c	240 MeV/c	240 MeV/c

- Manipulate momentum with magnet lattice.
 - Matching conventional beam line to super conducting magnets.
- Manipulate initial emittance with diffuser.

- Absorber material may also be changed
 - Liquid hydrogen and lithium hydride disk absorbers available.
 - Polystyrene wedge absorber also under consideration.

Change of emittance for muons

$$\frac{d\epsilon}{ds} = \frac{-\epsilon_n}{\beta^2 E} \langle \frac{dE}{dX} \rangle + \frac{\beta_t (13.6 \text{MeV})^2}{2\beta^3 E m_\mu X_0}$$

Physics measurements that directly impact MICE result

- Precision of measurement of emittance: ε.
- Energy loss in material $\langle \frac{dE}{dx} \rangle$.
 - Using liquid hydrogen and lithium hydride.
- Multiple scattering.
- Background identification.

Change of emittance for muons

$$\frac{d\epsilon}{ds} = \frac{-\epsilon_n}{\beta^2 E} \langle \frac{dE}{dX} \rangle + \frac{\beta_t (13.6 \text{MeV})^2}{2\beta^3 E m_\mu X_0}$$

Physics measurements that directly impact MICE result

- Precision of measurement of emittance: ε.
- Energy loss in material $\langle \frac{dE}{dx} \rangle$.
 - Using liquid hydrogen and lithium hydride.
- Multiple scattering.
- Background identification.

Change of emittance for muons

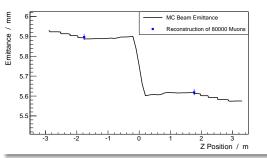
$$\frac{d\epsilon}{ds} = \frac{-\epsilon_n}{\beta^2 E} \langle \frac{dE}{dX} \rangle + \frac{\beta_t (13.6 \text{MeV})^2}{2\beta^3 E m_\mu X_0}$$

Physics measurements that directly impact MICE result

- Precision of measurement of emittance: *ϵ*.
- Energy loss in material $\langle \frac{dE}{dx} \rangle$.
 - Using liquid hydrogen and lithium hydride.
- Multiple scattering.
- Background identification.

э

Change of emittance for muons


$$\frac{d\epsilon}{ds} = \frac{-\epsilon_n}{\beta^2 E} \langle \frac{dE}{dX} \rangle + \frac{\beta_t (13.6 \text{MeV})^2}{2\beta^3 E m_\mu X_0}$$

Physics measurements that directly impact MICE result

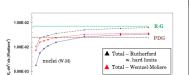
- Precision of measurement of emittance: *ϵ*.
- Energy loss in material $\langle \frac{dE}{dx} \rangle$.
 - Using liquid hydrogen and lithium hydride.
- Multiple scattering.
- Background identification.

Emittance Measurement

Preliminary results by Chris Hunt

- Compiled from single muon tracks.
- Emittance evolves continuously but,
- Only a single measurement from each tracker.

Initially calculated with

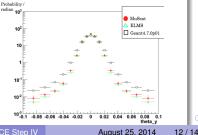

$$\epsilon_n = \frac{\sqrt{V(x, p_x, y, p_y)}}{m}$$

• Correction applied to variance to match for correlations.

Matches measured emittance to the true emittance within errors.

Multiple Scattering

- Heating term in cooling equation.
- Poorly understood in low Z targets.
- GEANT4 by default uses Urban MCS model for scattering.
- Will be tested directly from matching upstream and downstream muon trajectories



Comparison of formulae (produced by Tim Carlisle)

electrons (W-M)

0.00E+00

MICE Schedule for Step IV

Step IV

- Begin: May 2015
- Possible decommissioning: Sept. 2015
- Recent DOE review of MAP/MICE recommends:
 - Demonstration of ionization cooling with re-acceleration.
 - Equipment required to make demonstration must be in experimental hall by end of Sept. 2017.
 - Decommissioning time prior to delivery motivates a short data collection period.

Summary

- Preliminary steps of MICE complete.
- Physics program of MICE step IV provides tests of material properties necessary for ionization cooling.
 - Will test the reduction of emittance with no acceleration.
- Includes an integral measurement of muon scattering in low Z materials.
 - Can provide new data with which to validate models.
- An intensive data collection period planned to take advantage of this opportunity.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >