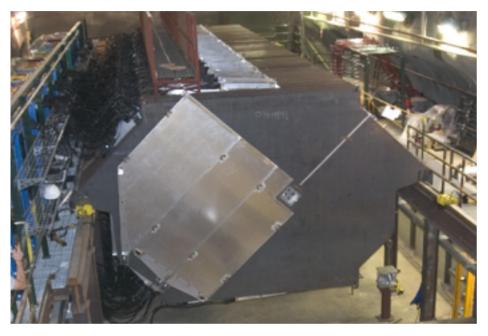
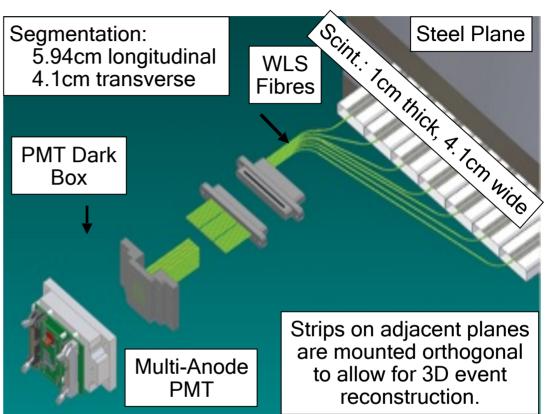
Muon Neutrino Quasielastic Scattering On Iron Using the MINOS Near Detector

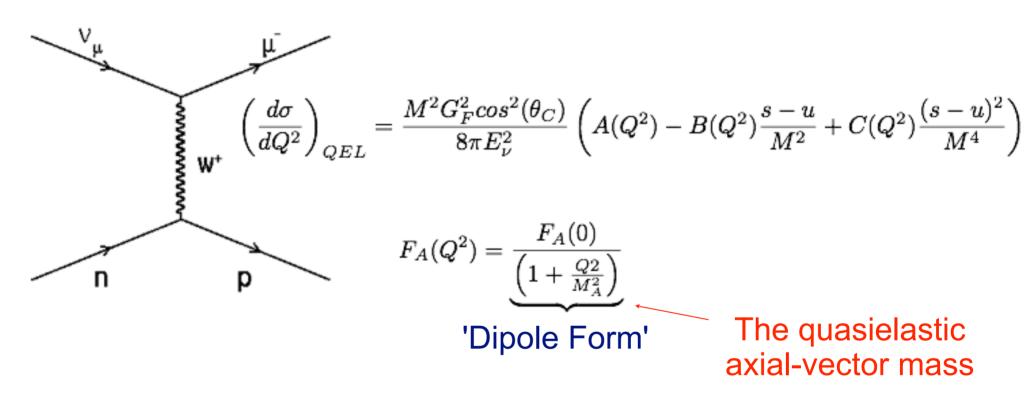



Nathan Mayer Tufts University

Topics

- MINOS Near Detector
- Motivation and the CCQE interaction
- Reconstructing MINOS Low Q² interactions
- Event selection
 - Charged Current
 - CCQE and sideband selection
- Data driven background treatment
- Fit Procedure and final results
- Systematic uncertainties
- Conclusion

The MINOS Near Detector (ND)



- 1km from target
- 0.98 kton, 30 ton fiducial
- 282 steel planes
- B = 1.2 T

- Instrumented with QIE electronics (Zero deadtime)
- •Scintilator tracking calorimeter.

The CCQE Interaction

- *A*,*B*,*C* are function of the nucleon form factors, depend on:
- Vector form factors measured in electron scattering.
- Dipole form of axial vector form factor.
 - Axial form factor can only be determined from neutrino scattering.

Experiment	Energy (GeV)	Target	M_A^{QE}
D_2 B.C.	1	Deuterium	1.03 ± 0.05
NOMAD	3 to 100	Carbon	1.07 ± 0.09
K2K	1.0 to 2.5	O+Al, C	$1.2 \sim 1.3$
MiniBooNE	0.5 to 1.0	Carbon	$1.2 \sim 1.3$
MINERvA	1-8	Carbon	Nuclear Effects Beyond RFG
MINOS	1-8	Iron	This Talk

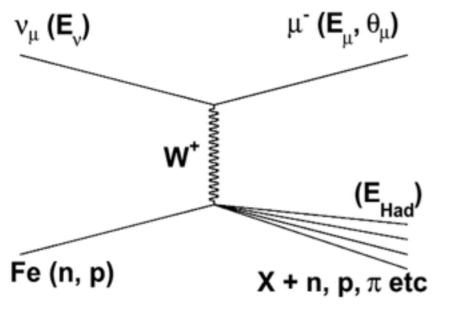
- In the past decade understanding of the nucleon form factors have undergone a transition.
- From constant; Then varying with nucleus; Now effective parameter, that absorbs other nuclear physics effects.

Experiment	Energy (GeV)	Target	M_A^{QE}
D_2 B.C.	1	Deuterium	1.03 ± 0.05
NOMAD	3 to 100	Carbon	1.07 ± 0.09
K2K	1.0 to 2.5	O+Al, C	$1.2 \sim 1.3$
MiniBooNE	0.5 to 1.0	Carbon	$1.2 \sim 1.3$
MINERvA	1-8	Carbon	Nuclear Effects Beyond RFG
MINOS	1-8	Iron	This Talk

- In the past decade understanding of the nucleon form factors have undergone a transition.
- From constant; Then varying with nucleus; Now effective parameter, that absorbs other nuclear physics effects.
- Neutrino BC experiments on D_2 target measure $M_A^{QE} \sim 1.0$ GeV.
- NOMAD with C target, higher E_v also measures $M_A^{QE} \sim 1.0$ GeV.

Experiment	Energy (GeV)	Target	M_A^{QE}
D_2 B.C.	1	Deuterium	1.03 ± 0.05
NOMAD	3 to 100	Carbon	1.07 ± 0.09
K2K	1.0 to 2.5	O+Al, C	$1.2 \sim 1.3$
MiniBooNE	0.5 to 1.0	Carbon	$1.2 \sim 1.3$
MINERvA	1-8	Carbon	Nuclear Effects Beyond RFG
MINOS	1-8	Iron	This Talk

- In the past decade understanding of the nucleon form factors have undergone a transition.
- From constant; Then varying with nucleus; Now effective parameter, that absorbs other nuclear physics effects.
- Neutrino BC experiments on D₂ target measure $M_A^{QE} \sim 1.0$ GeV.
- NOMAD with C target, higher E_v also measures $M_A^{QE} \sim 1.0$ GeV.
- More recent experiments with carbon targets (K2K, MiniBooNE, SciBooNE) measure M_A^{QE}~1.25 GeV.


Experiment	Energy (GeV)	Target	M_A^{QE}
D_2 B.C.	1	Deuterium	1.03 ± 0.05
NOMAD	3 to 100	Carbon	1.07 ± 0.09
K2K	1.0 to 2.5	O+Al, C	$1.2 \sim 1.3$
MiniBooNE	0.5 to 1.0	Carbon	$1.2 \sim 1.3$
MINERvA	1-8	Carbon	Nuclear Effects Beyond RFG
MINOS	1-8	Iron	This Talk

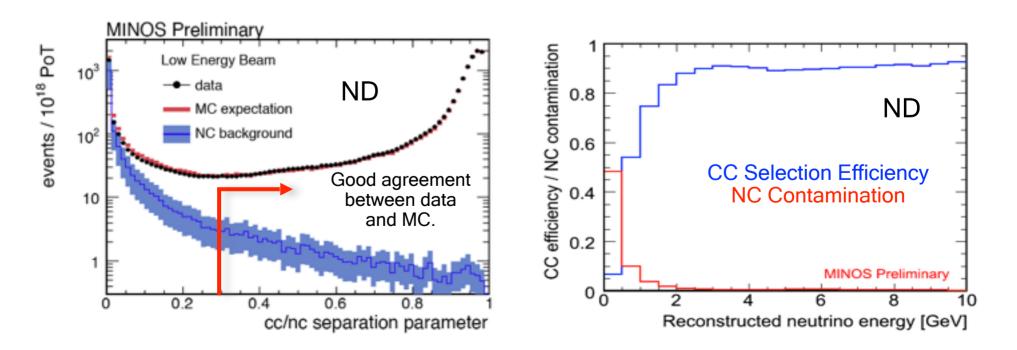
- In the past decade understanding of the nucleon form factors have undergone a transition.
- From constant; Then varying with nucleus; Now effective parameter, that absorbs other nuclear physics effects.
- Neutrino BC experiments on D_2 target measure $M_A^{QE} \sim 1.0$ GeV.
- NOMAD with C target, higher E_v also measures $M_A^{QE} \sim 1.0$ GeV.
- MINERvA CCQE finds M_A^{QE}~1.0 GeV, however these results use the so called TEM model as well, which is a tuning of the vector FF as well.

Experiment	Energy (GeV)	Target	M_A^{QE}
D_2 B.C.	1	Deuterium	1.03 ± 0.05
NOMAD	3 to 100	Carbon	1.07 ± 0.09
K2K	1.0 to 2.5	O+Al, C	$1.2 \sim 1.3$
MiniBooNE	0.5 to 1.0	Carbon	$1.2 \sim 1.3$
MINERvA	1-8	Carbon	Nuclear Effects Beyond RFG
MINOS	1-8	Iron	This Talk

- In the past decade understanding of the nucleon form factors have undergone a transition.
- From constant; Then varying with nucleus; Now effective parameter, that absorbs other nuclear physics effects.
- Neutrino BC experiments on D_2 target measure $M_A^{QE} \sim 1.0$ GeV.
- NOMAD with C target, higher E_v also measures $M_A^{QE} \sim 1.0$ GeV.
- MINERvA CCQE finds M_A^{QE}~1.0 GeV, however these results use the so called TEM model as well, which is a tuning of the vector FF as well.
- MINOS has a high statistics sample of 189,000 QE candidates on iron recorded in a magnetized tracking spectrometer

Reconstruction

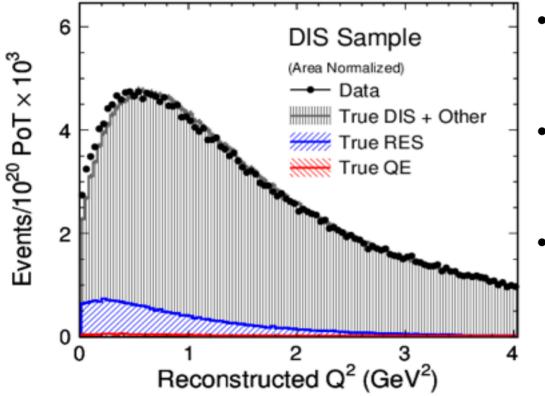
- Reconstruct full muon kinematics
- Reconstruct the Energy of Hadron Shower
 - From these variables calculate the following kinematic quantities:


$$E_{v} = E_{\mu} + E_{Had} \quad \text{or} \quad E_{v}^{QE} = \frac{(m_{N} - \epsilon_{B})E_{\mu} - 2(m_{N}\epsilon_{B} + \epsilon_{B}^{2} + m_{\mu}^{2}/2)}{m_{N} - \epsilon_{B} - E_{\mu} + p_{\mu}\cos(\theta_{\mu})}$$

 $Q^{2} = -2E_{v}(E_{\mu} - p_{\mu}\cos(\theta_{\mu})) + m_{\mu}^{2}$ or $Q_{QE}^{2} = -2E_{v}^{QE}(E_{\mu} - p_{\mu}\cos(\theta_{\mu})) + m_{\mu}^{2}$

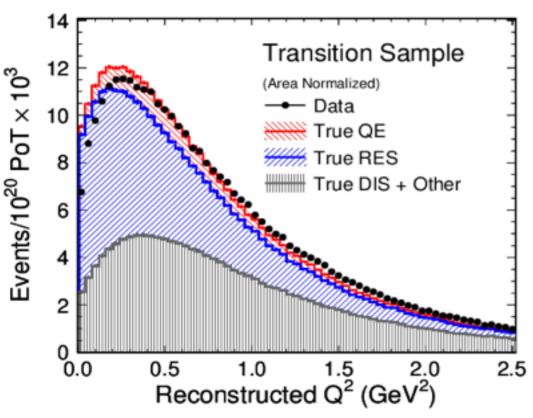
$$W^2 = m_N^2 + 2m_N E_{Had} - Q^2$$

Event Selection (Charged Current)

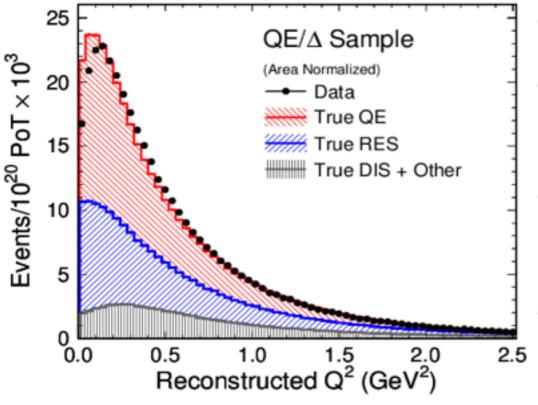

- First remove majority of NC events by requiring at least 1 track
 - Further enrich sample using multi-variate technique (kNN)
- kNN combines variables that differentiate between muons and protons/pions seen in NC interactions.

Event Selection (CCQE & Sidebands)

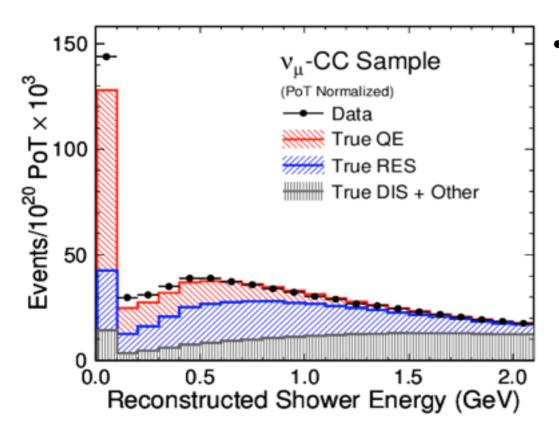
- CC selected events are divided into several sub-samples
 - DIS, Δ -enhanced and transition (resonance), QE.
 - primarily by the hadronic invariant mass W.
- These sub-samples are either
 - Analyzed as signal
 - Used to characterize the non-QE background within the signal sub-sample.


Event Selection (CC-DIS)

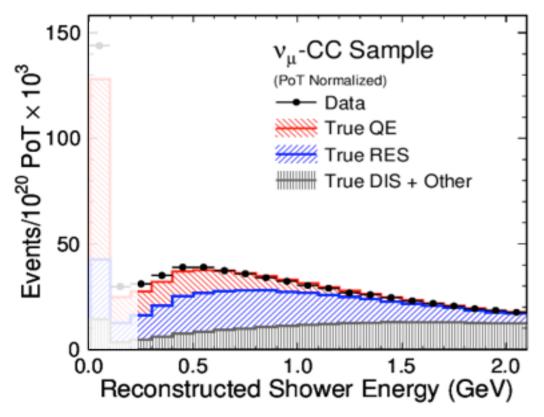
- W > 2.0 GeV
- Examine low/high Q² separately.
- High Q² DIS sample matches data well.


- RES/QE component.
- Data/MC disagreement.

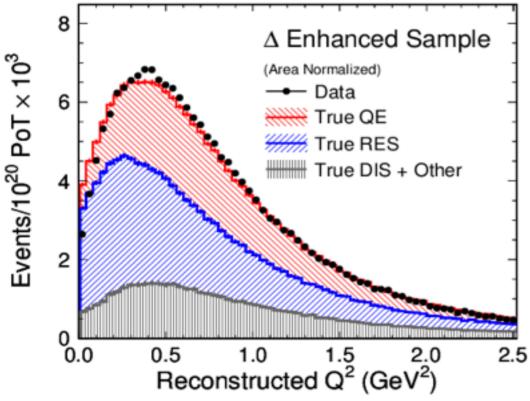
Event Selection (RES to DIS Transition)


- 1.3 < W < 2.0 GeV
- Dominated by baryon resonance production.
- Low Q² discrepancy can not be due to QE alone.

Event Selection (QE/Δ)

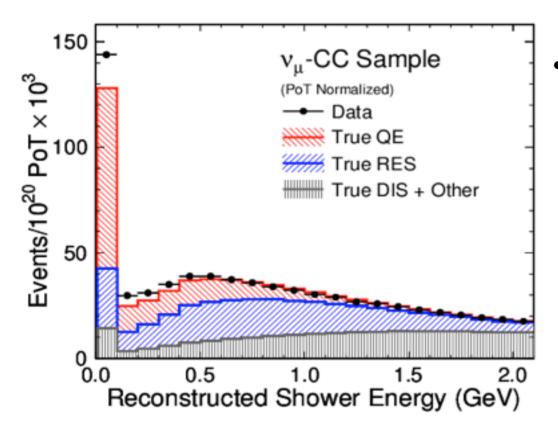

- W < 1.3 GeV
- Model over predicts data at low Q².
- Not used directly in the analysis
- Divided by E_{had} into
 - CCQE sample
 - Δ-Enhanced sideband

Event Selection (Δ-Enhanced)

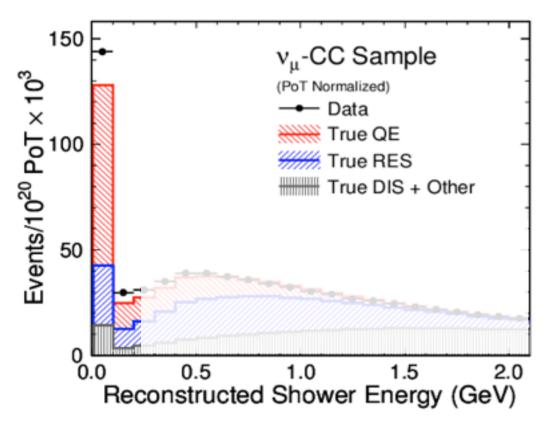

$QE/\Delta \& E_{Had} > 250 MeV$

Event Selection (Δ-Enhanced)

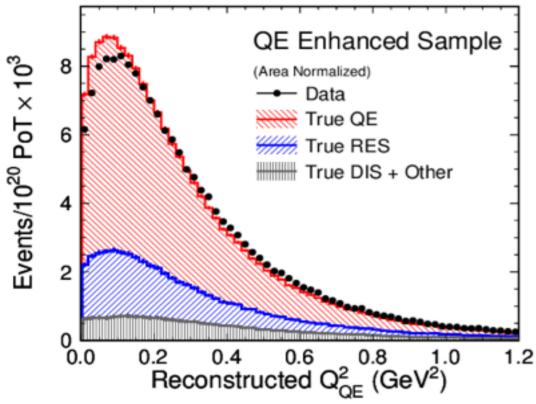
- E_{had}, total energy in the hadron system
 - CCQE expected to have less E_{had} than other interaction types.


Event Selection (Δ-Enhanced)

$$QE/\Delta \& E_{Had} > 250 MeV$$

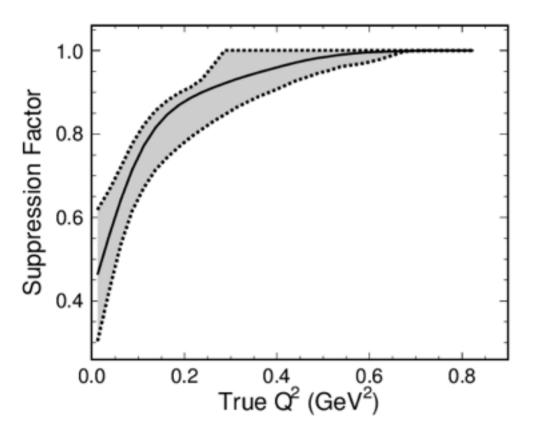

- Dominated by RES particularly in the Q² < 0.5 GeV region.
- Significant QE contribution.

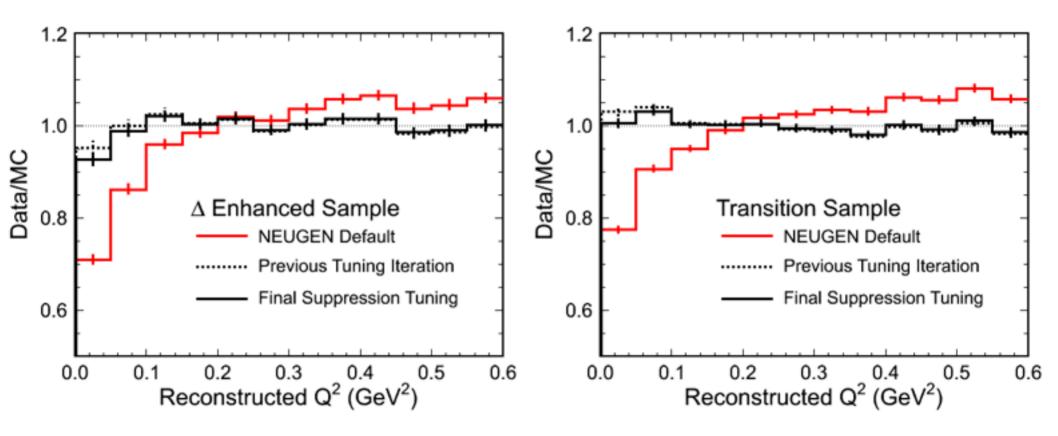
Event Selection (QE-Enhanced)


 $QE/\Delta \& E_{Had} < 225 MeV$

Event Selection (QE-Enhanced)

- QE/ Δ & E_{Had}<225 MeV
- E_{had}, total energy of the hadron system
 - CCQE expected to have less E_{had} than other interactions types.

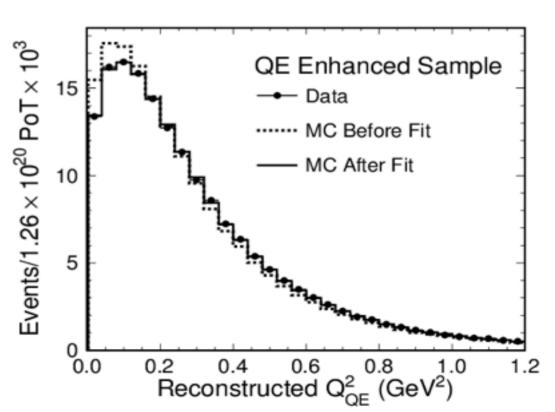

Event Selection (QE-Enhanced)


- QE/ Δ & E_{Had}<225 MeV
- Dominated by QE
- RES and DIS contamination.

- When DIS dominate the MC, data well is described.
- When resonances dominate the MC, data is not well described.
- Resonance nuclear model is simplified RFG, with no Pauli-Blocking.
- Use data sidebands to determine a function that better describes the data when resonances dominate.

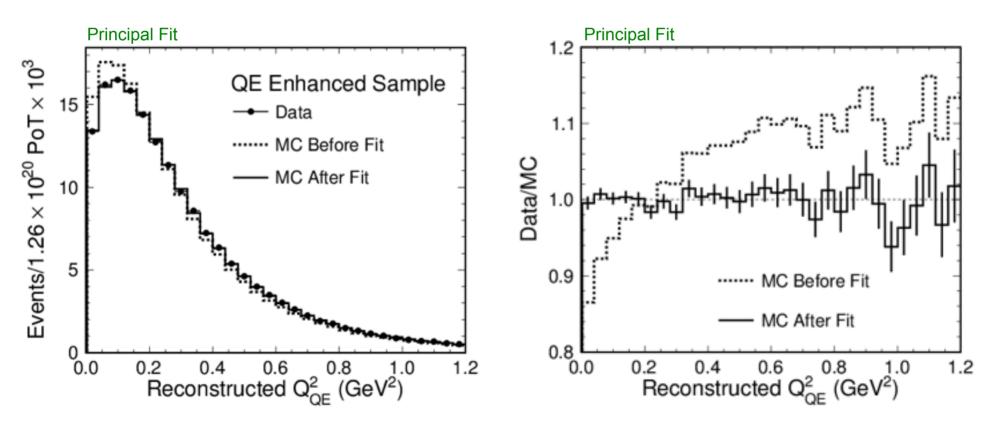
- Transition and Δ -Enhanced sub-samples
 - Used to constrain resonances in QE-Enhanced subsample.
- Fit to characterize the low Q² suppression was performed using the following procedure :
 - Transition and Δ -Enhanced samples simultaneously tuned in bins of true Q^2
 - minimize data-MC residuals in reconstructed Q² (areanormalized).
 - Smoothing procedure applied at each step.
 - Final 1-parameter fit determines the strength of the suppression function.

- The error band includes systematic errors.
- Systematic errors determined using alternative shapes, along with various model considerations, and reconstruction issues.
 - Alternative shapes dominate the error contribution for Q² > 0.3 GeV².
 - Physics considerations dominate for Q² < 0.3 GeV².


- The fitting does a good job of describing both samples simultaneously.
- The only discrepancy is in the Δ -enhanced sample₂₀ which also has the largest QE contamination.

Fit Procedure: Extract Effective M_A^{QE} From Shape Fit to Q²

- Three nuisance parameters included in fit:
 - Stopping muon energy scale: E
 - Resonance axial mass: M_{Δ}^{RES}
 - Quasi-elastic Pauli blocking parameter: k^{QE}
 Fermi
- Secondary Fit also performed
 - 0.3 < Q² < 1.2 (GeV)
 - k^{QE}Fermi not used.


 χ^2 includes MC statistics:

$$\chi^2 = \sum_{i=1}^{\#bins} \frac{(N_i^{obs} - N_i^{MC}(\alpha_1, \dots, \alpha_N))^2}{(N_i^{obs} + S \cdot N_i^{MC}(\alpha_1, \dots, \alpha_N))} + \sum_{j=2}^N \frac{\Delta \alpha_j^2}{\sigma_{\alpha_j}^2}$$

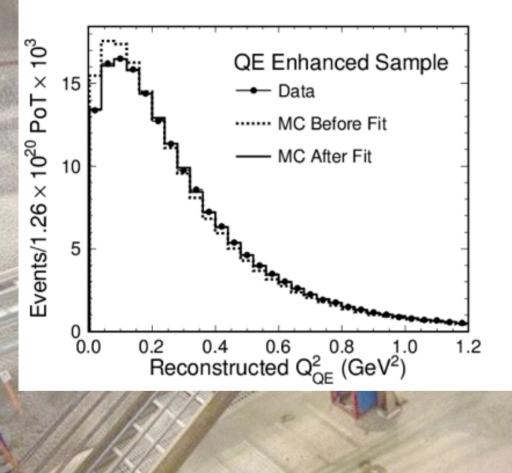
Fit Results

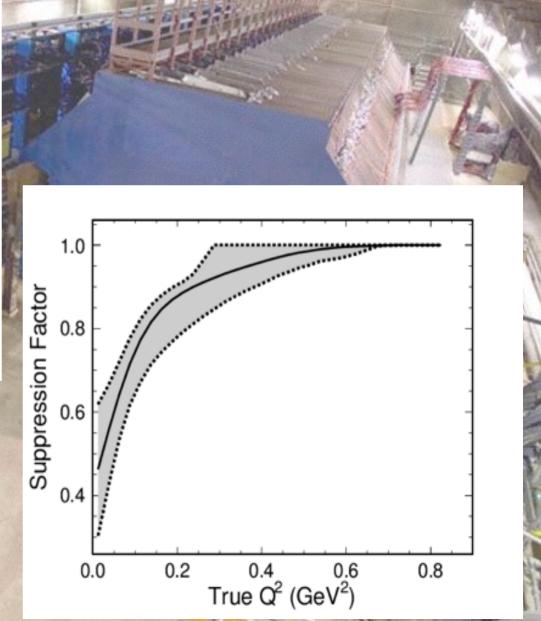
	M _A QE (GeV)	E _µ -Scale	M _A ^{Res} (GeV)	k _{Fermi} QE
Principal: 0.0 < Q ² < 1.2	1.23 +0.13 -0.09	1.00 <u>+</u> 0.01	1.09 +0.14 -0.15	1.06 <u>+</u> 0.02
Alternate: 0.3 < Q ² < 1.2	1.22 +0.18 -0.11	1.00 +0.01 -0.02	1.09 +0.15 -0.16	Not fit

Systematic Errors

$M_A^{QE} = 1.23^{+0.13}_{-0.09} (fit)^{+0.12}_{-0.15} (syst) GeV$

Systematic Error Source	Fit Q ² Range 0.0 < Q ² < 1.2 (GeV)		
	+ shift (GeV)	- shift (GeV)	
CCQE E _{had} Selection	0.062	0.062	
Δ/N [*] Low Q ² Suppression	0.005	0.088	
Intranuclear Scattering	0.066	0.066	
Detector Model in <i>x,z</i>	0.059	0.059	
Other Systematics	0.056	0.053	
Quadrature Sum	0.122	0.149	

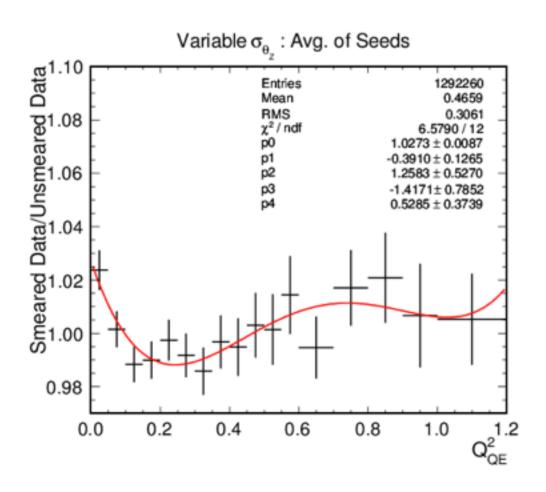

Conclusion


- In the resonance sector MC over-estimates the data by 20%.
- Excess primarily in low Q² region.
- Fitting procedure developed to describe this behavior.
- Suppresses low Q² resonance.
- Single resonance suppression function describes both resonance dominated subsamples.

Conclusion

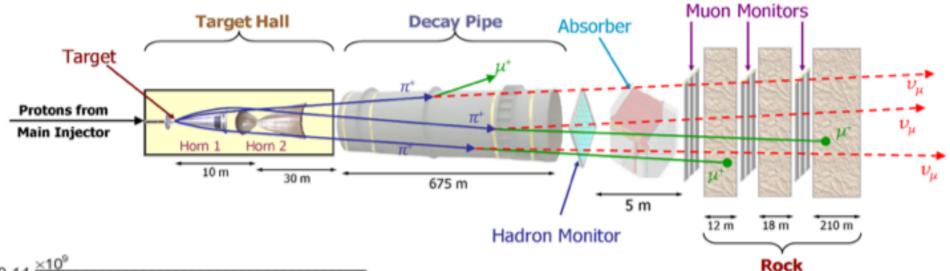
- Using a fit to the shape of the Q² distribution we extract a effective value to the axial vector mass.
- Measured effective axial vector mass is: $M_A^{QE} = 1.23^{+0.13}_{-0.09} (fit)^{+0.12}_{-0.15} (syst) GeV$
- Increased value for axial mass, deficit in low Q² resonance production. Interpreted as nuclear medium effects off of Iron.

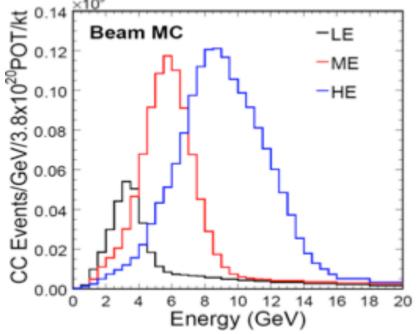
Thank You!


Backup Slides

Muon Scattering Angle Resolution

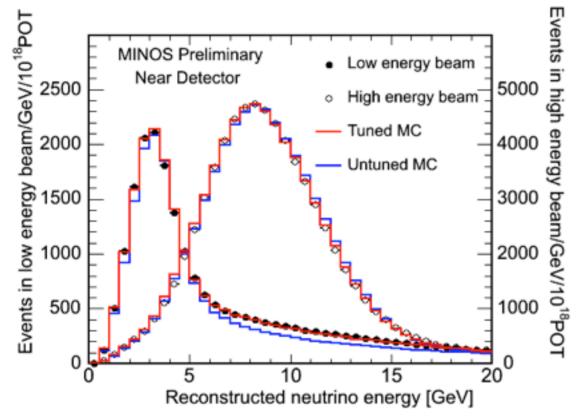
Track Length (planes)	Peak Mom. (GeV/c)	MC – Data (mrad)
15 - 45	1.6	16.0 <u>+</u> 2.0
45 - 60	2.2	12.2 <u>+</u> 2.5
60 - 75	2.6	14.1 <u>+</u> 1.6
75 - 105	3.1	10.5 <u>+</u> 1.0
105 - 150	4.3	4.1 <u>+</u> 2.2
150 - 240	6.2	-2.1 <u>+</u> 3.4


- This discrepancy in the angular resolution between data and MC gives rise to mild flattening of the MC Q^2 .
- Because this is attributable to mismodeling in the MC it must be accounted for to minimize it's effect on the final results. 28


Muon Scattering Angle Resolution

- We characterized this discrepancy by adding additional smearing to the <u>data</u> in a manner that matches the behavior of the MC and comparing it to the un-smeared <u>data</u>.
- The resulting ratio is fit to a 4th order polynomial.
- The inverse of this polynomial is applied as a correction to the MC

The NuMI Beam



- The distance between the target and the first horn could be changed to give a variable beam energy.
- This was used to break correlations between beam flux effects and cross section effects.
- In the low energy configuration the beam comprises:

92.9%
$$\nu_{\mu}$$
, 5.8% $\overline{\nu_{\mu}}$, 1.3% ν_{e} + $\overline{\nu_{e}}^{30}$

Energy Spectra and Flux Tuning

- Different beam configurations sample different regions in parent hadron x_f and p_T .
- We fit the data and tune our FLUKA hadron production model.
- The fits also include nuisance parameters for beam optics effects, NC cross section and ND energy scales.

• This flux-tuning procedure has been very successful and all of the MC distributions shown in my talk will use the tuned hadron production model.