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Topics
● MINOS Near Detector 
● Motivation and the CCQE interaction 
● Reconstructing MINOS Low Q2 interactions 
● Event selection 

− Charged Current 
− CCQE and sideband selection 

● Data driven background treatment 
● Fit Procedure and final results 
● Systematic uncertainties 
● Conclusion



The MINOS Near Detector (ND)
Steel Plane

PMT Dark 
Box

Multi-Anode 
PMT

WLS  
Fibres

Strips on adjacent planes 
are mounted orthogonal  

to allow for 3D event  
reconstruction.

Segmentation:  
    5.94cm longitudinal 
    4.1cm transverse

Scint.: 1cm thick, 4.1cm wide

• 1km from target 
•  0.98 kton, 30 ton fiducial 
•  282 steel planes 
•  B = 1.2 T

• Instrumented with QIE electronics 
 (Zero deadtime) 
   
•Scintilator tracking calorimeter. 
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The CCQE Interaction

The quasielastic  
axial-vector mass

● A,B,C are function of the nucleon form factors, depend on: 
● Vector form factors measured in electron scattering. 
● Dipole form of axial vector form factor.   

● Axial form factor can only be determined from neutrino scattering.

'Dipole Form'
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Motivation

● In the past decade understanding of the nucleon form factors have 
undergone a transition. 

● From constant; Then varying with nucleus; Now effective parameter, that 
absorbs other nuclear physics effects. 

● Neutrino BC experiments on D2 target measure MA
QE~1.0 GeV.  

● NOMAD with C target, higher Eν also measures MA
QE~1.0 GeV. 

● More recent experiments with carbon targets (K2K, MiniBooNE, SciBooNE) measure 
MA

QE~1.25 GeV. 

● MINOS has a high statistics sample of 189,000 QE candidates on iron recorded in a 
magnetized tracking spectrometer.

Experiment Energy (GeV) Target MQE
A

D2 B.C. 1 Deuterium 1.03± 0.05

NOMAD 3 to 100 Carbon 1.07± 0.09

K2K 1.0 to 2.5 O+Al, C 1.2 ⇠ 1.3

MiniBooNE 0.5 to 1.0 Carbon 1.2 ⇠ 1.3

MINERvA 1-8 Carbon Nuclear E↵ects Beyond RFG

MINOS 1-8 Iron This Talk
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Reconstruction
● Reconstruct full muon kinematics 
● Reconstruct the Energy of Hadron 

Shower 
● From these variables calculate the 

following kinematic quantities:
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Event Selection  
(Charged Current)

● First remove majority of NC events by requiring at least 1 
track 
− Further enrich sample using multi-variate technique (kNN) 

● kNN combines variables that differentiate between muons 
and protons/pions seen in NC interactions.

ND

Good agreement  
between data  

and MC.

ND

CC Selection Efficiency 
NC Contamination
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Event Selection 
 (CCQE & Sidebands)

● CC selected events are divided into several 
sub-samples 
− DIS, Δ-enhanced and transition (resonance) , QE. 
− primarily by the hadronic invariant mass W. 

● These sub-samples are either  
− Analyzed as signal  
− Used to characterize the non-QE 

background within the signal sub-sample.
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Event Selection  
(CC-DIS)

● W > 2.0 GeV 
● Examine low/high Q2 

separately. 
● High Q2 DIS sample 

matches data well. 
● Low Q2 has: 

− RES/QE component. 
− Data/MC disagreement.
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Event Selection  
(RES to DIS Transition)

● 1.3 < W < 2.0 GeV 
● Dominated by baryon 

resonance production. 
● Low Q2 discrepancy 

can not be due to QE 
alone.
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Event Selection  
(QE/Δ)

● W < 1.3 GeV 
● Model over predicts 

data at low Q2. 
● Not used directly in 

the analysis 
● Divided by Ehad into 

− CCQE sample 
− Δ-Enhanced sideband
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Event Selection  
(Δ-Enhanced)

● QE/Δ & EHad>250 MeV
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Event Selection  
(Δ-Enhanced)

● QE/Δ & EHad>250 MeV 

● Ehad, total energy in the 
hadron system 
− CCQE expected to have 

less Ehad than other 
interaction types.
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Event Selection  
(Δ-Enhanced)

● QE/Δ & EHad>250 MeV 
● Dominated by RES 

particularly in the        
Q2 < 0.5 GeV region. 

● Significant QE 
contribution.
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Event Selection 
(QE-Enhanced)

● QE/Δ & EHad<225 MeV
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Event Selection 
(QE-Enhanced)

● QE/Δ & EHad<225 MeV 

● Ehad, total energy of the 
hadron system 
− CCQE expected to have 

less Ehad than other 
interactions types.
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Event Selection 
(QE-Enhanced)

● QE/Δ & EHad<225 MeV 
● Dominated by QE 
● RES and DIS 

contamination.
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Data Driven Background 
Treatment

● When DIS dominate the MC, data well is 
described. 

● When resonances dominate the MC, data is not 
well described. 

● Resonance nuclear model is simplified RFG, 
with no Pauli-Blocking.   

● Use data sidebands to determine a function that 
better describes the data when resonances 
dominate.
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● Transition and Δ-Enhanced sub-samples 
− Used to constrain resonances in QE-Enhanced sub-

sample. 
● Fit to characterize the low Q2 suppression was 

performed using the following procedure : 
− Transition and Δ-Enhanced samples simultaneously tuned 

in bins of true Q2  
− minimize data-MC residuals in reconstructed Q2 ( area-

normalized).  
− Smoothing procedure applied at each step. 
− Final 1-parameter fit determines the strength of the 

suppression function.

Data Driven Background 
Treatment
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● The error band includes 
systematic errors. 

● Systematic errors 
determined using 
alternative shapes, along 
with various model 
considerations, and 
reconstruction issues. 
− Alternative shapes 

dominate the error 
contribution for    Q2 > 0.3 
GeV2. 

− Physics considerations 
dominate for                      
Q2  < 0.3 GeV2.

Data Driven Background 
Treatment
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● The fitting does a good job of describing both 
samples simultaneously. 

● The only discrepancy is in the Δ-enhanced sample 
which also has the largest QE contamination. 

Data Driven Background 
Treatment
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Fit Procedure:  
Extract Effective MA

QE From Shape Fit to Q2

● Three nuisance parameters included in fit: 
● Stopping muon energy scale: Eµ 
● Resonance axial mass: MA

RES 

● Quasi-elastic Pauli blocking parameter: kQE
Fermi 

● Secondary Fit also performed 
● 0.3 < Q2 < 1.2 (GeV) 
● kQEFermi not used.

χ2 includes MC statistics:
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Fit Results
M E M k

Principal: 0.0 < Q 1.23 +0.13 
         -0.09

1.00+0.01 1.09 +0.14 
         -0.15

1.06+0.02

Alternate: 0.3 < Q 1.22 +0.18 
        -0.11

1.00 +0.01 
        -0.02

1.09 +0.15 
         -0.16

Not fit

Principal Fit Principal Fit
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Systematic Errors

Systematic Error 
Source

Fit Q2 Range 
0.0 < Q2 < 1.2 (GeV)

+ shift (GeV) - shift (GeV)

CCQE Ehad Selection 0.062 0.062

Δ/N* Low Q2 Suppression 0.005 0.088
Intranuclear Scattering 0.066 0.066
Detector Model in x,z 0.059 0.059
Other Systematics 0.056 0.053
Quadrature Sum 0.122 0.149
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Conclusion
● In the resonance sector MC over-estimates the 

data by 20%. 
● Excess primarily in low Q2 region.   
● Fitting procedure developed to describe this 

behavior. 
● Suppresses low Q2 resonance. 
● Single resonance suppression function 

describes both resonance dominated sub-
samples.
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Conclusion
● Using a fit to the shape of the Q2 distribution we 

extract a effective value to the axial vector 
mass. 

● Measured effective axial vector mass is: 
!
● Increased value for axial mass, deficit in low Q2 

resonance production.  Interpreted as nuclear 
medium effects off of Iron.
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Thank You!
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Backup Slides
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Muon Scattering Angle 
Resolution

Track Length 
(planes)

Peak Mom. 
(GeV/c)

MC – Data 
(mrad)

15 - 45 1.6 16.0 + 2.0

45 - 60 2.2 12.2 + 2.5

60 - 75 2.6 14.1 + 1.6

75 - 105 3.1 10.5 + 1.0

105 - 150 4.3 4.1 + 2.2

150 - 240 6.2 -2.1 + 3.4

● This discrepancy in 
the angular resolution 
between data and MC 
gives rise to mild 
flattening of the MC 
Q2. 

● Because this is 
attributable to mis-
modeling in the MC it 
must be accounted for 
to minimize it's effect 
on the final results.
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Muon Scattering Angle 
Resolution

● We characterized this 
discrepancy by adding 
additional smearing to 
the data in a manner that 
matches the behavior of 
the MC and comparing it 
to the un-smeared data. 

● The resulting ratio is fit to 
a 4th order polynomial. 

● The inverse of this 
polynomial is applied as 
a correction to the MC
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The NuMI Beam

● The distance between the target and 
the first horn could be changed to give 
a variable beam energy. 

● This was used to break correlations 
between beam flux effects and cross 
section effects. 

● In the low energy configuration the 
beam comprises:
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8NUINT 09, CC/NC QE Scattering, 19th May 2009

•  Different beam configurations 
   sample different regions in 
   parent hadron xf  and pT. !
•  We fit the data and tune our 
   FLUKA hadron production  
   model. !
•  The fits also include nuisance 
   parameters for beam optics 
   effects, NC cross section and 
   ND energy scales. 

•  This flux-tuning procedure has been very successful and all of the MC 
   distributions shown in my talk will use the tuned hadron production model.

Energy Spectra and Flux Tuning


