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MotivationMotivation

MICE is the

Muon

 Ionization

Cooling 

Experiment

MICE is a proof of principle  experiment to demonstrate 
that we can “cool” a beam of muons.
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MotivationMotivation

The goal of MICE is:
• Design, build, commission and operate a realistic section of muon 

cooling channel
• Measure its performance for several momenta and emittance 

settings

Results to be used to optimize Neutrino Factory and Muon Collider 
designs.
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MotivationMotivation

Why cool muons?
●muons are created as tertiary 
particles

●created with large inherent 
emittance – beam spread in 6D 
phase space:

●x, y, z
● px, py, pz

• accelerators require particles in tight bunches
• must “cool” muons – reduce emittance of beam
– “smaller beam” reduces cost of accelerator
– “smaller beam” increases luminosity

See talk by 
Ryan Bayes
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Procedure:Procedure:
Ionization CoolingIonization Cooling

•“Cooling” muons refers to reducing the 
emittance of the muon beam.

•Conventional techniques won't work (too slow)

•Due to short muon lifetime, the only viable
option is ionization cooling. Must cool AND 
accelerate muons rapidly:

– diagram vectors represent momentum
– lose momentum in pT and pL

– restore pL

●Magnetic fields increase x' & y', thus reducing 
the impact of multiple scattering
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Procedure:Procedure:
Ionization CoolingIonization Cooling

Cooling is:
– Momentum loss in all dimensions via dE/dx

Sustainable cooling is:
– “Cooling” & reestablishment of longitudinal momentum w/RF

Strong focusing at absorber yields small 

Low Z absorbers means large X0

heatingcooling
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MICE ProcedureMICE Procedure

MICE will measure a 10% cooling effect with 1% accuracy  
=> a 0.1% relative emittance measurement

1.create beam of muons

2.identify muons and reject background

3.measure muon emittance–ensemble of single measurements

4.“cool” muons in low-Z absorber

5.replenish longitudinal momentum

6.re-measure muon emittance

7.identify muons to reject electrons from  decay

Emittance change is difference of measurements
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DescriptionDescription
Beamline – create beam of muons
•Particle ID – verify/tag muons (before/after)
•Trackers – measure emittance (before/after)
•Absorber (LH2 or LiH) – cooling
•RF – replenish longitudinal momentum
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Description:Description:
Who are MICE?Who are MICE?
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STEP I

STEP IV
begin Q2 2015 

STEP V

MICE ScheduleMICE Schedule

Completed 2011 
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Step V Cooling ChannelStep V Cooling Channel

 RFCC

AFC

  TS
RFCC – RF/Coupling Coil
AFC – Absorber/Focus Coil
TS – Tracking Spectrometer: Tracker/Spectrometer Solenoid 
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Spectrometer SolenoidsSpectrometer Solenoids
●4 T superconducting solenoids
●20 cm warm bore
●2.9 m long

●5 coils:
● 1 tracker coil
● 2 end coils
● 2 matching coils
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MICE TrackingMICE Tracking
●Two trackers – before/after
●Measures x, y, x', y', z
●5 stations/tracker
●3 stereo planes/station – U/V/W
●1400 350 m fibers/plane
●double layer, 7 fibers/group
●<0.2% dead channels
●>10.5 photoelectrons/MIP
●470 m RMS position resolution
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Absorber/Focus CoilsAbsorber/Focus Coils

LH
2

Absorbers

Focus Coil
2 coils operated:
•solenoid mode
•flip mode
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RF/Coupling CoilsRF/Coupling Coils
201 MHz RF Cavity

1 of 4
RFCC

Coupling Coil

Re-acceleration with RFCC

RF
cavities

Coupling
Coil
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Step IV StatusStep IV Status

Upstream
Tracking Spectrometer

AFCAFC
Downstream

Tracking Spectrometer

See talk by 
Celeste Pidcott
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Step IV to Step V TransitionStep IV to Step V Transition

The transition from Step IV to Step V requires:

• Addition of RFCC module

• Addition of a second AFC module
• already built and under test

• Extension the Partial Return Yolk (PRY)
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RF RequirementsRF Requirements
•Demonstration of sustained cooling (MICE Step V) requires 4 RF 
cavities – total of 8 MV/m

• Each cavity is 430 mm long with a Q of 44,000 and is resonant at 201.25 MHz
• The cavities must operate in a strong magnetic field

•Driver system must provide 1 MW to each cavity (500 kW/coupler)
• Provide required energy with four 2 MW amplifier chains 
• Distribution network must not impede service access to cooling channel
• LLRF phase control of 0.5o and 1% in amplitude regulation

•Require a system to determine the RF phase in each cavity during the 
transit of each individual muon

• allows the experiment to compare the impact of the cooling channel on each 
individual particle

• comparison of tracker measurements of phase space with predictions will test 
our understanding of the cooling process
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RFCC Hardware Status:RFCC Hardware Status:
RF CavitiesRF Cavities

• 10 Cavities made, 1 electropolished
• New couplers designed and in operation
• Single cavity under test at Fermilab's MTA
• Early results:

• 1MW, 8 MV/m at 5 Hz rate
• no breakdown observed
• low radiation levels
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RFCC Hardware Status:RFCC Hardware Status:
RF Power TrainRF Power Train

•~4 kW SSPA driving ~250 kW tetrode driving 2 MW triode
•Operation: 1 Hz, 1 ms pulse, 2 MW power, 201.25 MHz
•One amplifier chain complete
•2nd chain: refurbished and tetrode commissioned

power distribution designed

• successful EU-TIARA test of full chain 
in MICE hall December 2013

amplifiers
behind shield wall
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RFCC Hardware Status:RFCC Hardware Status:
RF ControlsRF Controls

•One amplifier/pair of cavities, pairs at fixed relative phase
•LLRF uses LLRF4 boards from LBNL—hardware and software designed
•Require phase control of 0.5o and 1% amplitude regulation

•Cavities mechanically deformed by 6 pneumatically 
controlled tuner forks to maintain resonance

•Tuning range +/-350 kHz
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RFCC Hardware Status:RFCC Hardware Status:
Coupling CoilCoupling Coil

MICE Coupling Coil:
•2.6 T
•750 mm ID, 102 mm thick, 285 mm length
•Coil complete and tested
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RFCC Hardware Status:RFCC Hardware Status:
Coupling CoilCoupling Coil

• Slow training progression 
(~60 quenches)

• Good memory after 
thermal cycles

Peak current appears to be limited by cooling 
circuit limitations
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Step V Hardware Status:Step V Hardware Status:
Partial Return YolkPartial Return Yolk

MICE magnets built w/out return yoke:
• stray flux mitigated by “Partial Return Yoke” or PRY
• coupling coil generates significantly more flux than 

with the Step IV configuration

Step IV PRY 
Step V PRY 

Large ‘capped’ mid 
section around RFCC,

200 mm walls and 
250mm cap

Re-used 
Step IV PRY

100mm 
steel
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RF Phasing with MuonsRF Phasing with Muons



RF

●No particle bunching in MICE
●Must select  in phase w/RF
●ToF gives  w/~50 ps resolution
●Offline use ToF & tracker to project 
 to first RF cavity

●Require measuring RF phase wrt 
●Desire 50 ps/3=16.7 ps => 1o phase
●Cavity linewidth is ~5 kHz in   
201.25 MHz, or 2 parts in 105

●Max phase shift in 1 cycle is ~0.01o

●Can project ~100 cycles from 
measurement point, adding 1o error

●Need accurate baseline to project
●May be substantially eased by the 
LLRF feedback loop gain bandwidth

Must measure RF amplitude 
& phase for each 
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RF Phasing with MuonsRF Phasing with Muons



RF

●Require:
● 1% amplitude measurement
● 5o phase measurement

●201.25 MHz => 4.97 ns period
●5o of 4.97 ns is 69 ps
●2 solutions for phase measurement:

● Copy LLRF signal and send on precision cable to ToF1, then return signal 
on identical detector cables to detector TDCs and compare ToF and LLRF 
TDC values

● Split cavity diagnostic RF signal from cavity. Using synchronized trigger 
from LLRF for ToF TDCs to time-stamp, digitize signal and correlate offline 
with ToF TDC time-stamped information

●RF digitization is required for amplitude measurement
●Undersampling being explored for digitization
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FutureFuture

The previous slides described the canonical MICE Step V.

However in light of the recent US P5 recommendations, the 

US MAP (Muon Accelerator Program) has been directed to 

ramp down its activities.  MAP was reviewed by US DOE in 

mid-August and the US contributions to the MICE project (a 

part of the MAP) received favorable support. However, we 

have been asked to complete the project by end September 

2017, and this will impact the scope of Step V.
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FutureFuture
●DOE review of MAP/MICE recommends:

● Demonstration of ionization cooling with re-acceleration
● Equipment required to make this demonstration must be operational and taking 

data during 2017
●The collaboration is evaluating the options by which it can 
achieve this, including:
● A simplified “Step 3pi/2” configuration (might look like)
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FutureFuture
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ConclusionsConclusions
● MICE is a precision experiment: 0.1% relative measurement of 

muon ionization cooling effect for future neutrino factory 
and/or muon collider

● MICE is presently preparing for Step IV
● Transition to Step V requires additional AFC, RFCC, and PRY 

extension
● Much Step V hardware in hand
● Developing techniques to measure the relative phase and 

amplitude of the RF wrt the muon
● Recent developments in funding agencies
   will affect scope of MICE Step V

Thank you for your attentionThank you for your attention 
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Extra SlidesExtra Slides
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High energy       are
unique to future facilities.
Golden channel:
long baseline oscillations 
manifests itself by wrong sign 
muons:

Motivation:Motivation:
Neutrino FactoryNeutrino Factory

Neutrino Factory:
accelerate muons and store in 
a ring to produce neutrinos
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Motivation:Motivation:
Neutrino FactoryNeutrino Factory

Neutrino Factory

Comparison of neutrino physics 
reaches for different 
measurements.
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Motivation:Motivation:
Muon ColliderMuon Collider

+- Collider Basics:
•Center of Mass energy: 1.5-6 TeV (3 TeV)
•Luminosity > 1034 cm-2 sec-1  (350 f-1/yr)
•Compact ring for 3 TeV – 3.8 km circumference ring
•Energy resolution: 95% luminosity in dE/E ~ 0.1%

Beamstrahlung  in 
any  e+e- collider

     E/E  2
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Motivation:Motivation:
Muon AcceleratorMuon Accelerator

Fast muon cooling:
MICE (RAL)

Fast, large aperture
accelerator (FFAG)

EMMA (Daresbury)

International R&D efforts to 
meet the challenges

High-power target:
 4MW proof of principle

MERIT (CERN)
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Rutherford Appleton Laboratory

Description:Description:
The LabThe Lab

United Kingdom
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  Beam Creation Beam Creation
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Beam SelectionBeam Selection

p1 ~ p2:
beamline 
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calibration 
studies
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Beam SelectionBeam Selection

Selecting  muon
beams

for MICE 
measurements
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MICE PID:MICE PID:
DetectorsDetectors

Upstream PID:
discriminate p, , 
 Time of Flight – ToF0 & ToF1
 Threshold Cerenkov

Downstream PID:
reject decay electrons
 Time of Flight - ToF2
 Kloe-light Calorimeter - KL
 Electron-Muon Ranger -EMR
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