Workshop on FPGAs for High-Energy Physics

Single-Event Effects Testing and the Xilinx Radiation Test Consortium

presenter: Gary Swift

March 21, 2014

Overview

- SEE Testing for Space
 - Accelerated AND Accelerator-based Testing
 - Purpose
 - On-orbit rate
 - Fail signatures and design level mitigation
- XRTC (Xilinx Radiation Test Consortium)
 - Voluntary membership
 - Maximize Leveraging
 - Test Campaign Phases:
 - Static
 - Dynamic
 - Mitigation
 - Beam and/or Fault Injection Common Setup

SEE Testing's Basic Principle

SEE testing is extremely easy.

- 1. It's simply counting
- 2. Only two things to count:
 - Number of upsets
 - Total beam fluence
- 3. The facility counts the beam for you.

FPGAs: What bits can upset?

- Configuration Bits
 - Logical Function
 - Routing
 - User Options
- Block RAM
- User Flip-flops
- Control Registers

- × NAND
- × Ex-OR
- × Flip-Flop type
- × etc...

- × Type of I/O
- × Mode of Block RAM Access
- × Clock Manager
- × etc...

SEE Testing Is Hard

Difficult to do

High-Energy Accelerator

- Beam costs ~ \$1000/hr
- Travel & shipping add extra costs
- Portable test fixtures and control systems

Test Development

Special Problems

- Part De-lidding
- In Vacuum Operation

Acid Etch Plastic to Expose Die

Preparation: Thinning Flip-Chip

Technician thins DUT backside

Space Upset Rates - Three Inputs

- Measure σ vs. LET
 - Testing done at high-energy accelerator
 - Cross-section determined from circuit response
- Determine Sensitive Volume
 - Requires assumptions about device construction
 - Used to determine effect of ions that strike the device at an angle

Integrate with LET Spectrum

Prediction vs. Actual

Example: Rovers Going to Mars - Pyro Control Board

Lots of Interest → Lots of Leveraging

Xilinx, Inc. and JPL started partnering on tests

and soon had to form the Radiation Test Consortium

Goddard Space Flight Center

Boeing Satellite Systems

XRTC Test Infrastructure

Capturing detailed strip charts allows experiment to be "re-played" for smarter signature identification and later analysis and re-analysis.

Example - Strip Chart of Irradiation W/F

```
----- Log Start -----
Comment: Ar 10 MeV/u, FX1 sn: AA4419 on board 6
Time/date, Counter0, Counter1, Counter2, Counter3, Counter4, Counter5, \alpha
12/20/2009 3:39:43 PM, 80000000, 80000000, 80000000, 80000000, 80000000,
|12/20/2009 3:39:43 PM. 80000000. 80000000. 80000000. 80000000. 80000000.
12/20/2009 3:39:43 PM, 80000000, 80000000, 80000000, 80000000, 80000000,
12/20/2009 3:39:44 PM, 80000000, 80000000, 80000000, 80000000, 80000000,
12/20/2009 3:39:44 PM, 80000000, 80000000, 80000000, 80000000, 80000000,
12/20/2009 3:39:44 PM. 80000000. 80000000. 80000000. 80000000. 80000000.
12/20/2009 3:39:44 PM, 80000000, 80000000, 80000000, 80000000, 80000000,
12/20/2009 3:39:44 PM. 80000000. 80000000. 80000000. 80000000.
12/20/2009 3:39:44 PM. 80000000. 80000000. 80000000. 80000000. 80000000.
12/20/2009 3:39:44 PM, 80000000, 80000000, 80000000, 80000000, 80000000,
12/20/2009 3:39:44 PM, 80000000, 80000000, 80000000, 80000000, 80000000,
```


XRTC Motherboard History

BOTH Fault Injection & Irradiation

Dynamic Test Setup at Texas A&M Cyclotron

BEAM

Inside target room

Lots of Signals = Messy Looking

Backside

2nd Gen. Consortium Test Board

In-Vacuum Test at Texas A&M

Some significant events

- Nov '08 First silicon V-5QV into beam followed by many tests, approx. monthly
- May '09 SpaceCube flies on Hubble Repair Mission with the first V-4's in space
- Nov '09 First XRTC space experiment launched with first V-4QV in space (& SpaceCube again)
- July '10 Official V-5QV Product Announcement (at NSREC) plus shipping engineering samples to EA customers
- May '11 2nd XRTC space experiment launched with first V-5QV (ES) in space
- July '11 Official V-5QV Release Announcement (at NSREC) plus shipping flight parts
- Nov'11 First production V-5QV launched
- Feb '12 10th XRTC Annual Meeting

XRTC Mission: Beam Testing

- Feb '09 thru Jan '10 = 451 hrs of beam
- Feb '10 thru Jan '11 = 552 hrs of beam
- Feb' 11 thru Dec '11 Tests = 392 hrs of beam
- Main Proton Test Campaian:

V 10	mirroron restreampaign	
-	UCD, Nov 2011	40
-	UCD, Jan 2012	40
-	UCD, June 2012	28
-	UCD, October 2012	16
-	UCD, November 2012	45
-	UCD, December 2012	48
"Cl	eanup" Heavy Ion Tests:	
_	LBL, April 2012	16

		—	274
-	TAM, Sept. 2012		94
-	TAM, August 2012 (BYU/SEAKR)		12
-	LBL, August 2012		16
-	LBL, May 2012		16
-	LBL, April 2012		16

Total 371 beam hrs

http://parts.jpl.nasa.gov/organization/group-5144/radiation-effects-in-fpgas/xilinx/

XRTC Test Reports

XRTC Annual Meeting - 2.5 Days

Day Two Thursday March 1, 2012							
Session/Time	Presentation	Presenter					
8:00a Continental Breakfast							
B. Virtex-5QV Rad Test Results & Plans (cont'd)							
	Overview of the Static & Architecture Reports	Gary Swift (Xilinx)					
	DSPs: Overview and Update	Roberto Monreal (SWRI)					
	SET Filters & User Flip-Flops	Gary Swift (Xilinx), collab: Boeing, JPL					
	Review of "Raw" MGT Testing & Results	Roberto Monreal (SWRI)					
	I/O Beam Results: LVCMOS, Reg. & Unreg	Gary Swift (Xilinx), ack: Boeing					
10:30a	BREAK						
	MGTs: Running RapidIO in Beam	David Lee (Sandia), ack: Boeing					
•	MGTs: Running the Aurora Protocol in Beam	Prof. Mike Wirthlin (BYU)					
	V-5QV Perspective on Half-Latches	Gary Swift (Xilinx)					
•	Clocking Test Results: DCMs & PLLs	Greg Allen (JPL)					
•	I/O Features: DCI, IOSERDES, & IODELAY	Gary Swift (Xilinx), ack: Boeing					
	Beam Test Results: BRAM FIFO Update	Scott Arlo Anderson (SEAKR)					
12:40a	LUNCH & Solution Center Tours						
D. Upset Mitigation and IP	Lindate on ID Compart for Change FDCAs	Dan Digitaanna (Viling)					
· ·	Update on IP Support for Space FPGAs	Ron Digiuseppe (Xilinx)					
•	Plans for a Virtex-5QV DRAM Interface IP Update on Xilinx' TMRTool	Brian Daellenbach (Northwest Logic) Carl Carmichael (Xilinx)					
•	Update on LEON-FT & openLEON Testing	Mark Learn (Sandia)					
•	,	Lee Lerner (Luna Innovations)					
3:10p							
	XAPP588's Reference External Cfg Manager	YC Wang (Xilinx)					
·	Sandia's Internal Configuration Manager	David Lee (Sandia)					
	SEAKR's Hybrid Configuration Manager	Scott Arlo Anderson (SEAKR)					
· · · · · · · · · · · · · · · · · · ·	Plans for a Reference Internal Config Manager	YC Wang (Xilinx)					
·	First Beam Results: Virtex4 + Precision HiRel	Jeff Kaady (Mentor)					
· · · · · · · · · · · · · · · · · · ·	Upset Detection & Mitigation with Software	Nathan Rollins (BYU)					
	Virtex-4QV Updates and Thoughts	Gary Swift (Xilinx)					
5:40p	Wrap up	22) 2 (
	ap ap						

Basics of Upset Mitigation

Redundancy -

Extra information (bits) prevents all upsets from yielding system errors.

Scrubbing required –

Accumulation of errors rapidly kills mitigation effectiveness.

Effective –

Most spacecraft now fly large arrays of upset-soft memories with few or no errors.

Typically, uncorrectable errors are detectable.

Basics of Upset Mitigation - cont'd

Common sense says -

At some point, upsets will occur too rapidly and the mitigation will be "overwhelmed."

In fact, Edmonds approx. equation says –

There's not really a "cliff."

The relationships are known; the error rate:

- (1) increases with the square of upset rate
- (2) decreases linearly with faster scrub rates
- (3) is directly proportional to EDAC word size[†]

[†] EDAC word size = data bits + check bits ; EDAC=error detection and correction

Basics of Upset Mitigation - Examples

- 32 data bits + 7 check bits -
 - Cassini Solid State Recorders with 2+ Gb DRAM array is working well, in spite of architecture "flaw."
- 128 data bits + 9 check bits
 - This hidden EDAC word inside IBM Luna-C 16Mb DRAMs used on RAD6000 boards on many missions requires external accesses to prevent accumulation of upsets.
- 64 data bits + 16 check bits
 - A specially design cyclical parity scheme on the RAD750 board corrects up to 4 upsets, if confined to a nibble, allowing correct operation with a bad DRAM chip.

If U is the underlying upset rate, then the EDAC word error rate is approximately:

$$0.5 \quad x \quad \frac{T_{\text{scrub}}}{N_{\text{EDAC}}} \quad U^2$$

Mitigation – Chip-Level TMR

Maxwell's SCS750 prototype at the Texas A&M Cyclotron Facility:

Upsets by Processor

Run	uP-A	uP-B	uP-C
47.1	67	82	82
47.2	20	20	15
47.3	63	66	62
47.4	22	18	19
47.5	113	157	131
47.6	27	32	23
47.7	45	56	37

Quite Acceptable Uniformity

TMR Basics

TMR = triple-module redundancy

Three independent "legs" or domains performing identical functions

Voters are inserted – typically at feedback points

Voters are triplicated also

they are <u>not</u> a single point of failure

Error-free operation with any <u>single</u> upset

Two upsets might cause system failure

Scrubbing is again required to reduce the chance of co-resident upsets.

Model of TMR System

FPGA Workshop - March 21, 2014

TMR stops error propagation

Single upsets cannot cause errors

Error propagation requires upsets in two parallel modules.

Even multiple upsets may not cause errors

Edmonds TMR Equation – small r approx.

Edmonds TMR Equation – small r approxy/

the second moment of the distribution of N's. This is a "cousin" of the standard deviation.

$$\mathcal{M}_2 \equiv \left[\frac{1}{M} \sum_{i=1}^{M} N_i^2\right]^{1/2},$$

Example Application - BRAM Scrubber

FPGA Workshop – March 21, 2014

SEE Testing & the XRTC

In Review ...

- New Edmonds Equation for TMR is
 - General (for TMR-ed systems)
 - Powerful
 - Works over many orders-of-magnitude
 - Based on moments which are
 - Statistically meaningful
 - Of rapidly diminishing importance so only one (or two) adjustable parameters are enough
 - Calculable, in theory anyway; in practice, probably not.
 - Useful
 - In predicting system error rates in space
 - In designing appropriate in-beam testing
 - Consortium uses "three-flux" test for all mitigated experiments using spacing of an order of magnitude or more

The End

Thank you!

Any questions?