BL-TMR AND MITIGATION APPROACHES FOR FPGAS

Mike Wirthlin BYU

1. TMR Overview

Triple Modular Redundancy (TMR)

- A form of N Modular Redundancy
 - Triplicate hardware resources
 - Majority Vote on hardware outputs

- Tolerates any single fault
 - Tolerates many multiple fault combinations

TMR Granularity

Module Level

RTL Level

Logic Level

TMR Reliability

 TMR has lower reliability than nonredundant for long mission times

Reliability

 Effective TMR almost always is coupled with "repair"

TMR + Repair = Very Reliable!

$$R(t) = 1 - p_2(t)$$
(44)
=
$$\frac{(\mu + 5\lambda)\sinh(\frac{1}{2}t\sqrt{\mu^2 + 10\lambda\mu + \lambda^2})e^{-\frac{1}{2}(\mu + 5\lambda)t}}{\sqrt{\mu^2 + 10\lambda\mu + \lambda^2}}$$
+
$$\cosh(\frac{1}{2}t\sqrt{\mu^2 + 10\lambda\mu + \lambda^2})e^{-\frac{1}{2}(\mu + 5\lambda)t}$$
(45)

FPGA Configuration "Repair"

FPGA Configuration "Repair"

TMR & Scrubbing Example

Voters Before Flip Flops

Voters After Flip-Flops

More Frequent Voting

TMR Synchronization

- Fault repair through scrubbing
 - Fixes the cause of the error
 - Does NOT fix the state of the circuit
- State of circuit must be synchronized to working circuits

Synchronizing Voters

Synchronizing Voters

Clock Domain Crossing

Partial TMR

- TMR may be applied selectively
 - Failures in some circuit areas cause more harm than others
 - Some circuit areas are protected by other
 SEE mitigation techniques (TMR not needed)

- Challenge: deciding where to apply TMR
 - Circuits with feedback (state machines)
 - Circuits with high "functional influence"

Persistent vs. Non-persistent Upset

- Some upsets repaired through scrubbing
 - Non-persistent upsets: repairable through scrubbing
 - Persistent upsets: requires reconfiguration

Persistent Circuit Structures

- Non-Persistent Structure Feed-forward
- Persistent Structures Contribute to feedback
- Partial TMR Priority given to persistent structures

Full TMR

Partial TMR

TMR Automation

- TMR is relatively easy to automate
 - Analyze design
 - Replicate resources
 - Insert voters
 - Verify resulting circuit
- Different Strategies for Automated TMR
 - Netlist level
 - HDL Level
 - Selective/Partial
- Several tools available for Automatic TMR

Automated TMR Tools

TMRTool

BL-TMR

(and other several other academic projects)

2. BL-TMR

BL-TMR

- BYU-LANL TMR Tool
 - <u>BYU-LANL Triple Modular Redundancy</u>
 - Developed at BYU under the support of Lands National Laboratory (Cibola Flight Experiment)
 - Used to test TMR on many designs
 - Fault injection, Radiation testing, in Orbit
 - Testbed for experimenting with various application techniques (used for research)

Ongoing Development

- Based on the success of BL-TMR, additional funding has been provided to extend BL-TMR for additional devices, environments, and address new problems
 - Commercial companies concerned about SER rates
 - Cisco Systems
 - High Energy Physics
 - Brookhaven National Laboratory (BNL), CERN
 - Space system developers
 - SEAKR systems, Sandia, LANL, Lockheed Martin
- Interest in BL-TMR is growing
 - Commercialization currently under consideration

BL-TMR (BYU/LANL TMR)

EDIF data structure & API

 Parse, represent, and manipulate EDIF

Available tools:

- EDIF parser
- Half-latch removal
- SRL replacement
- Feedback cutset tool
- Full and partial TMR
- Detection circuitry insertion
- EDIF output

Project size

- ~50 Java packages
- 350+ Java classes
- 478,401 lines of code
- Includes contributions from CHREC member LANL

```
[brian@tiger:test] java -cp ~/jars/BLTmr.jar
byucc.edif.tools.tmr.FlattenTMR ../no tmr/synth/counters80.edf --
removeHL --full tmr --technology virtex -p xcv1000fg680 --log
counters80.log
BLTmr Tool version 0.2.3, 12 Oct 2006
Search for EDIF files in these directories: [.]
Parsing file ../no tmr/synth/counters80.edf
Removing half-latches...
Flattening
            Flattened circuit contains 3451 primitives, 3461
nets, and 13692 net connections
Processing: ASUF 1.0
Forcing triplication of instance safeConstantCell zero
Analyzing design . . .
            Full TMR requested.
Triplicating design . . .
domainreport=BLTmr domain report.txt
            Added 1931 voters.
            3431 instances out of 3451 cells triplicated (99%
coverage)
            6862 new instances added to design.
            3431 nets triplicated (6862 new nets added).
            0 ports triplicated.
```

BL-TMR User Control

- Provides significant control to user
- Can be scripted for complex BL-TMR runs

```
Usage:
java byucc.edif.tools.tmr.FlattenTMR <input file>
   [(-o|--output) <output file>]
   [(-d|--dir) dir1, dir2,..., dirN ]
   [(-f|--file) file1, file2,..., fileN ]
   [--tmrSuffix suffix1, suffix2,..., suffixN ]
   [--full tmr]
   [--tmr inports]
   [--tmr outports]
   [--no tmr p port1, port2, ..., portN ]
   [--tmr c cell type1,cell type2,...,cell typeN ]
   [--tmr i cell instance1, cell instance2, ..., cell instanceN ]
   [--no tmr c cell type1,cell type2,...,cell_typeN ]
   [--no tmr i cell instance1, cell instance2, ..., cell instanceN ]
   [--notmrFeedback]
   [--notmrInputToFeedback]
   [--notmrFeedBackOutput]
   [--notmrFeedForward]
   [--noInoutCheck]
   [--SCCSortType <{1|2|3}>]
   [--doSCCDecomposition]
   [--inputAdditionType <{1|2|3}>]
   [--outputAdditionType <{1|2|3}>]
   [--mergeFactor <mergeFactor>]
   [--optimizationFactor <optimizationFactor>]
   [--factorType <{DUF|UEF|ASUF}>]
   [--factorValue <factorValue>]
   [--low <low>]
   [--high <high>]
   [--inc <inc>]
   [--removeHL]
   [--hlConst <{0|1}>]
   [--hlUsePort <hlPortName>]
   [--technology <{virtex|virtex2}>]
   [(-p|--part) <part>]
   [--summary]
   [--log <logfile>]
   [--domainReport <domainReport>]
   [--writeConfig[:<config file>]]
   [-h|--help]
   [-v|--version]
```

For detailed usage, try `--help'

Sample Execution

```
[brian@tiger:test] java -cp ~/jars/BLTmr.jar byucc.edif.tools.tmr.FlattenTMR
../no tmr/synth/counters80.edf --removeHL --full tmr --technology virtex -p xcv1000fg680
--log counters80.log
BLTmr Tool version 0.2.3, 12 Oct 2006
Search for EDIF files in these directories: [.]
Parsing file ../no tmr/synth/counters80.edf
Removing half-latches...
Flattening
          Flattened circuit contains 3451 primitives, 3461 nets, and 13692 net
connections
Processing: ASUF 1.0
Forcing triplication of instance safeConstantCell zero
Analyzing design . . .
          Full TMR requested.
Triplicating design . . .
domainreport=BLTmr domain report.txt
          Added 1931 voters.
          3431 instances out of 3451 cells triplicated (99% coverage)
          6862 new instances added to design.
          3431 nets triplicated (6862 new nets added).
          0 ports triplicated.
```

Cost of TMR

	Size Increase	Critical Path Before TMR	Critical Path After TMR	% Increase in Critical Path
blowfish	3.1X	28.3 ns	31.7 ns	12.0%
des3	3.4X	11.1 ns	13.6 ns	22.5%
qpsk	3.1X	80.0 ns	83.9 ns	4.9%
free6502	3.3X	29.6 ns	33.1 ns	11.8%
T80	3.3X	27.8 ns	33.7 ns	21.2%
macfir	3.9X	14.4 ns	19.5 ns	35.4%
serial_divide	4.1X	9.2 ns	12.2 ns	32.6%
planet	3.1X	10.9 ns	12.6 ns	15.6%
s1488	3.1X	9.9 ns	12.0 ns	21.2%
s1494	3.1X	10.4 ns	12.2 ns	17.3%
s298	3.1X	15.8 ns	19.1 ns	20.9%
tbk	3.9X	10.3 ns	12.9 ns	25.2%
synthetic	4.0X	9.9 ns	10.4 ns	5.1%
Ifsrs	6.3X	9.0 ns	12.7 ns	41.1%
ssra_core	3.5X	6.1 ns	7.2 ns	18.0%
mean e Wirthlin, BYU	3.6X	8.17 ns	12.08 ns	16.0%

BL-TMR Incremental Results

3. Design Flow

Design Flow

pTMR Steps

- 1. Component Merging
- 2. Design Flattening
- 3. Graph Creation and Analysis
- 4. IOB Analysis
- 5. Clock Domain Analysis
- Instance Removal
- 7. Feedback Analysis
- 8. Illegal Crossing identification
- 9. TMR Prioritization & Selection
- 10. Voter Selection
- 11. Netlist generation

11. Netlist Generation

- Circuit generated from pTMR rules
 - Cells triplicated
 - Voters inserted
- Netlist created for new circuit

3. Verifying BL-TMR

Fault Injection

- Configure user design onto two identical FPGAs
- Compare results of two designs using Comparator FPGA
- Insert configuration SEUs into design under test (FPGA2) and compare results
- If discrepancies between FPGAs are found, record configuration error

SEU Insertion Example #1

Experimental Results – Design #2

LANL Cibola Flight Experiment

- Los Alamos National Laboratory technology pathfinder
 - validate FPGAs for high performance computing
 - Investigate SEU behavior of Xilinx Virtex FPGAs
- Several BYU experiments validated in orbit
 - TMR (including BL-TMR tool)
 - Duplication with Compare
 - DRAM controllers

Mike Wirthlin, BYU

Cibola Flight Experiment 560 km, 35.4° inclination

Sandia MISSE-8

Under *direction* of Sandia National Laboratory

BYU Experiments on ISS

- TMR PicoBlaze (Successful mitigation event!)
- Smart signal detection
- Reduced Precision Redundancy
- BRAM Scrubbing & BRAM ECC

Photo courtesy of Sandia National Labs

V4 FX60

Photo courtesy of NASA

Endeavor (STS-134) May 16, 2012

Photo courtesy of NASA

Radiation Testing

- Apply Ionizing Radiation to Design with TMR
 - Verify accuracy of artificial simulator
 - Identify upset in non-configuration state
 - Identify other failure modes

UC Davis, Crocker Nuclear Laboratory

- Medium-energy particle accelerator (76-inch cyclotron)
- 63 MeV proton source
- □ Flux: 1e7
 particles/cm²/second: (~1
 upset/second)
- 16 hour test (~25,000 upsets)

5. TMR Summary

Pros:

- Significant improvements in reliability
- Easy to apply (limited design effort)
- Can be applied selectively

Cons

- Requires significant hardware resources
- Negative impact on timing
- Difficult to verify

Alternatives to TMR

- Exploit specific circuit structures/styles
 - Memories, state machines, processors, etc.
 - Arithmetic structures
- Detection+
 - Detecting a fault quickly opens up many lower cost mitigation strategies
- Temporal Redundancy
- Duplication with Compare

Future Plans

- Clock domain aware TMR
- Timing aware TMR
- Improved support for clock and I/O resources
- Integrated Duplication with Compare (DWC)
- More frequent voting
- NMR (5-MR, 7-MR, etc.)
- Support for New FPGA Architectures
- Improved verification (formal verification)
- GUI support
- Improved partial TMR selection (Algorithmic pTMR)

Questions?