
BL-TMR AND MITIGATION APPROACHES

FOR FPGAS

Mike Wirthlin

BYU

1. TMR Overview

Triple Modular Redundancy (TMR)

• A form of N Modular Redundancy

– Triplicate hardware resources

– Majority Vote on hardware outputs

• Tolerates any single fault

– Tolerates many multiple fault combinations

A A

A

A

V

Mike Wirthlin, BYU

TMR Granularity

System Level Device Level

Logic Level Module Level

Mike Wirthlin, BYU

RTL Level

process(clk_int_a)

begin

 if clk_int_a'event and clk_int_a='1' then

 locked_d_a <= locked_a_int;

 if (all_locked_a = '0') then

 all_locked_a <= (locked_d_a and

 locked_d_b and locked_d_c);

 else

 all_locked_a <= tmr_voter(

 locked_d_a, locked_d_b,

 locked_d_c);

 end if;

 end if;

end process

TMR Reliability

• TMR has lower

reliability than non-

redundant for long

mission times

• Effective TMR almost

always is coupled

with “repair” Non-redundant
TMR

RnoTMR t() =
-lt

e

RTMR t() =
-2lt

3e
-3lt

-2e

• Mike Wirthlin, BYU

TMR + Repair = Very Reliable!

Mike Wirthlin, BYU

x

Configuration

Upset

FPGA Configuration “Repair”

Mike Wirthlin, BYU

x Configuration

Upset

Repaired

FPGA Configuration “Repair”

Mike Wirthlin, BYU

TMR & Scrubbing Example

Mike Wirthlin, BYU

Voters Before Flip Flops

Mike Wirthlin, BYU

Voters After Flip-Flops

Mike Wirthlin, BYU

More Frequent Voting

Mike Wirthlin, BYU

TMR Synchronization

• Fault repair through scrubbing

– Fixes the cause of the error

– Does NOT fix the state of the circuit

• State of circuit must be synchronized to

working circuits

Mike Wirthlin, BYU

Synchronizing Voters

Mike Wirthlin, BYU

Synchronizing Voters

Mike Wirthlin, BYU

Clock Domain Crossing

Mike Wirthlin, BYU

Partial TMR

• TMR may be applied selectively

– Failures in some circuit areas cause more

harm than others

– Some circuit areas are protected by other

SEE mitigation techniques (TMR not needed)

• Challenge: deciding where to apply TMR

– Circuits with feedback (state machines)

– Circuits with high “functional influence”

Mike Wirthlin, BYU

Persistent vs. Non-persistent Upset

Non-Persistent Upset

time cycle

e
rr

o
r

m
a

g
n

it
u

d
e
 Upset

Correct

Output

Bitstream

Repair Upset
Bitstream

Repair

Incorrect

Output

Persistent Upset

time cycle

e
rr

o
r

m
a
g
n
it
u
d
e

• Some upsets repaired through scrubbing

– Non-persistent upsets: repairable through scrubbing

– Persistent upsets: requires reconfiguration

• Non-Persistent Structure – Feed-forward

• Persistent Structures – Contribute to feedback

• Partial TMR – Priority given to persistent

structures

FF

FF

FF Logic Logic

Logic

Logic FF FF Logic

Persistent Circuit Structures

Mike Wirthlin, BYU

Logic FF

FF

FF Logic

Logic

Logic FFFF Logic

Logic FFFF Logic

VoterVoter

VoterVoter

VoterVoter

Logic FFFF Logic

Logic FFFF Logic

Logic FFFF Logic

FFLogic

FFLogic

Logic

FF

FF

FF

FF

FF

Logic

Logic

Logic

Logic

Full TMR

Logic

FF

FF

FF

FF

FF

Logic

Logic

Logic

Logic

Logic

FF

FF

FF

FF

FF

Logic

Logic

Logic

Logic

Logic FFFF Logic

Logic FFFF Logic

VoterVoter

VoterVoter

VoterVoter

Partial TMR

• Mike Wirthlin, BYU

TMR Automation

• TMR is relatively easy to automate
– Analyze design

– Replicate resources

– Insert voters

– Verify resulting circuit

• Different Strategies for Automated TMR
– Netlist level

– HDL Level

– Selective/Partial

• Several tools available for Automatic TMR

Mike Wirthlin, BYU

Automated TMR Tools

BL-TMR

Mike Wirthlin, BYU

(and other several other academic projects)

2. BL-TMR

BL-TMR

• BYU-LANL TMR Tool

– BYU-LANL Triple Modular Redundancy

– Developed at BYU under the support of Los

Alamos National Laboratory (Cibola Flight

Experiment)

– Used to test TMR on many designs

• Fault injection, Radiation testing, in Orbit

– Testbed for experimenting with various TMR

application techniques (used for research)

Mike Wirthlin, BYU

Ongoing Development

• Based on the success of BL-TMR, additional funding has

been provided to extend BL-TMR for additional devices,

environments, and address new problems

– Commercial companies concerned about SER rates

• Cisco Systems

– High Energy Physics

• Brookhaven National Laboratory (BNL), CERN

– Space system developers

• SEAKR systems, Sandia, LANL, Lockheed Martin

• Interest in BL-TMR is growing

– Commercialization currently under consideration

• EDIF data structure & API
– Parse, represent, and manipulate

EDIF

• Available tools:
– EDIF parser

– Half-latch removal

– SRL replacement

– Feedback cutset tool

– Full and partial TMR

– Detection circuitry insertion

– EDIF output

• Project size
– ~50 Java packages

– 350+ Java classes

– 478,401 lines of code

– Includes contributions from
CHREC member LANL

BL-TMR (BYU/LANL TMR)

[brian@tiger:test] java -cp ~/jars/BLTmr.jar

byucc.edif.tools.tmr.FlattenTMR ../no_tmr/synth/counters80.edf --

removeHL --full_tmr --technology virtex -p xcv1000fg680 --log

counters80.log

BLTmr Tool version 0.2.3, 12 Oct 2006

Search for EDIF files in these directories: [.]

Parsing file ../no_tmr/synth/counters80.edf

Removing half-latches...

Flattening

 Flattened circuit contains 3451 primitives, 3461

nets, and 13692 net connections

Processing: ASUF 1.0

Forcing triplication of instance safeConstantCell_zero

Analyzing design . . .

 Full TMR requested.

Triplicating design . . .

domainreport=BLTmr_domain_report.txt

 Added 1931 voters.

 3431 instances out of 3451 cells triplicated (99%

coverage)

 6862 new instances added to design.

 3431 nets triplicated (6862 new nets added).

 0 ports triplicated.

Tools and code available at: http://sourceforge.net/projects/byuediftools/

Mike Wirthlin, BYU

BL-TMR User Control

• Provides significant control to user

• Can be scripted for complex BL-TMR runs
Usage:

java byucc.edif.tools.tmr.FlattenTMR <input_file>

 [(-o|--output) <output_file>]

 [(-d|--dir) dir1,dir2,...,dirN]

 [(-f|--file) file1,file2,...,fileN]

 [--tmrSuffix suffix1,suffix2,...,suffixN]

 [--full_tmr]

 [--tmr_inports]

 [--tmr_outports]

 [--no_tmr_p port1,port2,...,portN]

 [--tmr_c cell_type1,cell_type2,...,cell_typeN]

 [--tmr_i cell_instance1,cell_instance2,...,cell_instanceN]

 [--no_tmr_c cell_type1,cell_type2,...,cell_typeN]

 [--no_tmr_i cell_instance1,cell_instance2,...,cell_instanceN]

 [--notmrFeedback]

 [--notmrInputToFeedback]

 [--notmrFeedBackOutput]

 [--notmrFeedForward]

 [--noInoutCheck]

 [--SCCSortType <{1|2|3}>]

 [--doSCCDecomposition]

 [--inputAdditionType <{1|2|3}>]

 [--outputAdditionType <{1|2|3}>]

 [--mergeFactor <mergeFactor>]

 [--optimizationFactor <optimizationFactor>]

 [--factorType <{DUF|UEF|ASUF}>]

 [--factorValue <factorValue>]

 [--low <low>]

 [--high <high>]

 [--inc <inc>]

 [--removeHL]

 [--hlConst <{0|1}>]

 [--hlUsePort <hlPortName>]

 [--technology <{virtex|virtex2}>]

 [(-p|--part) <part>]

 [--summary]

 [--log <logfile>]

 [--domainReport <domainReport>]

 [--writeConfig[:<config_file>]]

 [-h|--help]

 [-v|--version]

For detailed usage, try `--help'

Sample Execution

[brian@tiger:test] java -cp ~/jars/BLTmr.jar byucc.edif.tools.tmr.FlattenTMR

../no_tmr/synth/counters80.edf --removeHL --full_tmr --technology virtex -p xcv1000fg680

--log counters80.log

BLTmr Tool version 0.2.3, 12 Oct 2006

Search for EDIF files in these directories: [.]

Parsing file ../no_tmr/synth/counters80.edf

Removing half-latches...

Flattening

 Flattened circuit contains 3451 primitives, 3461 nets, and 13692 net

connections

Processing: ASUF 1.0

Forcing triplication of instance safeConstantCell_zero

Analyzing design . . .

 Full TMR requested.

Triplicating design . . .

domainreport=BLTmr_domain_report.txt

 Added 1931 voters.

 3431 instances out of 3451 cells triplicated (99% coverage)

 6862 new instances added to design.

 3431 nets triplicated (6862 new nets added).

 0 ports triplicated.

Cost of TMR

Size Increase
Critical Path
Before TMR

Critical Path
After TMR

% Increase in
Critical Path

blowfish 3.1X 28.3 ns 31.7 ns 12.0%

des3 3.4X 11.1 ns 13.6 ns 22.5%

qpsk 3.1X 80.0 ns 83.9 ns 4.9%

free6502 3.3X 29.6 ns 33.1 ns 11.8%

T80 3.3X 27.8 ns 33.7 ns 21.2%

macfir 3.9X 14.4 ns 19.5 ns 35.4%

serial_divide 4.1X 9.2 ns 12.2 ns 32.6%

planet 3.1X 10.9 ns 12.6 ns 15.6%

s1488 3.1X 9.9 ns 12.0 ns 21.2%

s1494 3.1X 10.4 ns 12.2 ns 17.3%

s298 3.1X 15.8 ns 19.1 ns 20.9%

tbk 3.9X 10.3 ns 12.9 ns 25.2%

synthetic 4.0X 9.9 ns 10.4 ns 5.1%

lfsrs 6.3X 9.0 ns 12.7 ns 41.1%

ssra_core 3.5X 6.1 ns 7.2 ns 18.0%

mean 3.6X 8.17 ns 12.08 ns 16.0%
Mike Wirthlin, BYU

BL-TMR Incremental Results

Mike Wirthlin, BYU

3. Design Flow

Design Flow

RTL Synthesis

RTL

EDIF
Netlist

pTMR Tool

Modified
Netlist

Xilinx Map,
Par, etc.

FPGA
bitfile

pTMR
Property Tags

Tagged
EDIF

Netlist

Signal
List

pTMR Parameters

pTMR Steps

1. Component Merging

2. Design Flattening

3. Graph Creation and Analysis

4. IOB Analysis

5. Clock Domain Analysis

6. Instance Removal

7. Feedback Analysis

8. Illegal Crossing identification

9. TMR Prioritization & Selection

10.Voter Selection

11.Netlist generation

11. Netlist Generation

• Circuit generated from pTMR rules

– Cells triplicated

– Voters inserted

• Netlist created for new circuit

3. Verifying BL-TMR

FPGA 1 FPGA 2

Comparator

• Configure user design onto

two identical FPGAs

• Compare results of two

designs using Comparator

FPGA

• Insert configuration SEUs

into design under test

(FPGA2) and compare

results

• If discrepancies between

FPGAs are found, record

configuration error

Fault Injection

Mike Wirthlin, BYU

SEU Insertion Example #1

FPGA 1 FPGA 2

Comparator

x

Insert configuration SEU into FPGA #2

Apply test vector to circuit input

x

FPGA1 FPGA2

x

Compare circuit results

Mike Wirthlin, BYU

Unmitigated

Experimental Results – Design #2
Synthetic (LFSR/Mult)

3,005 slices (24%) 254,840 (4.39%) 46,368 (0.80%)

Full TMR

Applied

12,165 slices (99%) 2,395 (0.041%) 671 (0.005%)

FPGA Editor Layout Sensitivity Map Persistence Map

Mike Wirthlin, BYU

LANL Cibola Flight Experiment

Cibola Flight Experiment

560 km, 35.4º inclination

 Los Alamos National Laboratory
technology pathfinder
 validate FPGAs for high

performance computing
 Investigate SEU behavior of Xilinx

Virtex FPGAs

 Several BYU experiments validated
in orbit
 TMR (including BL-TMR tool)
 Duplication with Compare
 DRAM controllers

Mike Wirthlin, BYU

Sandia MISSE-8

• BYU Experiments on ISS

– TMR PicoBlaze (Successful

mitigation event!)

– Smart signal detection

– Reduced Precision Redundancy

– BRAM Scrubbing & BRAM ECC

Endeavor (STS-134)

May 16, 2012

Photo courtesy of Sandia National Labs

Photo courtesy of NASA

V4 FX60 V5QV (SIRF)

Under direction of Sandia National Laboratory

Photo courtesy of NASA

Mike Wirthlin, BYU

Radiation Testing

• Apply Ionizing Radiation to Design with TMR

– Verify accuracy of artificial simulator

– Identify upset in non-configuration state

– Identify other failure modes

FPGA Board

Proton Beam

UC Davis, Crocker Nuclear
Laboratory
 Medium-energy particle

accelerator (76-inch
cyclotron)

 63 MeV proton source
 Flux: 1e7

particles/cm2/second: (~1
upset/second)

 16 hour test (~25,000
upsets)

Mike Wirthlin, BYU

5. TMR Summary

• Pros:

– Significant improvements in reliability

– Easy to apply (limited design effort)

– Can be applied selectively

• Cons

– Requires significant hardware resources

– Negative impact on timing

– Difficult to verify

 Mike Wirthlin, BYU

Alternatives to TMR

• Exploit specific circuit structures/styles

– Memories, state machines, processors, etc.

– Arithmetic structures

• Detection+

– Detecting a fault quickly opens up many lower

cost mitigation strategies

• Temporal Redundancy

• Duplication with Compare

Mike Wirthlin, BYU

Future Plans

• Clock domain aware TMR

• Timing aware TMR

• Improved support for clock and I/O resources

• Integrated Duplication with Compare (DWC)

• More frequent voting

• NMR (5-MR, 7-MR, etc.)

• Support for New FPGA Architectures

• Improved verification (formal verification)

• GUI support

• Improved partial TMR selection (Algorithmic pTMR)

Questions?

Mike Wirthlin, BYU

