Workshop on FPGAs for High-Energy Physics - CERN -

Proton irradiation test of an Altera SRAM-based FPGA for the possible usage in the readout electronics of the LHCb experiment

C. Färber, U. Uwer, D. Wiedner, B. Leverington Heidelberg University

Content

- Introduction
- FPGA test board (TDC) and irradiation setup
- Results related to TID
 - FPGA currents
 - FPGA-based TDC
 - PLL stability
 - GBit/s transceivers
- Results related to SEUs
 - GBit/s transceivers
 - Configuration registers
- Summary

Introduction

- The LHCb upgrade
 - 40MHz readout and flexible software trigger
 - Increase luminosity → 2 x 10³³cm⁻²s⁻¹
 - Current readout chips need upgrade

- Possible solution for regions with lower rad. levels:
 - Modern SRAM-based FPGAs with high bandwidth transceivers

Total expected dose for LHCb main tracker area (outer boundary)

	Current situation	Upgrade situation
Total dose	3 krad	29 krad
1MeV neutron	4 x 10 ¹¹	4 x 10 ¹²

FPGA irradiation test board

- Arria GX EP1AGX35DF780I6 (90nm)
- FPGA used as TDC and Gbit/s trans. (2 x 3.125GBit/s)
- Test board pin-compatible with existing Front-end electronics of the LHCb Outer Tracker detector

Irradiation Setup

- Two test boards irradiated with 22 MeV protons*
- Each FPGA irradiated in several irr. cycles
 - Proton flux:

2 x 10⁷ protons*Hz/cm² - 6 x 10⁹ protons*Hz/cm²

Dose per irr. cycle:4.5 krad(Si) – 5 Mrad(Si)

- TID: up to 7 and 31 Mrad(Si)
- For precise dosimetry to measure beam profile

^{*} Average energy deposit in Si of FPGA: 4.7MeV

Setup: Beam Profile Measurement

- Used straw-tube module with 1 layer of 32 straws (Ø=0.5cm)
- Perpenticular to the straws used a collimator

Dose determination

Expected dose from measured beam profile:

Cross-check with dosimeters:

	Meas. Dose [Mrad]	Calc. Dose Alanine [Mrad]
Position 1	~0 / 0.070	0.06 / 0.06
Position 2	0.15 / 0.25	0.12 / 0.32
Position 3	8.2 / 12.2(max)	7.9 / 14.0

Calc. Dose FPGA:
31.2 Mrad

Reasonable agreement between expectations and measurements

FPGA currents

The electric currents of different voltages of the FPGA were monitored

FPGA Core current rises after 150 krad(Si) and reaches 107% after 7 Mrad(Si).

FPGA I/O current starts to drop after 400 krad(Si) and reaches 94% at 7 Mrad(Si).

All permanent current changes are between 5% - 20% and begin after 150 krad(Si).

Stability of Implemented TDC

- 32 channel FPGA-based TDC was tested
 - TDC bin size: 790 ps
 - TDC design uses fast counters + fine timing with phase shifted clocks
- To test TDC: Measure time of constant delayed signal

- Wrong time measurement after a TID of 400 krad(Si)
- Shifted time measurement after a TID of 4 Mrad(Si)

PLL stability

- PLL stability crucial for TDC design
- 3 PLL clock signals monitored with a 1 GHz oscilloscope
- The 3 frequencies did not changed
- The phase between clk1 and clk2 shows a shift from -150° to larger values after 3 Mrad(Si)

FPGA Gbit/s Transceiver Tests 1/2

- 1. Gbit link: Loop back → BERT (PRNG data)
- 2. Gbit link: TDC data transmission to a StratixIV FPGA
- Between the irradiation cycles (no irradiation):
 - No bit error found
 - BER upper limit

 10⁻¹² 10⁻¹¹

 errors per bit

 due to

 meas. time

 Both links stopped after 23Mrad(Si)

FPGA Gbit/s Transceiver Tests 2/2

- During the irradiation two types of errors found
 - 1. Loss of bit alignment
 - Recovered by sending heat next bit alignment word ross section:

 (1.3±0.5) x10⁻¹⁰cm²/GBit tra. - Recovered by sending
 - Cross section:

- Needed reprogramming of the FPGA
- Cross section:

(8±4) x10⁻¹¹cm²/GBit transceiver

FPGA configuration registers

- Used cyclic redundancy checker tool from Altera
- For an irradiation intensity 54000 times the expected one, one error every (28 ± 3) seconds was found
- Proton flux:
 2.3 x10⁷ protons*Hz*cm⁻²
- Cross section: (1.6±0.2) x10⁻⁹cm²/FPGA

Scale to upgrade:
 Expected CRC every:
 1.5Msec per single FPGA

Summary

- After LHCb upgrade electronics at the outer boundary of the main tracker has to sustain ~30krad(Si).
- 2 Arria GX FPGAs have been tested with
 22 MeV protons up to a TID of 7Mrad(Si) and 31Mrad(Si).
- The FPGA sustained the expected TID of 30 krad(Si) without measurable degradation.
- The expected rate of FPGA firmware errors and resets for the Gbit transceivers seem to be manageable for the expected upgrade condition.
- An additional irradiation test with (50-200)MeV protons is foreseen in the near future to verify the SEU results.

