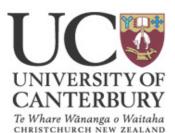
Neutrino Cosmology and Astrophysics

INSS St Andrews August 2014

Jenni Adams University of Canterbury, New Zealand

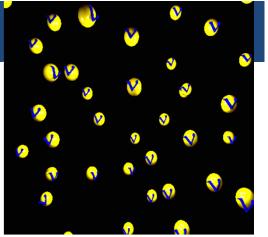


- 1. Neutrino Cosmology
- 2. High Energy Astrophysical Neutrinos
- 3. Supernova Neutrinos

In preparing these lectures I have borrowed from the excellent lectures by Georg Raffelt at the NBI Neutrino School June 2014

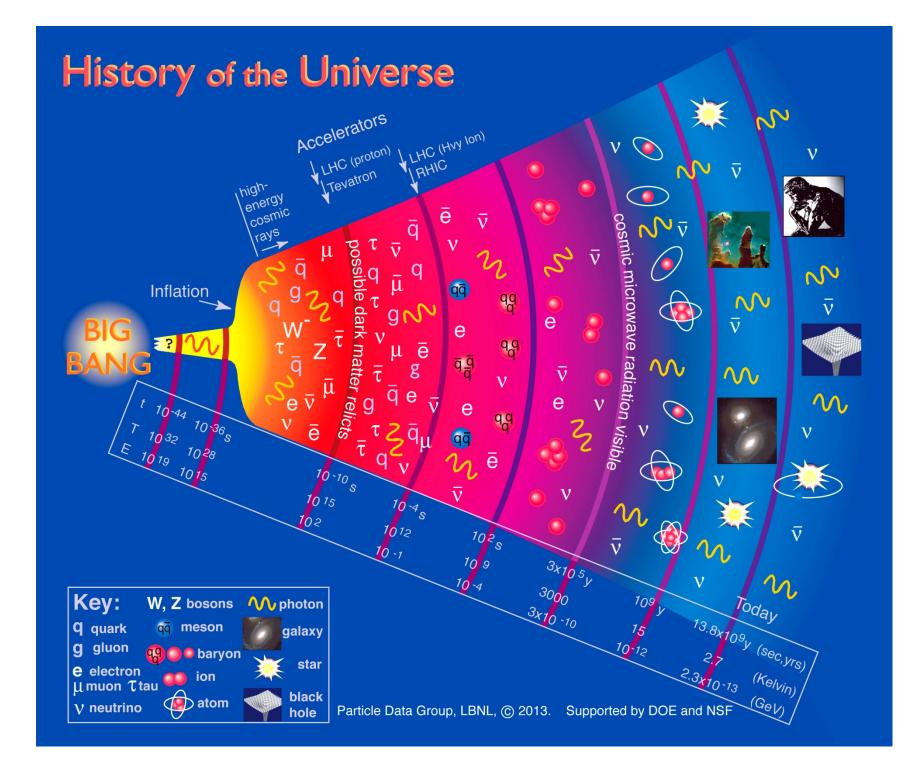
Neutrino Cosmology

 There is a cosmic background neutrino population which is a relic from the early universe



- The neutrino background affects cosmological processes
 - Primordial nucleosynthesis
 - Cosmic microwave background
 - Large structure formation
- Observations probing these processes give us information about neutrinos
- It is important to include the neutrino background effects to be able to interpret observations and learn about other constituents of the universe

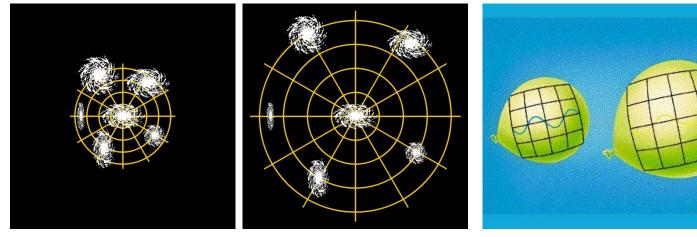
Cosmology Basics



Cosmic Expansion

Cosmic Scale Factor

Cosmic Redshift



- Space between galaxies grows
- Galaxies (stars, people) stay the same (dominated by local gravity or by electromagnetic forces)
- Cosmic scale factor today: a = 1

• Wavelength of light is "stretched"

• Suffers redshift
$$z + 1 = \frac{\lambda_{today}}{\lambda_{then}}$$

• Redshift today: z = 0

$$z + 1 = rac{\lambda_{ ext{today}}}{\lambda_{ ext{then}}} = rac{a_{ ext{today}}}{a_{ ext{then}}}$$

Friedman-Robertson-Walker-Lemaître Cosmology

- On scales ≥ 100 Mpc, space is maximally symmetric (homogeneous & isotropic)
- The corresponding Robertson-Walker metric is

$$ds^{2} = dt^{2} - a^{2}(t) \begin{bmatrix} \frac{dr^{2}}{1 - kr^{2}} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}) \\ \uparrow & \uparrow \\ Clock time Cosmic of co-moving scale observer factor \\ k = 0, \pm 1 r is dimensionless \\ k = 0, \pm 1 r is dimensionless \\ k = 0, \pm 1 \\ k = 0 \\ k = +1 \\ k$$

Friedman-Robertson-Walker-Lemaître Cosmology

- On scales ≥ 100 Mpc, space is maximally symmetric (homogeneous & isotropic)
- The corresponding Robertson-Walker metric is

$$ds^{2} = dt^{2} - a^{2}(t) \begin{bmatrix} dr^{2} \\ 1 - kr^{2} \\ \uparrow \end{bmatrix} + r^{2} (d\theta^{2} + \sin^{2}\theta \ d\phi^{2}) \end{bmatrix}$$
Clock time Cosmic Curvature Co-moving spherical coordinates of co-moving scale k = 0, ±1 r is dimensionless observer factor

• Energy-momentum tensor: perfect fluid with density ρ , pressure p

$$T^{\mu\nu} = \begin{pmatrix} \rho & & \\ & p & \\ & & p & \\ & & & p \end{pmatrix} \qquad T^{\mu\nu}_{\rm vac} = \rho g^{\mu\nu} \begin{pmatrix} \rho & & & \\ & -\rho & & \\ & & -\rho & \\ & & & -\rho \end{pmatrix}$$

Critical Density and Density Parameter

• Evolution of the cosmic scale factor a(t) is governed by the Friedman Equation

$$H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi}{3}G_{\rm N}\rho - \frac{k}{a^2R_C^2}$$

Note rate depends on density

• In a flat universe (k = 0), the relationship between H and ρ is unique

$$\rho_{\rm crit} = \frac{3H^2}{8\pi G_{\rm N}} = \frac{3}{8\pi} (Hm_{\rm Pl})^2$$
 critical density

• Cosmic density always expressed in terms of density parameters

$$\Omega = \frac{\rho}{\rho_{\rm crit}} = \frac{8\pi G_{\rm N}\rho}{3H^2}$$

• With the present-day Hubble parameter $H_0 = 67.3 \text{ km s}^{-1} \text{ Mpc}^{-1}$ we have

$$\rho_{\rm crit} = 8.51 \times 10^{-30} \,\mathrm{g \, cm^{-3}} = 5 \,\mathrm{GeV} \,\mathrm{m^{-3}} = (2.5 \,\mathrm{meV})^4$$

Most of this in the form of "dark energy"

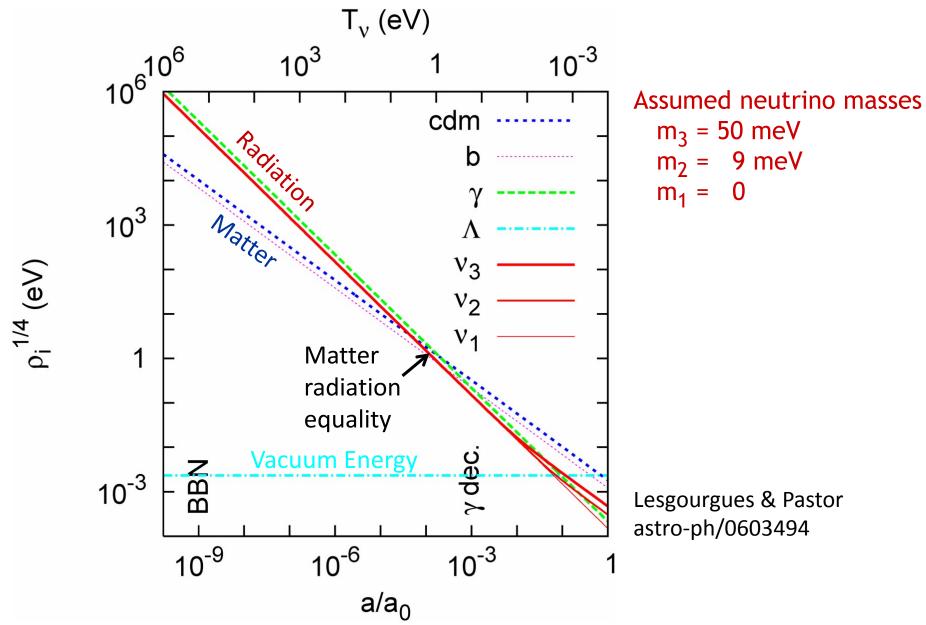
Generic Solutions of Friedman Equation

	Equation of state	Behavior of energy-density under cosmic expansion		Evolution of cosmic scale factor
Radiation	$p = \frac{\rho}{3}$	$\rho \propto a^{-4}$	Dilution of radiation and redshift of energy	$a(t) \propto t^{1/2}$
Matter	p=0	$\rho \propto a^{-3}$	Dilution of matter	$a(t) \propto t^{2/3}$
Vacuum energy	$p = -\rho$	$\rho = \text{const}$	Vacuum energy not diluted by expansion	$a(t) \propto e^{\sqrt{\Lambda/3} t}$ $\Lambda = 8\pi G_{ m N} ho_{ m vac}$

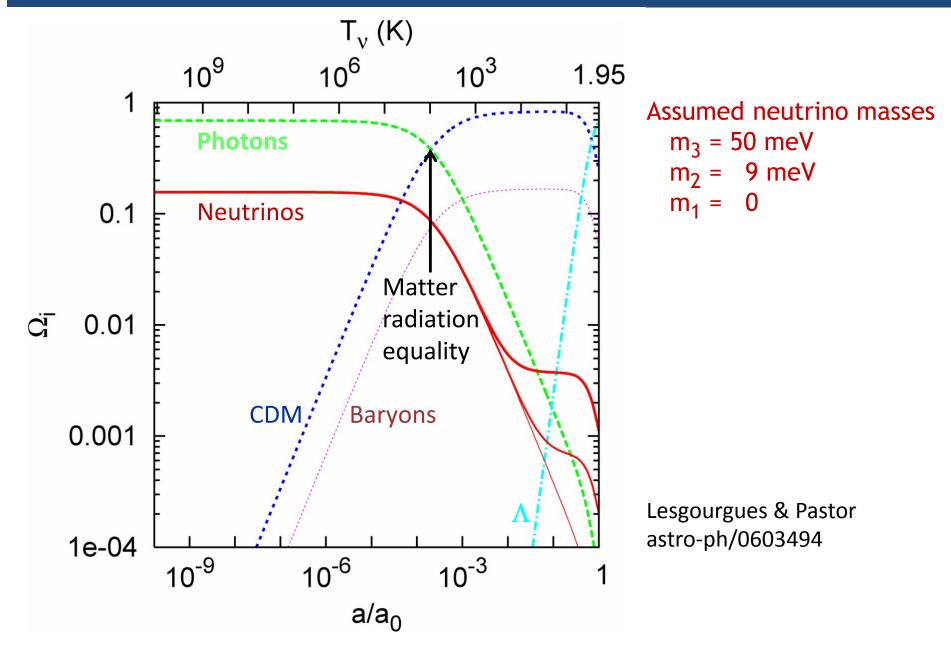
Energy-momentum tensor of a perfect fluid with density ho and pressure p

$$T^{\mu\nu} = \begin{pmatrix} \rho & & \\ & p & \\ & & p \end{pmatrix} \qquad T^{\mu\nu}_{\text{vac}} = \rho g^{\mu\nu} \begin{pmatrix} \rho & & \\ & -\rho & \\ & & -\rho & \\ & & & -\rho \end{pmatrix}$$

Evolution of Cosmic Density Components



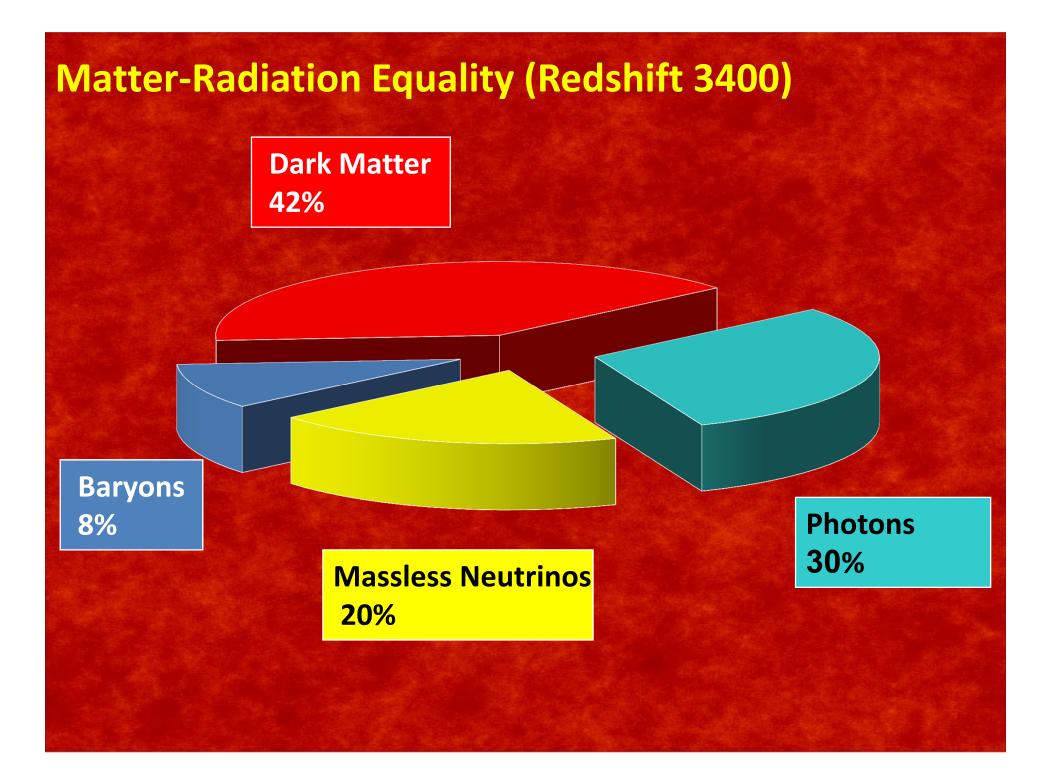
Evolution of Cosmic Density Components

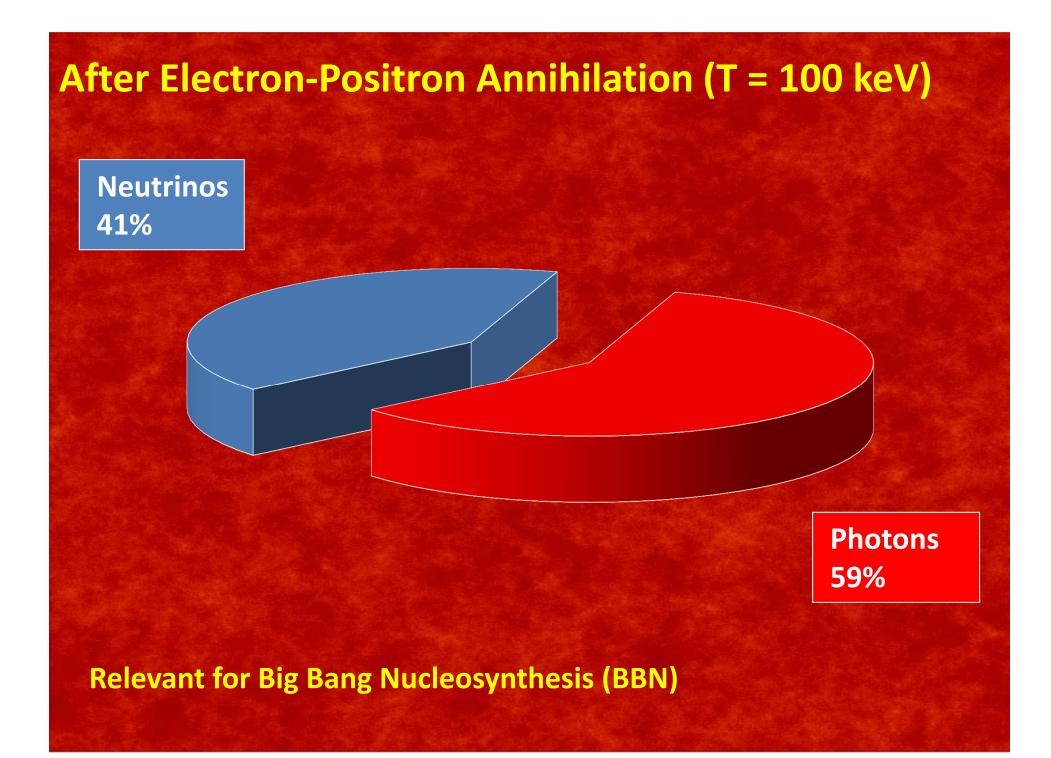


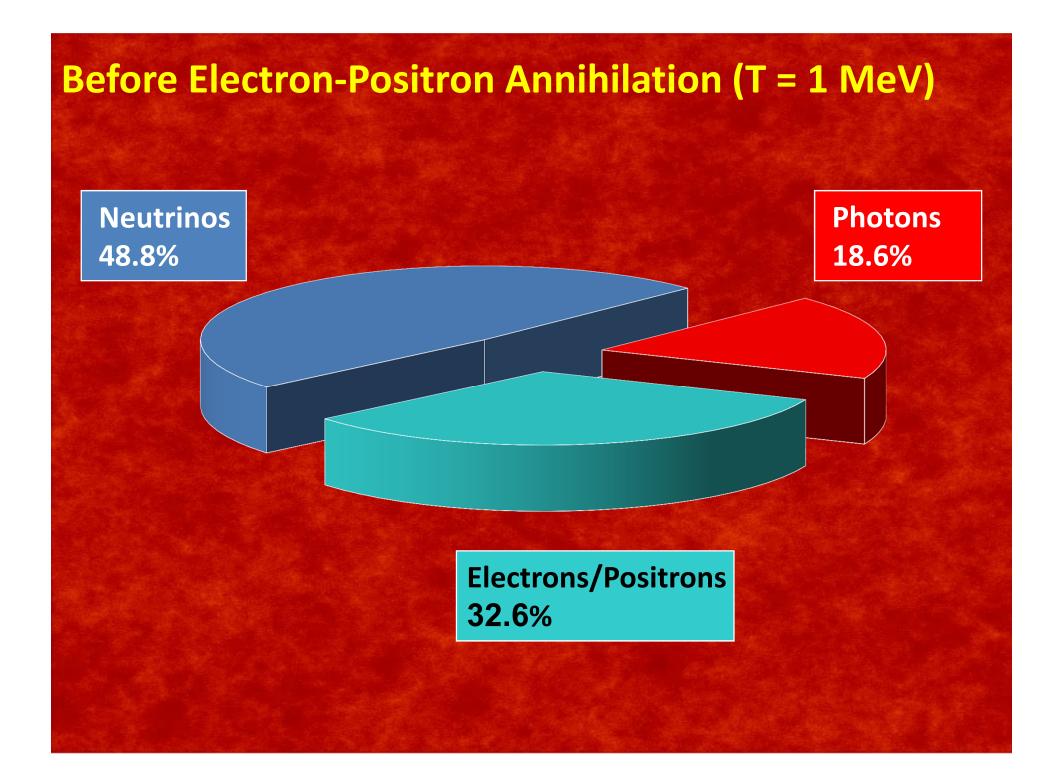
Dark Energy ~70% (Cosmological Constant)

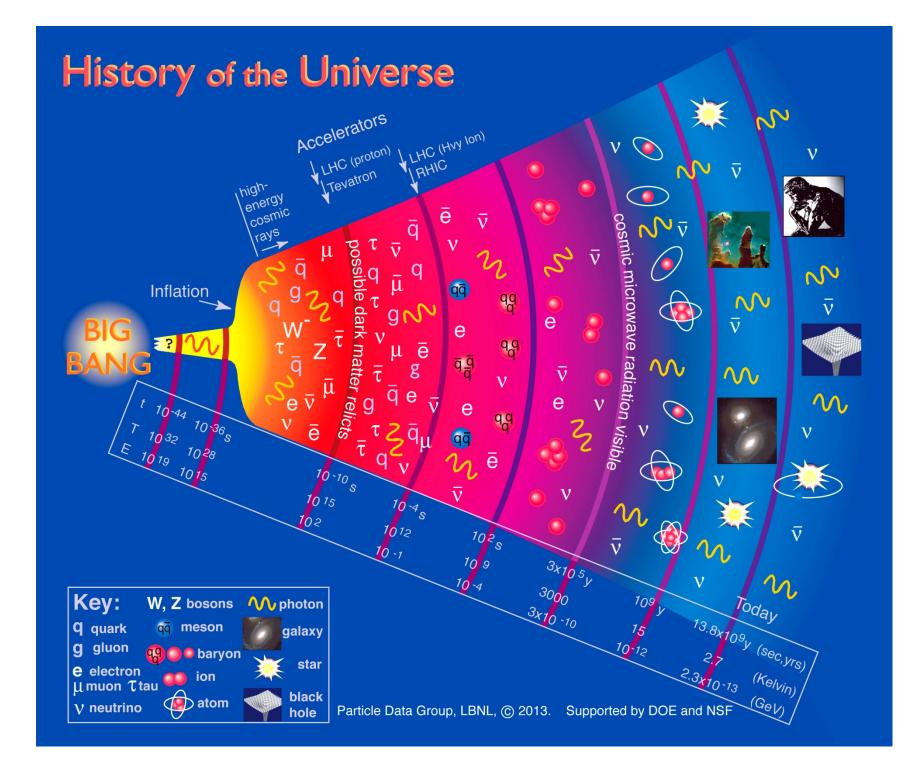
Ordinary Matter ~5% (of this only about 10% luminous)

Dark Matter ~25% Neutrinos 0.1–1%





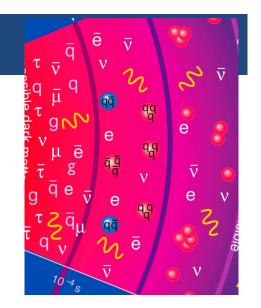




Equilibrium Particle Interactions

Boltzmann equation governs distributions

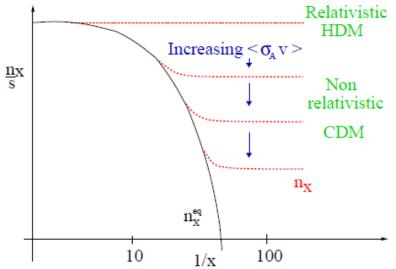
$$\frac{\mathrm{d}f_X}{\mathrm{d}t} + 3\frac{\dot{a}}{a}f_X + \langle \sigma_A v \rangle (f_X^2 - f_{Xeq}^2) = 0$$



•Two regimes:

 $\Gamma = \langle \sigma_A v \rangle n_X \qquad H \qquad \text{Thermal equilibrium}$ Interaction rate $\geq \text{Expansion rate}$ $f_{eq}(\mathbf{p}) = \frac{1}{e^{Ep/T} \pm 1} + \text{Fermions, - Bosons}$

 $\Gamma \ll H$ Freezeout Distribution constant at freezeout level, only redshifted



Thermal Radiation

	General	Bosons	Fermions
Number density n	$g\int \frac{d^3\boldsymbol{p}}{(2\pi)^3} \frac{1}{e^{E_{\boldsymbol{p}}/T} \pm 1}$	$g_B \frac{\zeta_3}{\pi^2} T^3$	$\frac{3}{4} g_F \frac{\zeta_3}{\pi^2} T^3$
Energy density ρ	$g\int \frac{d^3\boldsymbol{p}}{(2\pi)^3} \frac{E_{\boldsymbol{p}}}{e^{E_{\boldsymbol{p}}/T} \pm 1}$	$g_B \frac{\pi^2}{30} T^4$	$\frac{\frac{7}{8}}{9}g_F\frac{\pi^2}{30}T^4$
Pressure P	$g \int \frac{d^3 p}{(2\pi)^3} \frac{ p^2 }{E_p} \frac{1}{e^{E_p/T} \pm 1}$	$\frac{\rho}{3}$)
Entropy density s	$\frac{\rho + P}{T} = \frac{4}{3} \frac{\rho}{T}$	$g_B \frac{2\pi^2}{45} T^3$	$\frac{7}{8} g_F \frac{2\pi^2}{45} T^3$
	: : , 1		

 $\mathrm{d}E = T\mathrm{d}S - P\mathrm{d}V$ $TdS = (\rho + P)dV$

using integrals $\int_0^\infty \frac{x^2 dx}{\exp(x) - 1} = 2\zeta(3),$ $\int_{0}^{\infty} \frac{x^{2} dx}{\exp(x) + 1} = \frac{6}{8} \zeta(3),$ $\int_{0}^{\infty} \frac{x^{3} dx}{\exp(x) - 1} = 6\zeta(4) = \frac{\pi^{4}}{15},$ $\zeta = 1.2020569 \dots$ $\int_0^\infty \frac{x^3 dx}{\exp(x) + 1} = \frac{7}{48}\zeta(4) = \frac{7}{8}\frac{\pi^4}{15}$

Thermal Degrees of Freedom

$$g_*=g_B + \frac{7}{8}g_F$$

Mass threshold		Particles	g _B	g _F	g _*
	low	γ, 3ν	2	6	(7.25)
m _e	0.5 MeV	e [±]	2	10	10.75
m _μ	105 MeV	μ^{\pm}	2	14	14.25
m _π	135 MeV	π^0, π^{\pm}	5	14	17.25
Λ_{QCD}	\sim 170 MeV	u, d, s, gluons	18	50	61.75
m _{c,τ}	2 GeV	C, τ	18	66	75.75
m _b	6 GeV	b [±]	18	78	86.25
m _{W,Z}	90 GeV	Z ⁰ , W [±]	27	78	92.25
m _H	126 GeV	Higgs	28	78	93.25
m _t	170 GeV	t	28	90	106.75
Λ_{SUSY}	~ 1 TeV ?	SUSY particles	118	118	213.50

Neutrino Background

Neutrino Thermal Equilibrium

Neutrino reaction rate

Cosmic expansion rate

Examples of neutrino processes

$$e^{+} + e^{-} \leftrightarrow \overline{\nu} + \nu$$
$$\overline{\nu} + \nu \leftrightarrow \overline{\nu} + \nu$$
$$\nu + e^{\pm} \leftrightarrow \nu + e^{\pm}$$

Reaction rate in a thermal medium

for T \ll m_{W,Z} $\Gamma \sim G_{\rm F}^2 T^5$ Friedmann equation (flat universe)

$$\mathrm{H}^2 = \frac{8\pi}{3} \frac{\rho}{m_{\mathrm{Pl}}^2}$$

$$\left(G_{\rm N} = \frac{1}{m_{\rm Pl}^2}\right)$$

Radiation dominates

 $\rho \sim T^4$

Expansion rate H ~ $\frac{T^2}{m_{\rm Pl}}$

Condition for thermal equilibrium: $\Gamma > H$

$$T > (m_{\rm Pl}G_{\rm F}^2)^{-1/3} \sim [10^{19} {\rm GeV} (10^{-5} {\rm GeV}^{-2})^2]^{-1/3} = 1 {\rm MeV}$$

Neutrinos are in thermal equilibrium for $T \gtrsim 1 \text{ MeV}$ corresponding to $t \lesssim 1 \text{ sec}$

Present-Day Neutrino Density

Neutrino decoupling (freeze out)	$H \sim \Gamma$ $T \approx 2.4 \text{ MeV} \text{(electron flavour)}$ $T \approx 3.7 \text{ MeV} \text{(other flavours)}$		
Redshift of Fermi-Dirac distribution ("nothing changes at freeze-out")	$\boxed{\begin{array}{l} \frac{dn_{\nu\overline{\nu}}}{dE} = \frac{1}{\pi^2} \frac{E^2}{e^{E/T} + 1} & \begin{array}{l} \text{Temperature} \\ \text{scales with redshift} \\ T_{\nu} = T_{\gamma} \propto (z+1) \end{array}}$		
Electron-positron annihilation beginning at T ≈ m _e = 0.511 MeV	•Entropy of e ⁺ e ⁻ transfered to photons $g_*T_{\gamma}^3 \Big _{\text{before}} = g_*T_{\gamma}^3 \Big _{\text{after}}$ $\overbrace{2 + \frac{7}{8}4 = \frac{11}{2}}^{11}} \qquad \widehat{2}$ $\int_{\gamma}^{7} \Big _{\text{before}} = \frac{4}{11}T_{\gamma}^3 \Big _{\text{after}}$		
Redshift of neutrino and photon thermal distributions so that today we have	$n_{\nu\overline{\nu}}(1 \text{ flavor}) = \frac{4}{11} \times \frac{3}{4} \times n_{\gamma} = \frac{3}{11}n_{\gamma} \approx 112 \text{ cm}^{-3}$ $T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma} \approx 1.95 \text{ K} \text{ for massless neutrinos}$		

Present-Day Neutrino Distribution

	Normal	Inverted	
Minimal neutrino masses	$m_3^{} \gtrsim 50 \text{ meV}$	$m_1 \approx m_2 \gtrsim 50 \text{ meV}$	
from oscillation experiments	$m_2 \gtrsim 8 \text{ meV}$		
	m ₁ ≥ 0	m ₃ ≥ 0	
Temperature of massless cosmic background neutrinos	T = 1.95 K = 0.17 meV		
Cosmic redshift of momenta (not energies)	$\frac{dn_{\nu\overline{\nu}}}{dp} = \frac{1}{\pi^2} \frac{p^2}{e^{p/T} + p^2}$	$\begin{array}{c} \text{Not a thermal} \\ \text{distribution} \\ 1 \\ \text{unless T} \gg \text{m} \end{array}$	
Average velocity for m \gg T	$\langle v \rangle \approx \frac{3T}{m}$		
Normal hierarchy neutrinos	$\langle v_3 \rangle < 1 \times 10^{-2} c$	$\langle v_2 \rangle < 6 \times 10^{-2} c$	

Cosmic radiation density after e+e- annihilation

Radiation density for $N_v = 3$ standard neutrino flavors

$$\rho_{\rm rad} = \rho_{\gamma} + \rho_{\nu} = \frac{\pi^2}{15} \left(T_{\gamma}^4 + N_{\nu} \frac{7}{8} T_{\nu}^4 \right) = \left[1 + N_{\nu} \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} \right] \rho_{\gamma}$$

Cosmic radiation density is expressed in terms of "effective number of thermally excited neutrino species" N_{eff}

$$\rho_{\rm rad} = \left[1 + N_{\rm eff} \, \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} \right] \rho_{\gamma} = [1 + N_{\rm eff} \, 0.2271] \rho_{\gamma}$$

N_{eff} is a measure for the radiation density, not necessarily related to neutrinos

Residual neutrino heating by e^+e^- annihilation and corrections for finite temperature QED effects and neutrino flavor oscillations means T_{ν} not $\left(\frac{4}{11}\right)^{1/3}T_{\gamma}$

 $N_{\rm eff} = 3.046$ Standard value

 $\rho_{\rm rad} = (1 + 0.6918 + 0.2271 \,\Delta N_{\rm eff}) \,\rho_{\gamma}$

Of course, the number of known neutrino species v_e , v_{μ} , v_{τ} is exactly 3

Cosmological Limit on Neutrino Masses

Cosmic neutrino "sea" $\sim 112 \text{ cm}^{-3}$ neutrinos + anti-neutrinos per flavor

 $\Omega_{\nu}h^2 = \sum \frac{m_{\nu}}{93 \text{ eV}}$ closure bound $\Omega_{\nu}h^2 < 1 \sum m_{\nu} < 90 \text{ eV}$

REST MASS OF MUONIC NEUTRINO AND COSMOLOGY

JETP Lett. 4 (1966) 120

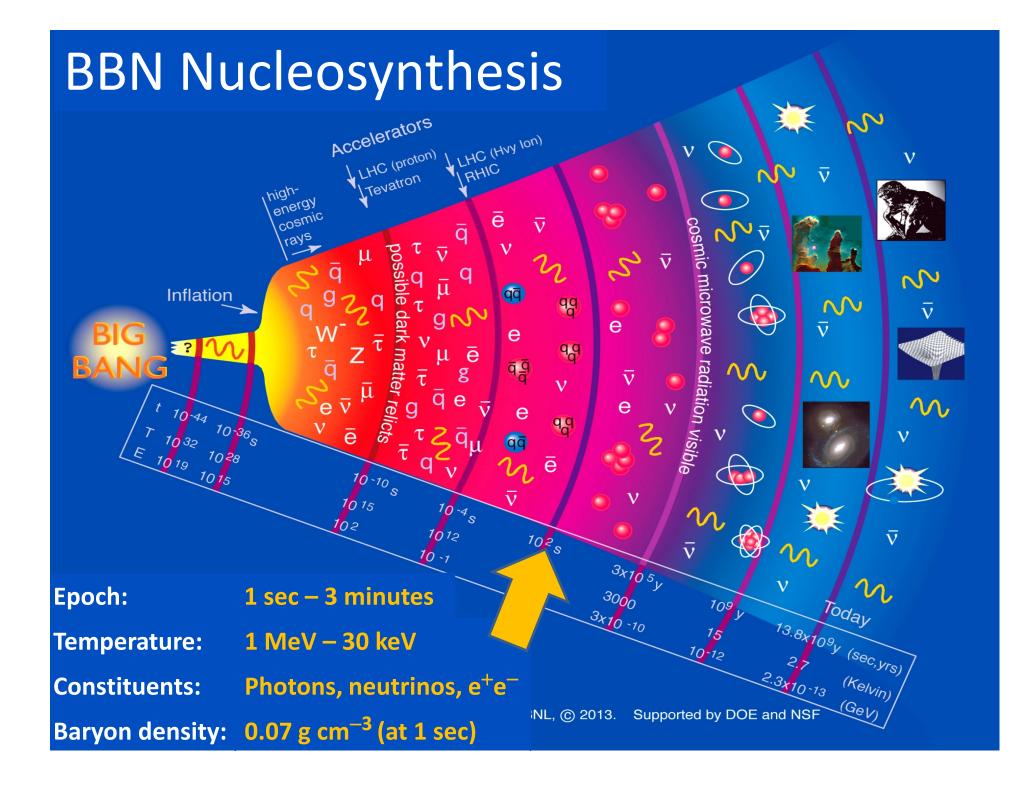
S. S. Gershtein and Ya. B. Zel'dovich Submitted 4 June 1966 ZhETF Pis'ma 4, No. 5, 174-177, 1 September 1966

Low-accuracy experimental estimates of the rest mass of the neutrino [1] yield m(v_e) < 200 eV/c² for the electronic neutrino and m(v_µ) < 2.5 x 10⁶ eV/c² for the muonic neutrino. Cosmological considerations connected with the hot model of the Universe [2] make it possible to strengthen greatly the second inequality. Just as in the paper by Ya. B. Zel'dovich and Ya. A. Smorodinskii [3], let us consider the gravitational effect of the neutrinos on the dynamics of the expanding Universe. The age of the known astronomical objects is not smaller than 5 x 10⁹ years, and Hubble's constant H is not smaller than 75 km/sec-Mparsec = (13 x 10⁹ years)⁻¹. It follows therefore that the density of all types of matter in the Universe is at the present time ¹

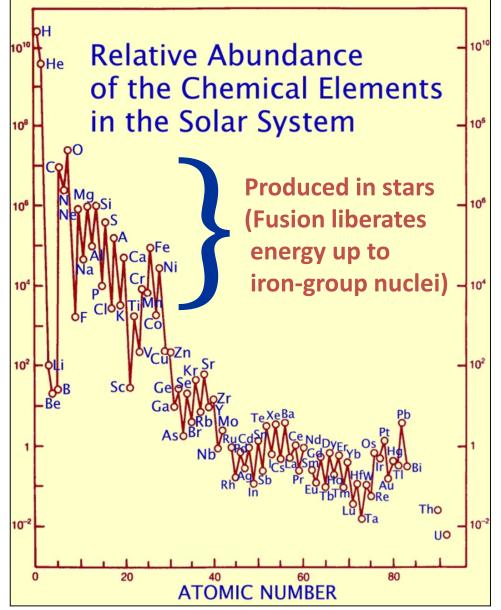
 $\rho < 2 \times 10^{-28} \text{ g/cm}^3$.

Evidence for cosmic neutrinos....indirect

- Big Bang Nucleosynthesis
- Imprint on CMB and large scale structure
- Can use observations to constrain N_{eff} and the Σ mass

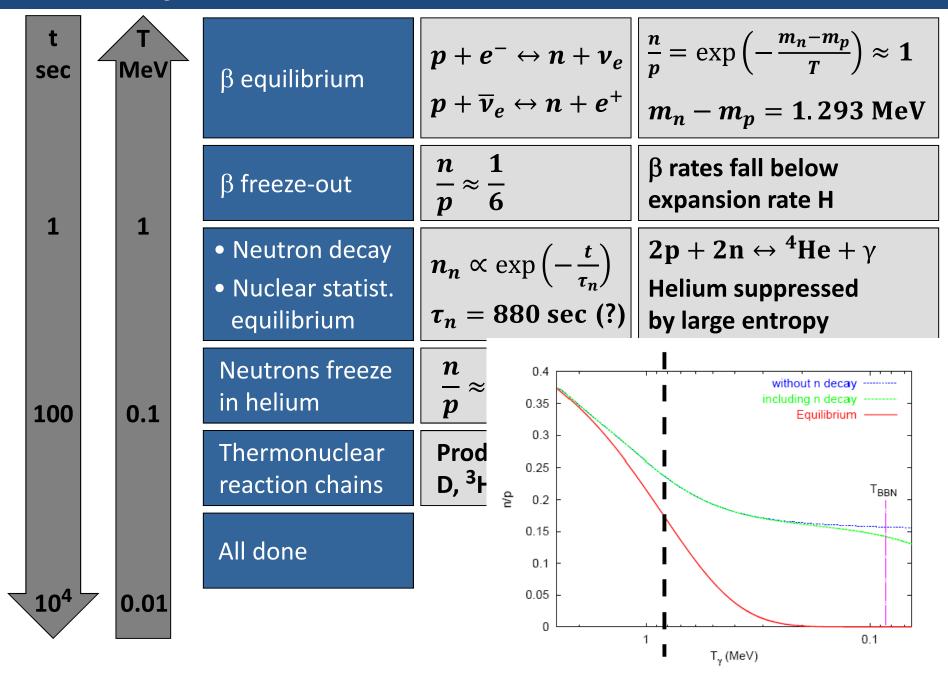


Origin of Elements



- Mass fraction of helium ~ 25% everywhere in the universe
- Most of it not produced in stars (far too little star light from liberated energy)
- Big-bang nucleosynthesis (BBN) is a pillar of modern cosmology
- Neutrinos play a crucial role

Helium Synthesis

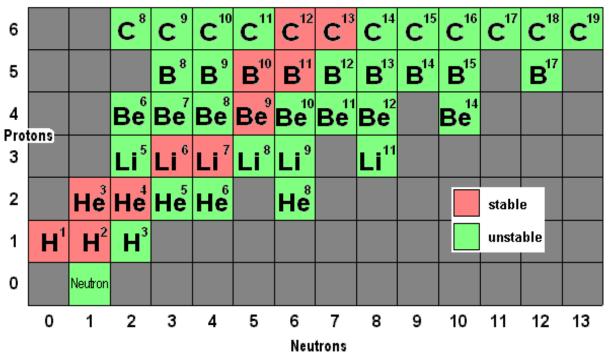


Why do nuclei form so late?

- Thermal equilibrium \rightarrow all nuclei present
- Binding energies much larger than MeV, so why are they still dissociated at weak-interaction freeze-out? Why not everything in iron?
- Basic answer: High-entropy environment with $\sim 10^9$ photons per baryon

 $Nn + Zp \leftrightarrow (A, Z) + \text{photons}$

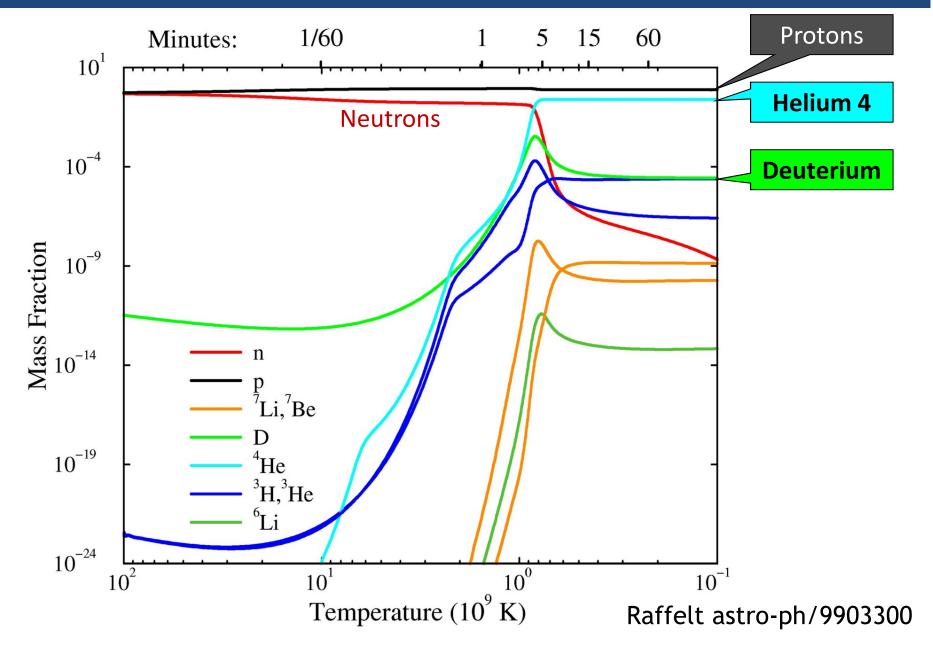
High-E tail of photon distribution enough to keep nuclei dissociated



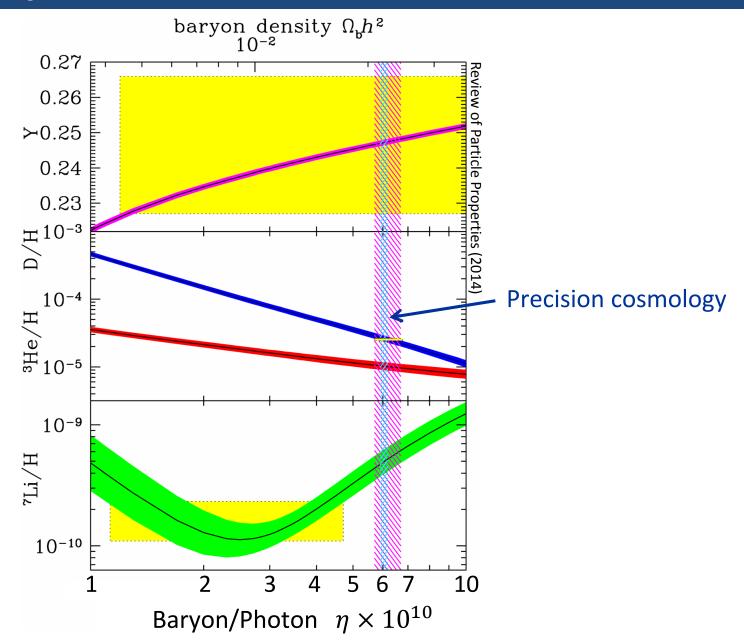
	B (MeV)	B/A (MeV)
D	2.23	1.1
³ H	6.92	2.3
³ He	7.72	2.6
⁴ He	28.30	7.1
⁶ Li	31.99	5.3
⁷ Li	39.25	5.6
⁷ Be	37.60	5.4
¹² C	92.2	7.7

Predictions depend on baryon-photon ratio

Formation of Light Elements



BBN Theory vs Observations



Neutrinos and Big Bang Nucleosynthesis

- Universe is radiation dominated
- The presence of neutrinos in radiation affects the expansion rate $11^2 = \frac{8\pi}{\rho}$

$$\mathrm{H}^2 = \frac{8\pi}{3} \frac{\rho}{m_{\mathrm{Pl}}^2} \checkmark$$

- Higher expansion rate means higher freezeout temperature and greater n/p ratio
- Neutrino asymmetry would also affect the weak interactions (come back to this)

$$\overline{\nu}_e + p \rightarrow e^+ + n$$

$$\nu_e + n \rightarrow e^- + p$$

Cosmic radiation density after e+e- annihilation

Radiation density for $N_v = 3$ standard neutrino flavors

$$\rho_{\rm rad} = \rho_{\gamma} + \rho_{\nu} = \frac{\pi^2}{15} \left(T_{\gamma}^4 + N_{\nu} \frac{7}{8} T_{\nu}^4 \right) = \left[1 + N_{\nu} \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} \right] \rho_{\gamma}$$

Cosmic radiation density is expressed in terms of "effective number of thermally excited neutrino species" N_{eff}

$$\rho_{\rm rad} = \left[1 + N_{\rm eff} \, \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} \right] \rho_{\gamma} = [1 + N_{\rm eff} \, 0.2271] \rho_{\gamma}$$

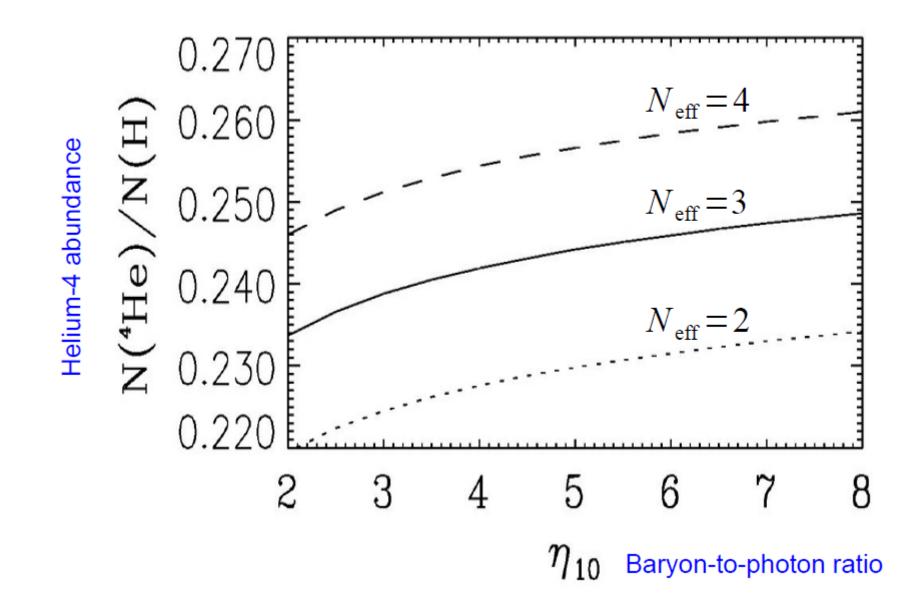
N_{eff} is a measure for the radiation density, not necessarily related to neutrinos

Residual neutrino heating by e^+e^- annihilation and corrections for finite temperature QED effects and neutrino flavor oscillations means T_{ν} not $\left(\frac{4}{11}\right)^{1/3}T_{\gamma}$

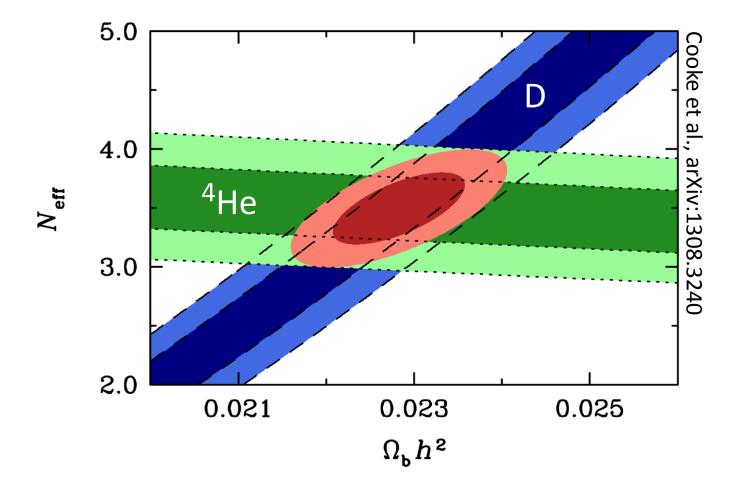
 $N_{\rm eff} = 3.046$ Standard value

 $\rho_{\rm rad} = (1 + 0.6918 + 0.2271 \,\Delta N_{\rm eff}) \,\rho_{\gamma}$

Of course, the number of known neutrino species v_e , v_{μ} , v_{τ} is exactly 3



Baryon and Radiation Density from BBN



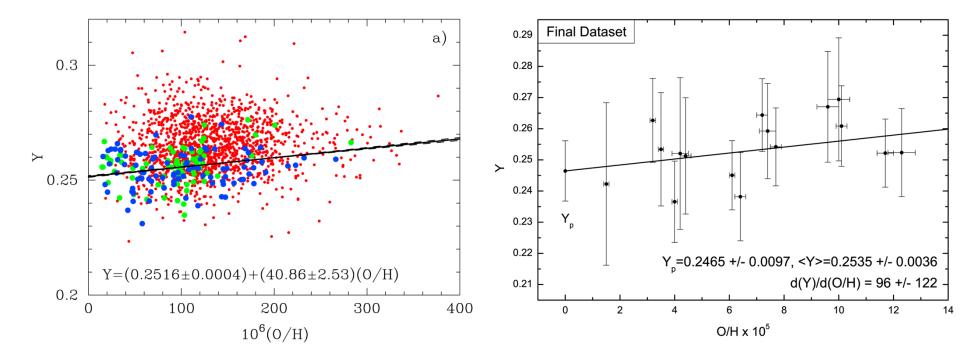
D abundance from Cook et al. (2013) and He-4 from Izotov et al. (2013) BBN hint for extra radiation (evidence driven by He abundance)

Helium Mass Fraction from HII Regions

Extrapolation to zero metalicity in many HII regions

Izotov, Stasinska & Guseva arXiv:1308.2100

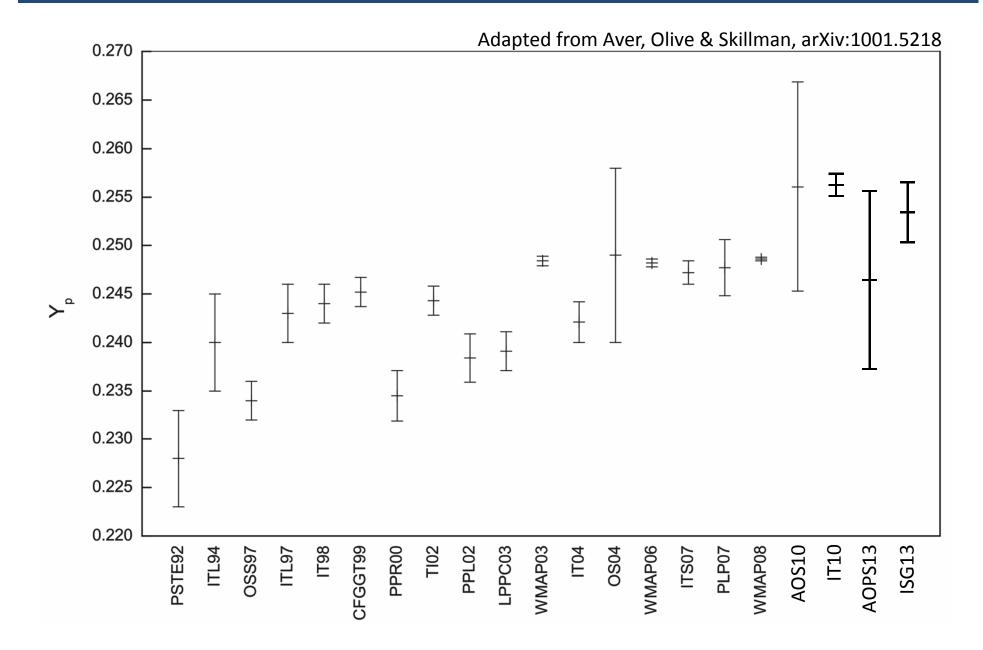
Aver, Olive, Porter & Skillman arXiv:1309.0047



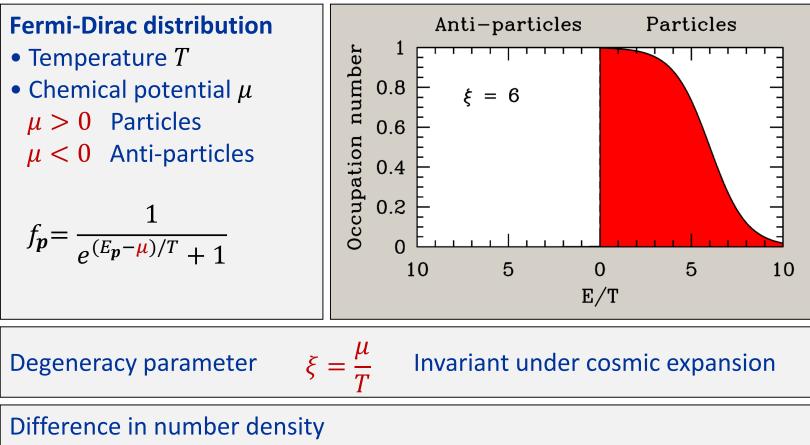
 $Y_{\rm P} = 0.254 \pm 0.003$

 $Y_{\rm P} = 0.2465 \pm 0.0097$

Progression of Best-Fit Helium Abundance

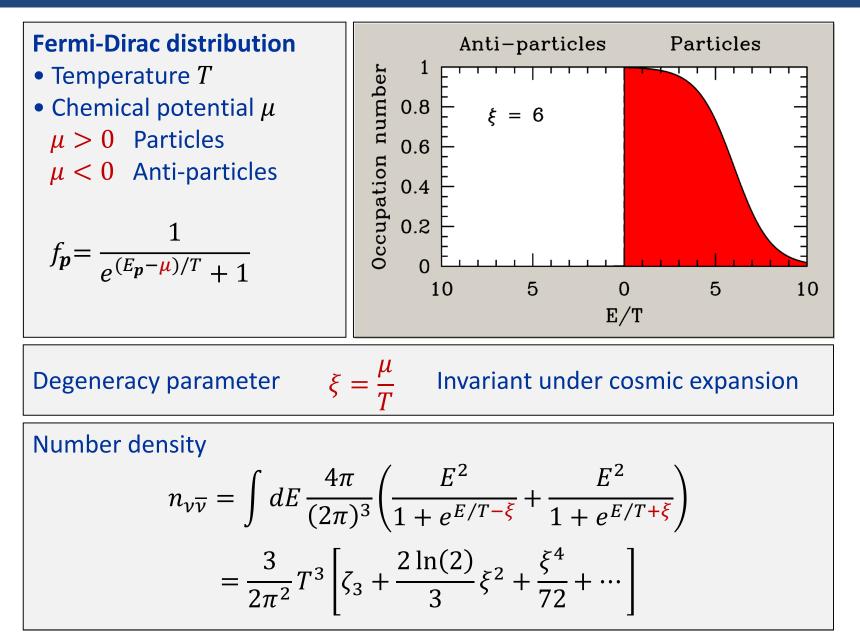


Thermal Neutrino Distribution

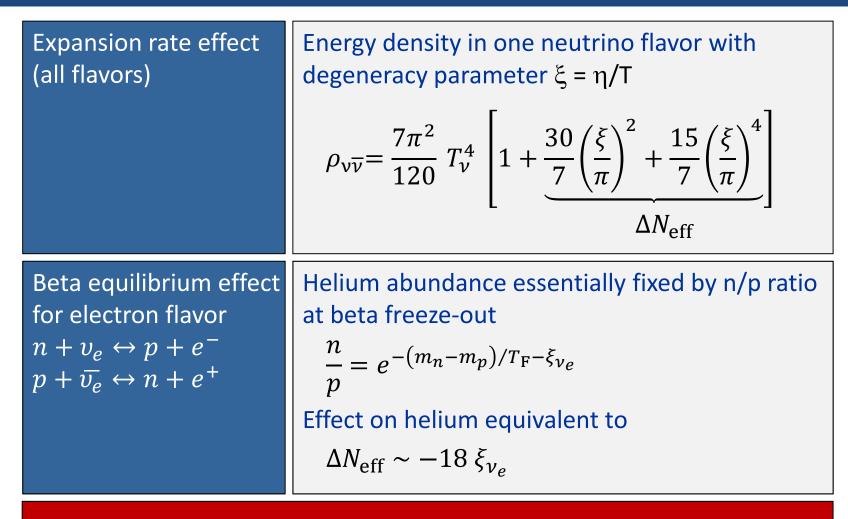


$$n_{\nu} - n_{\overline{\nu}} = \int dE \frac{4\pi}{(2\pi)^3} \left(\frac{E^2}{1 + e^{E/T - \xi}} - \frac{E^2}{1 + e^{E/T + \xi}} \right)$$
$$= \frac{1}{6\pi^2} T^3 [\pi^2 \xi + \xi^3 + \cdots]$$

Thermal Neutrino Distribution



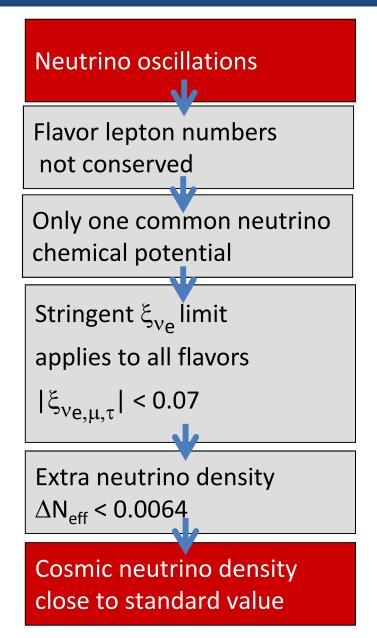
BBN and Neutrino Chemical Potentials



- v_e beta effect can compensate expansion-rate effect of $v_{\mu,\tau}$
- Naively, BBN limit only applies to ξ_{ν_e}

• However, flavor oscillations equalize chemical potentials before BBN

Chemical Potentials and Flavour Oscillations

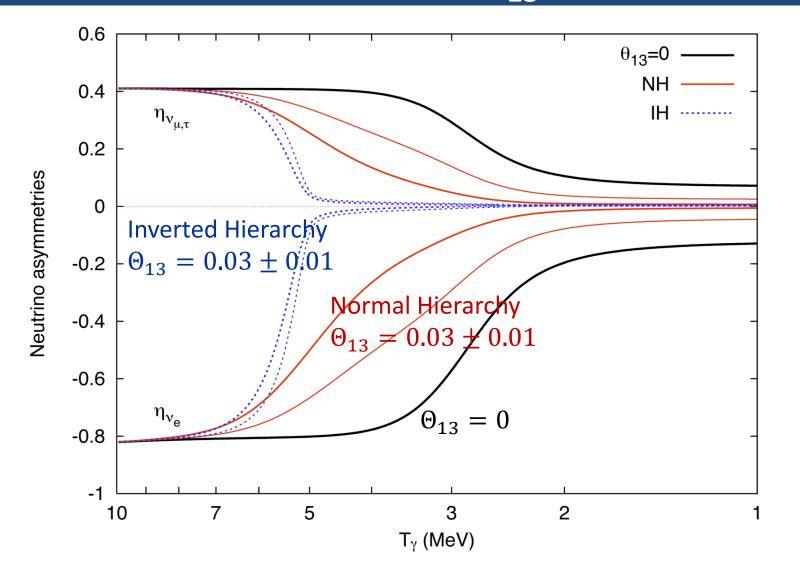


Flavour equilibrium before n/p freeze out assured because no mixing angle small

Our knowledge of the cosmic neutrino density depends on measured oscillation parameters!

arXiv:hep-ph/0012056 , hep-ph/0201287, astro-ph/0203442, hep-ph/0203180, arXiv:0808.3137, 1011.0916, 1110.4335

Flavor Conversion before BBN (Θ_{13} not small)



Mangano, Miele, Pastor, Pisanti & Sarikas, arXiv:1110.4335