The Standard Model

Pilar Hernández University of Valencia/IFIC

Textbook material:

- An Introduction to Quantum Field Theory, Peskin&Schroeder
- Gauge Theories of the Strong, Weak, Electromagnetic Interactions, C. Quigg

Overview of the SM

Lecture I: the SM tapestry

- Particles as Quantum Fields
- Particle zoo vs symmetry
- Gauge invariance and particle interactions
- The origin of mass: Spontaneous Symmetry breaking
- The flavour of the SM

Lecture II: the SM swiss watch

- Observables and field correlation functions
- How we calculate ? Perturbation Theory and beyond
- Precision tests of the SM (LEP-TEVATRON-B factories)

Lecture III: the open-ended SM

- The SM at the LHC: Higgs physics
- Open questions

Lecture I: the SM tapestry

"The hunt of the Unicorn"

The Standard Model (SM)

Describes the dynamics of elementary particles in the quantum/ relativistic domain: key in understanding atomic physics, nuclear physics, astrophysics...

Elementary as far as we know....

SM is a Quantum Field Theory

Unifying picture of the concepts of

Interactions (fields): electromagnetic,... strong, weak Matter (particles): electron, proton, neutron,..., neutrinos, muons, hadrons, quarks, ...

QFT in a nutshell

Elementary particles or interactions represented by (complex) causal quantum fields (operators in Fock space):

$$\phi(x) = \int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2E_{\mathbf{p}}}} \left(u_s^a(\mathbf{p}) \hat{a}_{\mathbf{p},a}^s e^{-ipx} + v_s^a(\mathbf{p}) \hat{b}_{\mathbf{p},a}^{s\dagger} e^{ipx} \right) \bigg|_{p^0 = E_{\mathbf{p}} \equiv \sqrt{\mathbf{p}^2 + m^2}}$$

- a : flavour index
- s : spin index

One (anti)particle states:

$$\begin{cases} |\mathbf{p}, s, a\rangle_{+} = \hat{a}_{\mathbf{p}, a}^{s\dagger} |0\rangle \\ |\mathbf{p}, s, a\rangle_{-} = \hat{b}_{\mathbf{p}, a}^{s\dagger} |0\rangle \end{cases}$$

 $u^a_s(\mathbf{p}), v^a_s(\mathbf{p})$ wave functions in spin and internal space

QFT in a nutshell

Elementary particles or interactions represented by (complex) causal quantum fields (operators in Fock space):

$$\phi(x) = \int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2E_{\mathbf{p}}}} \left(u_s^a(\mathbf{p}) \hat{a}_{\mathbf{p},a}^s e^{-ipx} + v_s^a(\mathbf{p}) \hat{b}_{\mathbf{p},a}^{s\dagger} e^{ipx} \right) \bigg|_{p^0 = E_{\mathbf{p}} \equiv \sqrt{\mathbf{p}^2 + m^2}}$$

Quantum relativistic particles (second quantization)

Fock Space: field operator creates/destroys a particle at x

Quantum fields (canonical quantization)

Harmonic osc.: a,a⁺ ladder operators create/destroy a quantum of energy

For each **p**, s, a, one quantum harmonic oscillator

 $E_N(\mathbf{p}, s, a) = (N + 1/2)E_{\mathbf{p}} \leftrightarrow N$ particle state

Particle zoo vs. symmetries

Symmetries are the underlying principle behind this structure:

- How many particles are there and number of degrees of freedom
- How particles interact

Particle zoo vs. symmetries

- > Symmetries seem to be a fundamental principle of Nature
- > Groups are the mathematical representation of symmetries
- Representation of symmetry groups tell us about the structure of Nature (how many dofs are there ?)

Elementary particles: vectors on which symmetry transformations can act (irreducibly, without leaving invariant subspaces)

> Space-time symmetries: Lorentz group SO(1,3) Discrete symmetries: eg. Parity Internal symmetries: SU(2) isospin, SU(3) color

Lorentz group: index s

Elementary particles are irreducible representations of the group of rotations (spin)

$$j = \mathbb{Z}/2$$
 $dim(j) = 2j + 1$

+ Boosts: $(j_1, j_2) dim(j_1, j_2) = (2j_1 + 1)(2j_2 + 1)$

+ Parity: $(j_1, j_2) \rightarrow^P (j_2, j_1)$

Rep.	Field	dim.	Spin	Parity	-
(0,0)	Н	1	0	Yes	-
$(\frac{1}{2},0)$	q_R, l_R	2	$\frac{1}{2}$	No	$\Psi_{L/R} \equiv P_{L/R} \Psi$
$(ar{0}, rac{1}{2})$	q_L, l_L	2	$\frac{\overline{1}}{2}$	No	$P_{L/R} \equiv \frac{1 \mp \gamma_5}{2}$
$\left(\frac{1}{2},\frac{1}{2}\right)$	$A_\mu, G_\mu, W^\pm_\mu, Z_\mu$	4	Ī	Yes	2

Causal relativistic free fields Weyl fermion: ${\cal L}=ar{\Psi}_L(i\gamma_\mu\partial_\mu)\Psi_L$

Two-component spinor: particle with negative helicity, antiparticle with negative one

Dirac fermion: $\mathcal{L} = (\bar{\Psi}_L + \bar{\Psi}_R)(i\gamma_\mu\partial_\mu - m)(\Psi_L + \Psi_R)$

Four-component spinor: particle and antiparticle with both helicities

Vector boson:
$${\cal L}=-{1\over 4}(\partial_\mu A_
u-\partial_
u A_\mu)^2+{m^2\over 2}A_\mu^2$$

Massless: two polarizations, Massive: three polarizations

Internal Symmetries vs. Interactions

Two types of internal symmetries:

global: transforms in the same way fields at all space-time points

local: transform independently fields at each space-time point

Local symmetries imply the existence of some fields and dictate how elementary particles interact !

Gauge Symmetry: U(1)

Maxwell eqs. in terms of gauge potentials are invariant under

$$A_{\mu}(x) \to A_{\mu}(x) + \partial_{\mu}\alpha(x)$$

Eqs. of motion for any charged field will also remain invariant if

$$\Psi(x) \to e^{iq\alpha(x)}\Psi(x)$$

e.m. gauge invariance <-> U(1) local gauge transformation

$$D_{\mu}\Psi \equiv (\partial_{\mu} - iqA_{\mu})\Psi \to e^{iq\alpha}D_{\mu}\Psi$$

U(1) invariants:

$$\Psi \gamma_{\mu} D_{\mu} \Psi \qquad \bar{\Psi} \Psi \qquad F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu}$$

Gauge Symmetry: U(1)

$$\mathcal{L}_{QED} = -\frac{1}{4}F_{\mu\nu}^2 + \bar{\Psi}(i\not\!\!D - m)\Psi$$

$$D_{\mu} = \partial_{\mu} - iqA_{\mu}$$

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

A mass term $-rac{m_A^2}{2}A_\mu^2$ breaks symmetry: photon massless

Gauge Symmetry: SU(N)

Gauge transformation belongs to the special unitary group

 $\Psi^{i=1,\ldots,N}$ fundamental rep.

$$\begin{split} \Psi(x) &
ightarrow \Omega(x) \Psi(x) & \Omega(x)
ightarrow \mathrm{N} imes \mathrm{N} \ \mathrm{unitary\ matrix} \ \Omega(x) = \exp\left(ilpha_a T^a\right) \ T^{a\dagger} = T^a \leftrightarrow \mathrm{generators}, a = 1, \dots, N^2 - 1 \end{split}$$
 (For N=2 $T^a = rac{\sigma_a}{2}$)

 $A^{a=1,..,N^2-1}_{\mu}$ Adjoint rep.

 $gA^a_{\mu}T^a \to \Omega(x)gA^a_{\mu}T^a\Omega^{\dagger}(x) + i\Omega(x)\partial_{\mu}\Omega^{\dagger}(x)$

Gauge Symmetry SU(N)

$$\begin{split} D_{\mu} &= \partial_{\mu} - ig A^{a}_{\mu} T^{a} \qquad F^{a}_{\mu\nu} T^{a} = \frac{i}{g} [D_{\mu}, D_{\nu}] \\ D_{\mu} \Psi &\to \Omega \ D_{\mu} \Psi \qquad F^{a}_{\mu\nu} T^{a} \to \Omega F^{a}_{\mu\nu} T^{a} \Omega^{\dagger} \\ \hline \mathcal{L}_{SU(N)} &= -\frac{1}{4} (F^{a}_{\mu\nu})^{2} + \bar{\Psi} \left(i \not \!\!\!D - m \right) \Psi \end{split}$$
A mass term
$$-\frac{1}{2} m^{2}_{A} A^{a}_{\mu} \text{ would also break the gauge symmetry}$$

This is a gauge invariant Lagrangian, but is it the only one ?

Gauge Symmetry SU(N) $\mathcal{L}_{SU(N)} = -\frac{1}{4}(F^a_{\mu u})^2 + \bar{\Psi}(i\not\!\!D - m)\Psi$

Mediators self-interactions:

SM is a gauge theory $SU(3) \times SU(2) \times U(1)_Y$

Parity (~helicity) conjugate

 $SU(3) \times SU(2) \times U(1)_Y$

SM gauge group

 $\Psi_{L/R} \equiv P_{L/R} \Psi$

Flavour/ family

Parity (~helicity) conjugate

SM gauge group $SU(3) \times SU(2) \times U(1)_Y$

 $\Psi_{L/R} \equiv P_{L/R} \Psi$

Flavour/ family

The puzzle in the 60's

- > Particles with different names in the same gauge SU(2) multiplet
- > Parity violation: L, R different charges, but fermions massive
- > Three of the gauge fields not massless
- > Weak interactions mix quark generations

The SU(2)xU(1) symmetry is hidden

Realization of continuous symmetries

Consider a field theory invariant under some symmetry group $\left[H,U
ight]=0$

Under infinitesimal transformation a field in a representation of the group with generators T^a:

$$\phi \to (I + i\epsilon^a T^a)\phi$$

Weyl-Wigner:
$$U|0
angle=|0
angle \implies T^a\langle 0|\phi|0
angle=0$$

And all the states in the multiplet have the same energy

Nambu-Goldstone
$$T^a \langle 0 | \phi | 0 \rangle \neq 0 \implies U | 0 \rangle \neq | 0 \rangle$$

Goldstone theorem: as many massless modes as broken generators

Spontaneous Symmetry Breaking

If this is how the SU(2) is broken where did the massless fields go ?

An important intuition came from the Meissner effect in superconductors

The photon becomes massive inside a superconductor due to the existence of a Cooper pair condensate which has e.m. charge

Anderson

SSB of Gauge symmetry

The effective field theory of superconductivity: a complex scalar field with charge q coupled to the U(1) gauge field

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + (D_{\mu}\phi)^{\dagger} D_{\mu}\phi - V(\phi) \qquad D_{\mu} = \partial_{\mu} - iqA_{\mu}$$

$$V(\phi) = -\mu^{2} \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^{2}$$

$$\lambda > 0$$
Lowest energy configuration (vacuum):

Re

Im

$$\phi^{\dagger}\phi = \frac{\mu^2}{2\lambda} \equiv \frac{v^2}{2} \qquad \phi = \frac{v}{\sqrt{2}}e^{i\theta}$$

SSB of Gauge symmetry

Perturbing around the true vacuum

$$\phi = \frac{v + h(x)}{\sqrt{2}} e^{i\theta(x)}$$

 $\mathcal{L}(\phi, A_{\mu}) = -\frac{1}{4} F_{\mu\nu} F_{\mu\nu}$ $+ \frac{1}{2}\partial_{\mu}h\partial_{\mu}h + \frac{v^{2}}{2}\partial_{\mu}\theta\partial_{\mu}\theta - qv^{2}\partial_{\mu}\theta A_{\mu} + \frac{q^{2}v^{2}}{2}A_{\mu}A_{\mu}$ $- \mu^2 h^2 - \lambda v h^3 - \frac{\lambda}{4} h^4$ H is a Goldstone Boson GB:field with only derivative couplings

The ABEGH²KN Mechanism

Anderson-Brout-Englert-Guralnik-Hagen-Higgs-Kibble-Nambu

$$\mathcal{L}^{(2)} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{q^2 v^2}{2} A_{\mu} A_{\mu} + \frac{1}{2} (\partial_{\mu} h \ \partial_{\mu} h - \mu^2 h^2) + \frac{v^2}{2} \partial_{\mu} \theta \ \partial_{\mu} \theta - q v^2 \partial_{\mu} \theta A_{\mu}$$

Gauge transformation:
$$A_{\mu}^{\prime}=A_{\mu}-rac{1}{q}\partial_{\mu} heta$$

$$= -\frac{1}{4}F'_{\mu\nu}F'^{\mu\nu} + \frac{q^2v^2}{2}A'_{\mu}A'_{\mu} + \frac{1}{2}(\partial_{\mu}h \ \partial_{\mu}h - \mu^2h^2)$$

Goldstone mode -> massive gauge field (ie. longitudinal polarization)

Goldstone mode "is eaten" by the gauge field to get massive: unitary gauge

Radial mode -> massive neutral scalar field

SM **BEH** mechanism

A complex doublet with quantum numbers Y=+1/2 and no color

$$\mathcal{L}_{\phi} = D_{\mu}\phi^{\dagger}D_{\mu}\phi - V(\phi) \qquad D_{\mu}\phi = (\partial_{\mu} - igW_{\mu}^{a}\frac{\sigma^{a}}{2} - i\frac{g'}{2}B_{\mu})\phi$$
$$\phi = \begin{pmatrix} \phi_{1} + i\phi_{2} \\ \phi_{0} + i\phi_{3} \end{pmatrix} \qquad \phi \to e^{iT^{a}\alpha^{a}}\phi \quad T^{a} = \begin{pmatrix} \frac{\sigma^{0}}{2}, \frac{\vec{\sigma}}{2} \end{pmatrix}$$

A potential with a minimum at

$$\langle \phi^{\dagger} \phi \rangle = \frac{v^2}{2} = \frac{\mu^2}{2\lambda}$$
$$\langle \phi \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix}$$

SM BEH mechanism

Of the full symmetry group: $\phi \to e^{iT^a \alpha^a} \phi$ $T^a = \left(\frac{\sigma^0}{2}, \frac{\vec{\sigma}}{2}\right)$

A U(1) subgroup remains unbroken

$$(T^0 + T^3)\langle\phi\rangle = 0$$

$$SU(2) imes U(1) o U(1)_{em}$$

three broken generators: three massive gauge fields (W^{+-} , Z^{0}) and one massless photon

Gauge boson masses

$$\phi = e^{i\alpha^a(x)T^a} \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + h(x) \end{pmatrix}$$

Exercise: show that this is a general parametrization of the complex scalar field

Gauge boson masses

$$\phi = e^{i\alpha} \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + h(x) \end{pmatrix}$$
 In unitary gauge:

$$D_{\mu}\phi^{\dagger}D_{\mu}\phi = \frac{1}{2}\partial_{\mu}h \ \partial_{\mu}h + \frac{1}{2}(0 \ v+h)\left(gW_{\mu}^{a}\frac{\sigma^{a}}{2} + \frac{1}{2}g'B_{\mu}\right)^{2}\left(\begin{array}{c}0\\v+h\end{array}\right)$$

$$= \frac{1}{2} \frac{v^2}{4} \left\{ g^2 \left((W^1_\mu)^2 + (W^2_\mu)^2 \right) + (g'B_\mu - gW^3_\mu)^2 \right\} = m_W^2 W^+_\mu W^-_\mu + \frac{1}{2} m_Z^2 Z_\mu Z_\mu + O(h)$$

$$\begin{array}{ll} \text{Charged weak:} & W_{\mu}^{\pm} = \frac{1}{\sqrt{2}} \left(W_{\mu}^{1} \pm i W_{\mu}^{2} \right) & m_{W} \equiv g \frac{v}{2} \\ \\ \text{Neutral weak} & Z_{\mu} = \frac{1}{\sqrt{g^{2} + g'^{2}}} \left(g W_{\mu}^{3} - g' B_{\mu} \right) & m_{Z} \equiv \sqrt{g^{2} + g'^{2}} \frac{v}{2} \\ \\ \text{Electromagnetic} & A_{\mu} = \frac{1}{\sqrt{g^{2} + g'^{2}}} \left(g' W_{\mu}^{3} + g B_{\mu} \right) \end{array}$$

Question: why did we choose such normalization ?

Question: why did we choose such normalization ?

Exercise: check that the kinetic terms are properly normalized

Gauge Boson masses

Weak mixing angle

$$Z_{\mu} = \frac{1}{\sqrt{g^2 + g'^2}} \left(g W_{\mu}^3 - g' B_{\mu} \right)$$
$$A_{\mu} = \frac{1}{\sqrt{g^2 + g'^2}} \left(g' W_{\mu}^3 + g B_{\mu} \right)$$

V

$$\begin{pmatrix} Z_{\mu} \\ A_{\mu} \end{pmatrix} = \begin{pmatrix} \cos \theta_{W} & -\sin \theta_{W} \\ \sin \theta_{W} & \cos \theta_{W} \end{pmatrix} \begin{pmatrix} W_{\mu}^{3} \\ B_{\mu} \end{pmatrix}$$

$$\cos \theta_W \equiv \frac{g}{\sqrt{g^2 + g'^2}} \quad \sin \theta_W = \frac{g'}{\sqrt{g^2 + g'^2}}$$

$$m_W = m_Z \cos \theta_W$$

Neutral currents

All fermions are doublets $D_{\mu}\Psi=(\partial_{\mu}-ig W^a_{\mu} rac{\sigma^a}{2}-iY_{\Psi}g'B_{\mu})\Psi$

$$D_{\mu}\Psi = \left(\partial_{\mu} - i\frac{g}{\sqrt{2}}(W_{\mu}^{+}T^{+} + W_{\mu}^{-}T^{-}) - i\frac{g}{\cos\theta_{W}}(T^{3} - \sin^{2}\theta_{W}Q_{\Psi})Z_{\mu} - ieQ_{\Psi}A_{\mu}\right)\Psi$$

$$Q_{\Psi} \equiv T^3 + Y_{\Psi} \quad e \equiv \frac{gg'}{\sqrt{g^2 + g'^2}} = g\sin\theta_W$$

Off-diagonal in isospin!Diagonal in isospin!
$$\bigvee_{\psi_{d,u}}^{\psi_{u,d}}$$
 W_{μ}^{\pm} $i\frac{g}{\sqrt{2}}\gamma_{\mu}\frac{1-\gamma_{5}}{2}$ $\bigvee_{\psi_{f}}^{\psi_{f}}$ $i\frac{g}{\cos\theta_{W}}\gamma_{\mu}\left(g_{V}^{f}-g_{A}^{f}\gamma_{5}\right)$ $\bigvee_{\psi_{f}}^{\psi_{f}}$ $-ieQ_{f}\gamma_{\mu}$ $g_{V}^{f}=\frac{1}{2}T_{f}^{3}-Q_{f}\sin^{2}\theta_{W}, \quad g_{A}^{f}=\frac{1}{2}T_{f}^{3}.$

Neutral currents

Predicts all fermion couplings to neutral currents in terms of their em charges:

$$Y_{l_L} = Q_e + \frac{1}{2} = Q_\nu - \frac{1}{2} = -\frac{1}{2}$$

$$Y_{l_R} = Q_e = -1$$

$$Y_{l_R} = Q_e = -1$$

$$Y_{u_R} = Q_u = \frac{2}{3}$$

$$Y_{d_R} = Q_d = -\frac{1}{3}$$

If there were right-handed neutrinos they would have

$$Y_{\nu_R} = Q_\nu = 0$$

Higgs-Gauge couplings $(1+h/v)^2(m_W^2W^+_\mu W^-_\mu + \frac{1}{2}m_Z^2Z_\mu Z_\mu)$ $\sum_{r} \sum_{r} Z_{\mu} \qquad i \frac{g}{\cos \theta_W} m_Z g_{\mu\nu}$ $ig m_W g_{\mu\nu}$ $\frac{i}{2}\frac{g^2}{\cos^2\theta_W}g_{\mu\nu}$ $\frac{i}{2}g^2g_{\mu\nu}$

Fermion masses

Dirac fermion of mass m:

$$-\mathcal{L}_m^{\text{Dirac}} = m\bar{\psi}\psi = m(\overline{\psi_L + \psi_R})(\psi_L + \psi_R) = m(\overline{\psi_L}\psi + \overline{\psi_R}\psi_L)$$

Breaks SU(2)xU(1) gauge invariance!

But we can have other invariants with the conjugated scalar doublet:

$$\tilde{\phi} \equiv \sigma^2 \phi^*, \quad \tilde{\phi} : (1, 2, -\frac{1}{2}), \quad \langle \tilde{\phi} \rangle = \begin{pmatrix} \frac{v}{\sqrt{2}} \\ 0 \end{pmatrix}$$

 $\mathcal{L}_{SM} \supset -Y_d \bar{q}_L \phi d_R - Y_u \bar{q}_L \tilde{\phi} u_R - Y_l \bar{l}_L \phi l_R$ $\rightarrow -m_d \bar{d}_L d_R - m_u \bar{u}_L u_R - m_l \bar{l}_l l_R + O(h)$ Exercise: check that the charge assignment of the tilde field is correct

$$\tilde{\phi} \equiv \sigma^2 \phi^*, \quad \tilde{\phi} : (1, 2, -\frac{1}{2}), \quad \langle \tilde{\phi} \rangle = \begin{pmatrix} \frac{v}{\sqrt{2}} \\ 0 \end{pmatrix}$$

Higgs-fermion couplings

 $(1+h/v)\left(-m_d\bar{d}_Ld_R-m_u\bar{u}_Lu_R-m_ll_Ll_R\right)+h.c.$

Flavour mixing

No mixing between different families as it stands...but it turns out there are three families, why can't these Yukawa interactions mix families ?

Exercise: show that in the absence of Yukawa couplings, the Lagrangian has a flavour/family symmetry:

 $U(3)_{q_L} \times U(3)_{l_L} \times U(3)_{u_R} \times U(3)_{d_R} \times U(3)_{l_R}$

Quark mixing

There is flavour changing in charged currents: s -> u, but very suppressed in neutral currents

 $Br(K^+ \to \pi^0 e^+ \nu_e) \simeq 5\%$ $Br(K^+ \to \pi^+ e^+ e^-) \simeq 3 \times 10^{-7}$

How to explain mixing in CC without that in NC?

Glashow-Illiopoulos-Maiani mechanism

Quark mixing: Cabbibo-Kobayashi-Maskawa

The Yukawa couplings are generic matrices in flavour space:

basis where CC and NC diagonal ≠ mass eigenbasis

$$\mathcal{L}_{SM} \supset -(\bar{d}_L, \bar{s}_L, \bar{b}_L) \underbrace{m_d}_{3 \times 3} \begin{pmatrix} d_R \\ s_R \\ b_R \end{pmatrix} - (\bar{u}_L, \bar{c}_L, \bar{t}_L) \underbrace{m_u}_{3 \times 3} \begin{pmatrix} u_R \\ c_R \\ t_R \end{pmatrix} - (\bar{e}_L, \bar{\mu}_L, \bar{\tau}_L) \underbrace{m_u}_{3 \times 3} \begin{pmatrix} e_R \\ \mu_R \\ \tau_R \end{pmatrix}$$

 $m_i = U_{Li}^{\dagger} \operatorname{Diag}(m_i) V_{Ri}$

 $u'_{L} = U_{Lu}u_{L}, \quad d'_{L} = U_{Ld}d_{L}, \quad l'_{L} = U_{Ll}l_{L}, \quad u'_{R} = V_{Ru}u_{R}, \quad d'_{R} = V_{Rd}d_{R}, \quad l'_{R} = V_{Rl}l_{R}$

$$\mathcal{L}_{SM}^{CC} \supset -\frac{g}{\sqrt{2}} \bar{u}'_{Li} \underbrace{(U_{Lu}U_{Ld}^{\dagger})_{ij}}_{CKM} \gamma_{\mu} W_{\mu}^{+} d'_{Lj} + h.c.$$

Quark mixing: Cabbibo-Kobayashi-Maskawa

The Yukawa couplings are generic matrices in flavour space:

basis where CC and NC diagonal ≠ mass eigenbasis

$$\begin{aligned} \mathcal{L}_{SM} \supset -(\bar{d}_L, \bar{s}_L, \bar{b}_L) \underbrace{\mathfrak{m}_d}_{3\times 3} \begin{pmatrix} d_R \\ s_R \\ b_R \end{pmatrix} - (\bar{u}_L, \bar{c}_L, \bar{t}_L) \underbrace{\mathfrak{m}_u}_{3\times 3} \begin{pmatrix} u_R \\ c_R \\ t_R \end{pmatrix} - (\bar{e}_L, \bar{\mu}_L, \bar{\tau}_L) \underbrace{\mathfrak{m}_u}_{3\times 3} \begin{pmatrix} e_R \\ \mu_R \\ \tau_R \end{pmatrix} \\ m_i &= U_{Li}^{\dagger} \operatorname{Diag}(m_i) V_{Ri} \\ u'_L &= U_{Lu} u_L, \ d'_L &= U_{Ld} d_L, \ l'_L &= U_{Ll} l_L, \ u'_R &= V_{Ru} u_R, \ d'_R &= V_{Rd} d_R, \ l'_R &= V_{Rl} l_R \\ \mathcal{L}_{SM}^{NC} \supset -\frac{g}{\cos \theta_W} \overline{d'_{Li}} \left(-\frac{1}{2} + \frac{1}{3} \sin^2 \theta_W \right) \underbrace{(U_{Ld} U_{Ld}^{\dagger})_{ij}}_{\delta_{ij}} \gamma_\mu Z_\mu d'_{Lj} \\ - \frac{g}{\cos \theta_W} \overline{u'_{Li}} \left(\frac{1}{2} - \frac{2}{3} \sin^2 \theta_W \right) \underbrace{(U_{Lu} U_{Lu}^{\dagger})_{ij}}_{\delta_{ij}} \gamma_\mu Z_\mu u'_{Lj} \end{aligned}$$

Quark mixing: Cabbibo-Kobayashi-Maskawa

Neutral currents diagonal also in the mass eigenbasis: only quarks in the same family can exchange a Z boson

It was quite of a challenge to come up with this when only 1.5 quark family was known: u, d, s -> prediction of the charm !

Charged currents not diagonal: CKM 3x3 unitary matrix

$$|V|_{\rm CKM} = \begin{pmatrix} 0.97427 \pm 0.00015 & 0.22534 \pm 0.0065 & (3.51 \pm 0.15) \times 10^{-3} \\ 0.2252 \pm 0.00065 & 0.97344 \pm 0.00016 & (41.2^{+1.1}_{-5}) \times 10^{-3} \\ (8.67^{+0.29}_{-0.31}) \times 10^{-3} & (40.4^{+1.1}_{-0.5}) \times 10^{-3} & 0.999146^{+0.000021}_{-0.000046} \end{pmatrix}$$

CKM Parametrization

Not all entries are independent: how many physical parameters are there ?

3 Euler angles and 1 complex phase : $s_{12} \leftrightarrow Cabbibo$ angle

$$\mathbf{V}_{\mathsf{CKM}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{13}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{13}} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{13}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{13}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{13}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{13}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{13} \end{bmatrix}.$$

Since $s_{12} >> s_{23} >> s_{13}$: Wolfenstein parametrization

$$V = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3 (\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3 (1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

Counting parameters

physical parameters = # parameters in Yukawas

- # parameters in field redefinitions
- + # parameters of exact symmetries

		Field Redef.	Symmetries	Physical
	Y _u ,Y _d	U _{qL} (n)xU _{dR} (n)xU _{uR} (n)	U (1) _B	
Moduli	2 x 3 ²	3 x 3	0	9
Phases	2 x 3 ²	3 x 6	1	1

Moduli = 9 = 6 masses + 3 angles

Exercise: repeat the counting including the lepton Yukawa can there be mixing in the lepton sector ?

Higgs self-couplings

From the Higgs potential:

"Threads in a tapestry"...

several Nobel-prize winning milestones

At the beginning there were just electrons, nuclei, electromagnetism (and gravity)...

1930 Neutrinos "showed up"

Pauli (Nobel 1945)

Reines (Nobel 1995)

1934: Theory of beta decay

E. Fermi (Nobel 1938)

1956: Parity violation in $\boldsymbol{\beta}$ decay

C-S Wu

Yang, Lee (Nobel 1957)

V-A structure of weak interactions: only left-handed fields involved in beta-processes

Gell-Mann, Feynman, Sudarshan, Marshak 1958

Cosmic Particle parade starts

New-looking particles start to show up in Nature-given fixed-target experiment: cosmic rays

Some elementary

Many more not, but new symmetries start to be evident

Gell-Mann (Nobel 1969)

Quark model

Accelerator Particle Parade

SSB and BEH mechanism

1960 Nambu-Goldstone spontaneous symmetry breaking, Nambu-Goldstone bosons

1964 Englert-Brout-Higgs et al Massive gauge fields from goldstone bosons

Nambu Nobel 2008

Englert, Higgs Nobel 2013

1967 Glashow, Weinberg, Salam

1971 it is renormalizable

SU(2) x U(1)

Glashow , Weinberg, Salam Nobel 1979

T'Hooft, Veltman Nobel 1999

Weak mediators appeared

1973 Detection of neutral currents in Gargamelle

Rubbia, Van der Meer Nobel 1984

Charpak Nobel 1992

Weak mediators appeared

Accelerator

Physicist

1973 Detection of neutral currents in Gargamelle

1981 W, Z were directly observed UA1, UA2

Detector **Physicist**

Charpak Nobel 1992

Rubbia, Van der Meer Nobel 1984

Quark model -> SU(3) color

1954 Non-abelian gauge theories: Yang-Mills

1973 Asymptotic freedom

1974 DIS experiments

1974 Lattice QCD: confinement

Politzer, Gross, Wilczek Nobel 2004

Friedman, Kendall, Taylor Nobel 1990

Family structure

1963 Cabbibo (also Gell-Mann Levy): the first mixing angle

1964 CP violation discovered

Cronin.Fitch Nobel 1980

James Cronin

1970 GIM: no FCNC prediction of charm 1973 Kobayashi-Maskawa predict 3 families to explain CP 1974 charm detected !

Richter, Ting Nobel 1976

Kobayashi, Maskawa Nobel 2008

Family structure

1974–78 third family shows up (tau lepton) Perl et al

1977 b-quark Lederman et al

M. Perl Nobel 1995

1995 top quark Tevatron (DO, CDF) appears after many years of being chased through its quantum effects

2000 ν_τ

and...the scottish particle

Is this the end of the particle parade?

SM Nobel tapestry