The Standard Model

Pilar Hernández
University of Valencia/IFIC

Textbook material:

- An Introduction to Quantum Field Theory, Peskin\&Schroeder
- Gauge Theories of the Strong, Weak, Electromagnetic Interactions, C. Quigg

Overview of the SM

Lecture I: the SM tapestry

- Particles as Quantum Fields
- Particle zoo vs symmetry
- Gauge invariance and particle interactions
- The origin of mass: Spontaneous Symmetry breaking
- The flavour of the SM

Lecture II: the SM swiss watch

- Observables and field correlation functions
- How we calculate ? Perturbation Theory and beyond
- Precision tests of the SM (LEP-TEVATRON-B factories)

Lecture III: the open-ended SM

- The SM at the LHC: Higgs physics
- Open questions

Lecture I: the SM tapestry

"The hunt of the Unicorn"

The Standard Model (SM)

Describes the dynamics of elementary particles in the quantum/ relativistic domain: key in understanding atomic physics, nuclear physics, astrophysics...

Elementary as far as we know....

SM is a Quantum Field Theory

Unifying picture of the concepts of
Interactions (fields): electromagnetic,... strong, weak
Matter (particles): electron, proton, neutron,..., neutrinos, muons, hadrons, quarks, ...

QFT in a nutshell

Elementary particles or interactions represented by (complex) causal quantum fields (operators in Fock space):

$$
\phi(x)=\left.\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\mathbf{p}}}}\left(u_{s}^{a}(\mathbf{p}) \hat{a}_{\mathbf{p}, a}^{s} e^{-i p x}+v_{s}^{a}(\mathbf{p}) \hat{b}_{\mathbf{p}, a}^{s \dagger} e^{i p x}\right)\right|_{p^{0}=E_{\mathbf{p}} \equiv \sqrt{\mathbf{p}^{2}+m^{2}}}
$$

a : flavour index
$s:$ spin index
One (anti)particle states:

$$
\left\{\begin{array}{l}
|\mathbf{p}, s, a\rangle_{+}=\hat{a}_{\mathbf{p}, a}^{s \dagger}|0\rangle \\
|\mathbf{p}, s, a\rangle_{-}=\hat{b}_{\mathbf{p}, a}^{s \dagger}|0\rangle
\end{array}\right.
$$

$u_{s}^{a}(\mathbf{p}), v_{s}^{a}(\mathbf{P}) \quad$ wave functions in spin and internal space

QFT in a nutshell

Elementary particles or interactions represented by (complex) causal quantum fields (operators in Fock space):

$$
\phi(x)=\left.\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\mathbf{p}}}}\left(u_{s}^{a}(\mathbf{p}) \hat{a}_{\mathbf{p}, a}^{s} e^{-i p x}+v_{s}^{a}(\mathbf{p}) \hat{b}_{\mathbf{p}, a}^{s \dagger} e^{i p x}\right)\right|_{p^{0}=E_{\mathbf{p}} \equiv \sqrt{\mathbf{p}^{2}+m^{2}}}
$$

Quantum relativistic particles (second quantization)

Quantum fields
(canonical quantization)
creates/destroys a particle at x

Harmonic osc.: a, a^{+}ladder operators create/destroy a quantum of energy

For each p, s, a, one quantum harmonic oscillator

$$
E_{N}(\mathbf{p}, s, a)=(N+1 / 2) E_{\mathbf{p}} \leftrightarrow \mathrm{N} \text { particle state }
$$

Particle zoo vs. symmetries

Symmetries are the underlying principle behind this structure:

- How many particles are there and number of degrees of freedom
- How particles interact

Particle zoo vs. symmetries

$>$ Symmetries seem to be a fundamental principle of Nature
$>$ Groups are the mathematical representation of symmetries
> Representation of symmetry groups tell us about the structure of Nature (how many dofs are there?)

Elementary particles: vectors on which symmetry transformations can act (irreducibly, without leaving invariant subspaces)

Space-time symmetries: Lorentz group SO $(1,3)$
Discrete symmetries: eg. Parity
Internal symmetries: $\mathrm{SU}(2)$ isospin, $\mathrm{SU}(3)$ color

Lorentz group: index s

Elementary particles are irreducible representations of the group of rotations (spin)

$$
j=\mathbb{Z} / 2 \quad \operatorname{dim}(j)=2 j+1
$$

+ Boosts:

$$
\left(j_{1}, j_{2}\right) \operatorname{dim}\left(j_{1}, j_{2}\right)=\left(2 j_{1}+1\right)\left(2 j_{2}+1\right)
$$

+ Parity:
$\left(j_{1}, j_{2}\right) \rightarrow^{P}\left(j_{2}, j_{1}\right)$

Rep.	Field	dim.	Spin	Parity	
$(0,0)$	H	1	0	Yes	
$\left(\frac{1}{2}, 0\right)$	q_{R}, l_{R}	2	$\frac{1}{2}$	No	$\Psi_{L / R} \equiv P_{L / R} \Psi$
$\left(0, \frac{1}{2}\right)$	q_{L}, l_{L}	2	$\frac{1}{2}$	No	$P_{L / R} \equiv \frac{1 \mp \gamma_{5}}{2}$
$\left(\frac{1}{2}, \frac{1}{2}\right)$	$A_{\mu}, G_{\mu}, W_{\mu}^{ \pm}, Z_{\mu}$	4	1	Yes	

Causal relativistic free fields

Weyl fermion: $\quad \mathcal{L}=\bar{\Psi}_{L}\left(i \gamma_{\mu} \partial_{\mu}\right) \Psi_{L}$
Two-component spinor: particle with negative helicity, antiparticle with negative one

Dirac fermion:

$$
\mathcal{L}=\left(\bar{\Psi}_{L}+\bar{\Psi}_{R}\right)\left(i \gamma_{\mu} \partial_{\mu}-m\right)\left(\Psi_{L}+\Psi_{R}\right)
$$

Four-component spinor: particle and antiparticle with both helicities
Vector boson: $\quad \mathcal{L}=-\frac{1}{4}\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right)^{2}+\frac{m^{2}}{2} A_{\mu}^{2}$

Massless: two polarizations, Massive: three polarizations

Internal Symmetries vs. Interactions

Two types of internal symmetries:
global: transforms in the same way fields at all space-time points local: transform independently fields at each space-time point

Local symmetries imply the existence of some fields and dictate how elementary particles interact

Gauge Symmetry: U(1)

Maxwell eqs. in terms of gauge potentials are invariant under

$$
A_{\mu}(x) \rightarrow A_{\mu}(x)+\partial_{\mu} \alpha(x)
$$

Eqs. of motion for any charged field will also remain invariant if

$$
\Psi(x) \rightarrow e^{i q \alpha(x)} \Psi(x)
$$

e.m. gauge invariance <-> $U(1)$ local gauge transformation

$$
D_{\mu} \Psi \equiv\left(\partial_{\mu}-i q A_{\mu}\right) \Psi \rightarrow e^{i q \alpha} D_{\mu} \Psi
$$

$U(1)$ invariants:

$$
\bar{\Psi} \gamma_{\mu} D_{\mu} \Psi \quad \bar{\Psi} \Psi \quad F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}
$$

Gauge Symmetry: U(1)

$$
\mathcal{L}_{Q E D}=-\frac{1}{4} F_{\mu \nu}^{2}+\bar{\Psi}(i \not D-m) \Psi
$$

$$
\begin{aligned}
& D_{\mu}=\partial_{\mu}-i q A_{\mu} \\
& F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}
\end{aligned}
$$

A mass term $-\frac{m_{A}^{2}}{2} A_{\mu}^{2}$ breaks symmetry: photon massless

Gauge Symmetry: SU(N)

Gauge transformation belongs to the special unitary group

$$
\Psi^{i=1, \ldots, N} \quad \text { fundamental rep. }
$$

$$
\begin{aligned}
& \Psi(x) \rightarrow \Omega(x) \Psi(x) \quad \Omega(x) \rightarrow \mathrm{N} \times \mathrm{N} \text { unitary matrix } \\
& \Omega(x)=\exp \left(i \alpha_{a} T^{a}\right) \\
& T^{a \dagger}=T^{a} \leftrightarrow \text { generators, } a=1, \ldots, N^{2}-1
\end{aligned}
$$

$$
\left(\text { For } \mathrm{N}=2 \quad T^{a}=\frac{\sigma_{a}}{2}\right)
$$

$$
g A_{\mu}^{a} T^{a} \rightarrow \Omega(x) g A_{\mu}^{a} T^{a} \Omega^{\dagger}(x)+i \Omega(x) \partial_{\mu} \Omega^{\dagger}(x)
$$

Gauge Symmetry SU(N)

$$
\begin{aligned}
D_{\mu}=\partial_{\mu}-i g A_{\mu}^{a} T^{a} & F_{\mu \nu}^{a} T^{a} & =\frac{i}{g}\left[D_{\mu}, D_{\nu}\right] \\
D_{\mu} \Psi \rightarrow \Omega D_{\mu} \Psi & F_{\mu \nu}^{a} T^{a} & \rightarrow \Omega F_{\mu \nu}^{a} T^{a} \Omega^{\dagger}
\end{aligned}
$$

$$
\mathcal{L}_{S U(N)}=-\frac{1}{4}\left(F_{\mu \nu}^{a}\right)^{2}+\bar{\Psi}(i \not D-m) \Psi
$$

A mass term $-\frac{1}{2} m_{A}^{2} A_{\mu}^{a}$ would also break the gauge symmetry

This is a gauge invariant Lagrangian, but is it the only one?

Gauge Symmetry SU(N)

$$
\mathcal{L}_{S U(N)}=-\frac{1}{4}\left(F_{\mu \nu}^{a}\right)^{2}+\bar{\Psi}(i \not D-m) \Psi
$$

Mediators self-interactions:

$$
\propto \operatorname{Tr}\left[T^{a}\left[T^{b}, T^{c}\right]\right]
$$

$$
\propto \operatorname{Tr}\left[T^{a}\left[T^{b}, T^{c}\right]\right] \operatorname{Tr}\left[T^{a}\left[T^{d}, T^{e}\right]\right]
$$

SM is a gauge theory

$$
S U(3) \times S U(2) \times U(1)_{Y}
$$

SM gauge group

 $S U(3) \times S U(2) \times U(1)_{Y}$$$
\Psi_{L / R} \equiv P_{L / R} \Psi
$$

$(1,2)_{-\frac{1}{2}}$	$(3,2)_{\frac{1}{6}}$	$(1,1)_{-1}$	$(3,1)_{\frac{2}{3}}$	$(3,1)_{-\frac{1}{3}}$
$\binom{\nu_{e}}{e}_{L}$	$\binom{u^{i}}{d^{i}}_{L}$	e_{R}	u_{R}^{i}	d_{R}^{i}
$\binom{\nu_{\mu}}{\mu}^{L}$	$\binom{c^{i}}{s^{i}}^{L}$	μ_{R}	c_{R}^{i}	s_{R}^{i}
$\binom{\nu_{\tau}}{\tau}_{L}$	$\binom{t^{i}}{b^{i}}_{L}$	τ_{R}	t_{R}^{i}	b_{R}^{i}

Flavour/ family

SM gauge group

 $S U(3) \times S U(2) \times U(1)_{Y}$$$
\Psi_{L / R} \equiv P_{L / R} \Psi
$$

$(1,2)_{-\frac{1}{2}}$	$(3,2)_{\frac{1}{6}}$	$(1,1)_{-1}$	$(3,1)_{\frac{2}{3}}$	$(3,1)_{-\frac{1}{3}}$
$\binom{\nu_{e}}{e}_{L}$	$\left(\begin{array}{c}u^{i} \\ d^{i}\end{array}\left\{^{\text {a }}\right.\right.$ u ${ }_{L}^{u}$	e_{R}	$u_{R}^{i}\{$	d_{R}^{i}
$\binom{\nu_{\mu}}{\mu}_{L}^{L}$	$\binom{c^{i}}{s^{i}}_{L}^{L}$	μ_{R}		
$\binom{\nu_{\tau}}{\tau}_{L}$	$\binom{t^{i}}{b^{i}}_{L}$	τ_{R}	t_{R}^{i}	b_{R}^{i}

Flavour/ family

The puzzle in the 60's

$>$ Particles with different names in the same gauge $\operatorname{SU}(2)$ multiplet
> Parity violation: L, R different charges, but fermions massive
$>$ Three of the gauge fields not massless
> Weak interactions mix quark generations

The $S U(2) \times U(1)$ symmetry is hidden

Realization of continuous symmetries

Consider a field theory invariant under some symmetry group $[H, U]=0$
Under infinitesimal transformation a field in a representation of the group with generators $\mathrm{T}^{\text {a }}$:

$$
\phi \rightarrow\left(I+i \epsilon^{a} T^{a}\right) \phi
$$

Weyl-Wigner: $\quad U|0\rangle=|0\rangle \quad \Rightarrow T^{a}\langle 0| \phi|0\rangle=0$

And all the states in the multiplet have the same energy

for some a
Nambu-Goldstone

$$
T^{a}\langle 0| \phi|0\rangle \neq 0
$$

$$
\Rightarrow
$$

Spontaneous Symmetry Breaking

If this is how the $S U(2)$ is broken where did the massless fields go ?

An important intuition came from the Meissner effect in superconductors
The photon becomes massive inside a superconductor due to the existence of a Cooper pair condensate which has e.m. charge

SSB of Gauge symmetry

The effective field theory of superconductivity: a complex scalar field with charge q coupled to the $U(1)$ gauge field

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\left(D_{\mu} \phi\right)^{\dagger} D_{\mu} \phi-V(\phi) \quad D_{\mu}=\partial_{\mu}-i q A_{\mu}
$$

$$
V(\phi)=-\mu^{2} \phi^{\dagger} \phi+\lambda\left(\phi^{\dagger} \phi\right)^{2}
$$

$$
\lambda>0
$$

Lowest energy configuration (vacuum):

$$
\phi^{\dagger} \phi=\frac{\mu^{2}}{2 \lambda} \equiv \frac{v^{2}}{2} \quad \phi=\frac{v}{\sqrt{2}} e^{i \theta}
$$

SSB of Gauge symmetry

Perturbing around the true vacuum

$$
\phi=\frac{v+h(x)}{\sqrt{2}} e^{i \theta(x)}
$$

$$
\mathcal{L}\left(\phi, A_{\mu}\right)=-\frac{1}{4} F_{\mu \nu} F_{\mu \nu}
$$

$$
+\frac{1}{2} \partial_{\mu} h \partial_{\mu} h+\frac{v^{2}}{2} \partial_{\mu} \theta \partial_{\mu} \theta-q v^{2} \partial_{\mu} \theta A_{\mu}+\frac{q^{2} v^{2}}{2} A_{\mu} A_{\mu}
$$

$$
-\mu^{2} h^{2}-\lambda v h^{3}-\frac{\lambda}{4} h^{4}
$$

θ is a Goldstone Boson

GB:field with only derivative couplings

The ABEGH²KN Mechanism

Anderson-Brout-Englert-Guralnik-Hagen-Higgs-Kibble-Nambu
$\mathcal{L}^{(2)}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\frac{q^{2} v^{2}}{2} A_{\mu} A_{\mu}+\frac{1}{2}\left(\partial_{\mu} h \partial_{\mu} h-\mu^{2} h^{2}\right)+\frac{v^{2}}{2} \partial_{\mu} \theta \partial_{\mu} \theta-q v^{2} \partial_{\mu} \theta A_{\mu}$
Gauge transformation: $\quad A_{\mu}^{\prime}=A_{\mu}-\frac{1}{q} \partial_{\mu} \theta$

$$
=-\frac{1}{4} F_{\mu \nu}^{\prime} F^{\prime \mu \nu}+\frac{q^{2} v^{2}}{2} A_{\mu}^{\prime} A_{\mu}^{\prime}+\frac{1}{2}\left(\partial_{\mu} h \partial_{\mu} h-\mu^{2} h^{2}\right)
$$

Goldstone mode -> massive gauge field (ie. longitudinal polarization)
Goldstone mode "is eaten" by the gauge field to get massive: unitary gauge Radial mode -> massive neutral scalar field

SM BEH mechanism

A complex doublet with quantum numbers $Y=+1 / 2$ and no color

$$
\begin{aligned}
& \mathcal{L}_{\phi}=D_{\mu} \phi^{\dagger} D_{\mu} \phi-V(\phi) D_{\mu} \phi=\left(\partial_{\mu}-i g W_{\mu}^{a} \frac{\sigma^{a}}{2}-i \frac{g^{\prime}}{2} B_{\mu}\right) \phi \\
& \phi=\binom{\phi_{1}+i \phi_{2}}{\phi_{0}+i \phi_{3}} \quad \phi \rightarrow e^{i T^{a} \alpha^{a}} \phi \quad T^{a}=\left(\frac{\sigma^{0}}{2}, \frac{\vec{\sigma}}{2}\right)
\end{aligned}
$$

A potential with a minimum at

$$
\begin{gathered}
\left\langle\phi^{\dagger} \phi\right\rangle=\frac{v^{2}}{2}=\frac{\mu^{2}}{2 \lambda} \\
\langle\phi\rangle=\frac{1}{\sqrt{2}}\binom{0}{v}
\end{gathered}
$$

SM BEH mechanism

Of the full symmetry group:

$$
\phi \rightarrow e^{i T^{a} \alpha^{a}} \phi \quad T^{a}=\left(\frac{\sigma^{0}}{2}, \frac{\vec{\sigma}}{2}\right)
$$

$A U(1)$ subgroup remains unbroken

$$
\left(T^{0}+T^{3}\right)\langle\phi\rangle=0
$$

$$
S U(2) \times U(1) \rightarrow U(1)_{e m}
$$

three broken generators: three massive gauge fields $\left(\mathrm{W}^{+-}, \mathrm{Z}^{0}\right)$ and one massless photon

Gauge boson masses

$$
\phi=e^{i \alpha^{a}(x) T^{a}} \frac{1}{\sqrt{2}}\binom{0}{v+h(x)}
$$

Exercise: show that this is a general parametrization of the complex scalar field

Gauge boson masses

$$
\begin{aligned}
& \phi=e^{i \alpha} \frac{1}{\sqrt{2}}\binom{0}{v+h(x)} \quad \text { In unitary gauge: } \\
& D_{\mu} \phi^{\dagger} D_{\mu} \phi=\frac{1}{2} \partial_{\mu} h \partial_{\mu} h+\frac{1}{2}\left(\begin{array}{ll}
0 & v+h
\end{array}\right)\left(g W_{\mu}^{a} \frac{\sigma^{a}}{2}+\frac{1}{2} g^{\prime} B_{\mu}\right)^{2}\binom{0}{v+h} \\
& =\frac{1}{2} \frac{v^{2}}{4}\left\{g^{2}\left(\left(W_{\mu}^{1}\right)^{2}+\left(W_{\mu}^{2}\right)^{2}\right)+\left(g^{\prime} B_{\mu}-g W_{\mu}^{3}\right)^{2}\right\}=m_{W}^{2} W_{\mu}^{+} W_{\mu}^{-}+\frac{1}{2} m_{Z}^{2} Z_{\mu} Z_{\mu}+O(h)
\end{aligned}
$$

Charged weak: $\quad W_{\mu}^{ \pm}=\frac{1}{\sqrt{2}}\left(W_{\mu}^{1} \pm i W_{\mu}^{2}\right)$

$$
m_{W} \equiv g \frac{v}{2}
$$

Neutral weak

$$
Z_{\mu}=\frac{1}{\sqrt{g^{2}+g^{\prime 2}}}\left(g W_{\mu}^{3}-g^{\prime} B_{\mu}\right) \quad m_{Z} \equiv \sqrt{g^{2}+g^{\prime 2}} \frac{v}{2}
$$

Electromagnetic $\quad A_{\mu}=\frac{1}{\sqrt{g^{2}+g^{\prime 2}}}\left(g^{\prime} W_{\mu}^{3}+g B_{\mu}\right)$

Question: why did we choose such normalization?

Question: why did we choose such normalization?

Exercise: check that the kinetic terms are properly normalized

Gauge Boson masses

Weak mixing angle $Z_{\mu}=\frac{1}{\sqrt{g^{2}+g^{\prime 2}}}\left(g W_{\mu}^{3}-g^{\prime} B_{\mu}\right)$

$$
A_{\mu}=\frac{1}{\sqrt{g^{2}+g^{\prime 2}}}\left(g^{\prime} W_{\mu}^{3}+g B_{\mu}\right)
$$

$$
\begin{aligned}
& \binom{Z_{\mu}}{A_{\mu}}=\left(\begin{array}{ll}
\cos \theta_{W} & -\sin \theta_{W} \\
\sin \theta_{W} & \cos \theta_{W}
\end{array}\right)\binom{W_{\mu}^{3}}{B_{\mu}} \\
& \cos \theta_{W} \equiv \frac{g}{\sqrt{g^{2}+g^{\prime 2}}} \quad \sin \theta_{W}=\frac{g^{\prime}}{\sqrt{g^{2}+g^{\prime 2}}}
\end{aligned}
$$

$$
m_{W}=m_{Z} \cos \theta_{W}
$$

Neutral currents

All fermions are doublets $D_{\mu} \Psi=\left(\partial_{\mu}-i g W_{\mu}^{a} \frac{\sigma^{a}}{2}-i Y_{\Psi} g^{\prime} B_{\mu}\right) \Psi$

$$
D_{\mu} \Psi=\left(\partial_{\mu}-i \frac{g}{\sqrt{2}}\left(W_{\mu}^{+} T^{+}+W_{\mu}^{-} T^{-}\right)-i \frac{g}{\cos \theta_{W}}\left(T^{3}-\sin ^{2} \theta_{W} Q_{\Psi}\right) Z_{\mu}-i e Q_{\Psi} A_{\mu}\right) \Psi
$$

$$
Q_{\Psi} \equiv T^{3}+Y_{\Psi} \quad e \equiv \frac{g g^{\prime}}{\sqrt{g^{2}+g^{\prime 2}}}=g \sin \theta_{W}
$$

Off-diagonal in isospin!

$$
i \frac{g}{\sqrt{2}} \gamma_{\mu} \frac{1-\gamma_{5}}{2}
$$

$$
\overbrace{\psi_{f}}^{\psi_{f}} \sim^{Z_{\mu}}
$$

Diagonal in isospin!

$$
g_{V}^{f}=\frac{1}{2} T_{f}^{3}-Q_{f} \sin ^{2} \theta_{W}, \quad g_{A}^{f}=\frac{1}{2} T_{f}^{3} .
$$

Neutral currents

Predicts all fermion couplings to neutral currents in terms of their em charges:

$$
\begin{array}{rr}
Y_{l_{L}}=Q_{e}+\frac{1}{2}=Q_{\nu}-\frac{1}{2}=-\frac{1}{2} & Y_{l_{R}}=Q_{e}=-1 \\
Y_{q_{L}}=Q_{d}+\frac{1}{2}=Q_{u}-\frac{1}{2}=\frac{1}{6} & Y_{u_{R}}=Q_{u}=\frac{2}{3} \\
Y_{d_{R}}=Q_{d}=-\frac{1}{3}
\end{array}
$$

If there were right-handed neutrinos they would have

$$
Y_{\nu_{R}}=Q_{\nu}=0
$$

Higgs-Gauge couplings

$$
(1+h / v)^{2}\left(m_{W}^{2} W_{\mu}^{+} W_{\mu}^{-}+\frac{1}{2} m_{Z}^{2} Z_{\mu} Z_{\mu}\right)
$$

$i g m_{W} g_{\mu \nu}$

Fermion masses

Dirac fermion of mass m:
$-\mathcal{L}_{m}^{\text {Dirac }}=m \bar{\psi} \psi=m\left(\overline{\psi_{L}+\psi_{R}}\right)\left(\psi_{L}+\psi_{R}\right)=m\left(\overline{\psi_{L}} \boldsymbol{\psi} \hat{\psi_{R}} \psi_{L}\right)$
Breaks $S U(2) \times U(1)$ gauge invariance!
But we can have other invariants with the conjugated scalar doublet:

$$
\begin{gathered}
\tilde{\phi} \equiv \sigma^{2} \phi^{*}, \tilde{\phi}:\left(1,2,-\frac{1}{2}\right),\langle\tilde{\phi}\rangle=\binom{\frac{v}{\sqrt{2}}}{0} \\
\mathcal{L}_{S M} \supset-Y_{d} \bar{q}_{L} \phi d_{R}-Y_{u} \bar{q}_{L} \tilde{\phi} u_{R}-Y_{l} \bar{l}_{L} \phi l_{R} \\
\rightarrow-m_{d} \bar{d}_{L} d_{R}-m_{u} \bar{u}_{L} u_{R}-m_{l} \bar{l}_{l} l_{R}+O(h)
\end{gathered}
$$

Exercise: check that the charge assignment of the tilde field is correct

$$
\tilde{\phi} \equiv \sigma^{2} \phi^{*}, \quad \tilde{\phi}:\left(1,2,-\frac{1}{2}\right), \quad\langle\tilde{\phi}\rangle=\binom{\frac{v}{\sqrt{2}}}{0}
$$

Higgs-fermion couplings

$$
(1+h / v)\left(-m_{d} \bar{d}_{L} d_{R}-m_{u} \bar{u}_{L} u_{R}-m_{l} \bar{l}_{L} l_{R}\right)+h . c .
$$

$$
-i \frac{g}{2} \frac{m_{f}}{m_{W}}
$$

Flavour mixing

No mixing between different families as it stands...but it turns out there are three families, why can't these Yukawa interactions mix families?

Exercise: show that in the absence of Yukawa couplings, the Lagrangian has a flavour/family symmetry:

$$
U(3)_{q_{L}} \times U(3)_{l_{L}} \times U(3)_{u_{R}} \times U(3)_{d_{R}} \times U(3)_{l_{R}}
$$

Quark mixing

There is flavour changing in charged currents: s-> u, but very suppressed in neutral currents

$$
\operatorname{Br}\left(K^{+} \rightarrow \pi^{0} e^{+} \nu_{e}\right) \simeq 5 \% \quad \operatorname{Br}\left(K^{+} \rightarrow \pi^{+} e^{+} e^{-}\right) \simeq 3 \times 10^{-7}
$$

How to explain mixing in CC without that in NC?

Glashow-Illiopoulos-Maiani mechanism

Quark mixing: Cabbibo-Kobayashi-Maskawa

The Yukawa couplings are generic matrices in flavour space:
basis where CC and NC diagonal \neq mass eigenbasis

$$
\begin{gathered}
\mathcal{L}_{S M} \supset-\left(\bar{d}_{L}, \bar{s}_{L}, \bar{b}_{L}\right) \underbrace{m_{d}}_{3 \times 3}\left(\begin{array}{c}
d_{R} \\
s_{R} \\
b_{R}
\end{array}\right)-\left(\bar{u}_{L}, \bar{c}_{L}, \bar{t}_{L}\right) \underbrace{m_{u}}_{3 \times 3}\left(\begin{array}{c}
u_{R} \\
c_{R} \\
t_{R}
\end{array}\right)-\left(\bar{e}_{L}, \bar{\mu}_{L}, \bar{\tau}_{L}\right) \underbrace{m_{u}}_{3 \times 3}\left(\begin{array}{c}
e_{R} \\
\mu_{R} \\
\tau_{R}
\end{array}\right) \\
m_{i}=U_{L i}^{\dagger} \operatorname{Diag}\left(m_{i}\right) V_{R i} \\
u_{L}^{\prime}=U_{L u} u_{L}, d_{L}^{\prime}=U_{L d} d_{L}, l_{L}^{\prime}=U_{L l} l_{L}, u_{R}^{\prime}=V_{R u} u_{R}, d_{R}^{\prime}=V_{R d} d_{R}, l_{R}^{\prime}=V_{R l} l_{R} \\
\mathcal{L}_{S M}^{C C} \supset-\frac{g}{\sqrt{2}} \bar{u}_{L i}^{\prime} \underbrace{\left(U_{L u} U_{L d}^{\dagger}\right) i j}_{C K M} \gamma_{\mu} W_{\mu}^{+} d_{L j}^{\prime}+h . c .
\end{gathered}
$$

Quark mixing: Cabbibo-Kobayashi-Maskawa

The Yukawa couplings are generic matrices in flavour space:
basis where CC and NC diagonal \neq mass eigenbasis

$$
\begin{gathered}
\mathcal{L}_{S M} \supset-\left(\bar{d}_{L}, \bar{s}_{L}, \bar{b}_{L}\right) \underbrace{m_{d}}_{3 \times 3}\left(\begin{array}{c}
d_{R} \\
s_{R} \\
b_{R}
\end{array}\right)-\left(\bar{u}_{L}, \bar{c}_{L}, \bar{t}_{L}\right) \underbrace{m_{u}}_{3 \times 3}\left(\begin{array}{c}
u_{R} \\
c_{R} \\
t_{R}
\end{array}\right)-\left(\bar{e}_{L}, \bar{\mu}_{L}, \bar{\tau}_{L}\right) \underbrace{m_{u}}_{3 \times 3}\left(\begin{array}{c}
e_{R} \\
\mu_{R} \\
\tau_{R}
\end{array}\right) \\
m_{i}=U_{L i}^{\dagger} \operatorname{Diag}\left(m_{i}\right) V_{R i} \\
u_{L}^{\prime}=U_{L u} u_{L}, d_{L}^{\prime}=U_{L d} d_{L}, l_{L}^{\prime}=U_{L l} l_{L}, u_{R}^{\prime}=V_{R u} u_{R}, d_{R}^{\prime}=V_{R d} d_{R}, l_{R}^{\prime}=V_{R l} l_{R} \\
\mathcal{L}_{S M}^{N C} \supset-\frac{g}{\cos \theta_{W}} \bar{d}_{L i}^{\prime}\left(-\frac{1}{2}+\frac{1}{3} \sin ^{2} \theta_{W}\right) \underbrace{\left(U_{L d} U_{L d}^{\dagger}\right)_{i j}}_{\delta_{i j}} \gamma_{\mu} Z_{\mu} d_{L j}^{\prime} \\
\quad-\frac{g}{\cos \theta_{W}} \bar{u}_{L i}^{\prime}\left(\frac{1}{2}-\frac{2}{3} \sin ^{2} \theta_{W}\right) \underbrace{\left(U_{L u} U_{L u}^{\dagger}\right)_{i j}}_{\delta_{i j}} \gamma_{\mu} Z_{\mu} u_{L j}^{\prime}
\end{gathered}
$$

Quark mixing: Cabbibo-Kobayashi-Maskawa

Neutral currents diagonal also in the mass eigenbasis: only quarks in the same family can exchange a Z boson

It was quite of a challenge to come up with this when only 1.5 quark family was known: $u, d, s \rightarrow$ prediction of the charm!

Charged currents not diagonal: CKM 3×3 unitary matrix

$$
|V|_{\mathrm{CKM}}=\left(\begin{array}{ccc}
0.97427 \pm 0.00015 & 0.22534 \pm 0.0065 & (3.51 \pm 0.15) \times 10^{-3} \\
0.2252 \pm 0.00065 & 0.97344 \pm 0.00016 & \left(41.2_{-5}^{+1.1}\right) \times 10^{-3} \\
\left(8.67_{-0.31}^{+0.29}\right) \times 10^{-3} & \left(40.4_{-0.5}^{+1.1}\right) \times 10^{-3} & 0.999146_{-0.000046}^{+0.00021}
\end{array}\right)
$$

CKM Parametrization

Not all entries are independent: how many physical parameters are there?
3 Euler angles and 1 complex phase : $s_{12}\langle->$ Cabbibo angle

$$
\begin{aligned}
\mathbf{V}_{\mathrm{CKM}}= & {\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right]\left[\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i \delta_{13}} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta_{13}} & 0 & c_{13}
\end{array}\right]\left[\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right] } \\
& =\left[\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta_{13}} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta_{13}} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta_{13}} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta_{13}} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta_{13}} & c_{23} c_{13}
\end{array}\right] .
\end{aligned}
$$

Since $s_{12} \gg s_{23} \gg s_{13}$: Wolfenstein parametrization

$$
V=\left(\begin{array}{ccc}
1-\lambda^{2} / 2 & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\lambda^{2} / 2 & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)+\mathcal{O}\left(\lambda^{4}\right)
$$

Counting parameters

\# physical parameters = \# parameters in Yukawas

- \# parameters in field redefinitions
+ \# parameters of exact symmetries

		Field Redef.	Symmetries	Physical
	Y_{u}, Y_{d}	$U_{q L}(n) \times U_{d R}(n) \times U_{u R}(n)$	$U(1)_{B}$	
Moduli	2×3^{2}	3×3	0	9
Phases	2×3^{2}	3×6	1	1

Moduli $=9=6$ masses +3 angles

Exercise: repeat the counting including the lepton Yukawa can there be mixing in the lepton sector ?

Higgs self-couplings

From the Higgs potential:

$$
-\frac{3}{4} i g^{2} \frac{m_{h}^{2}}{m_{W}^{2}}
$$

"Threads in a tapestry"...

several Nobel-prize winning milestones

At the beginning there were just electrons, nuclei, electromagnetism (and gravity)...

1930 Neutrinos "showed up"

Pauli (Nobel 1945)

Reines (Nobel 1995)

1934: Theory of beta decay

E. Fermi
(Nobel 1938)

1956: Parity violation in β decay

V-A structure of weak interactions: only left-handed fields involved in beta-processes

Gell-Mann, Feynman, Sudarshan, Marshak 1958

Cosmic Particle parade starts

New-looking particles start to show up in Nature-given fixed-target experiment: cosmic rays

Some elementary

Many more not, but new symmetries start to be evident

Gell-Mann
(Nobel 1969)

Quark model

Accelerator Particle Parade

Lederman Schwartz Steinberger
Nobel 1988

SSB and BEH mechanism

1960 Nambu-Goldstone spontaneous symmetry breaking, Nambu-Goldstone bosons

1964 Englert-Brout-Higgs et al Massive gauge fields from goldstone bosons

Nambu
Nobel 2008

Englert, Higgs Nobel 2013

1967 Glashow,Weinberg,Salam

1971 it is renormalizable
$S U(2) \times U(1)$

T'Hooft, Veltman Nobel 1999

Weak mediators appeared

1973 Detection of neutral currents in Gargamelle

1981 W, Z were directly observed UA1, UA2

Rubbia, Van der Meer Nobel 1984

Charpak
Nobel 1992

Weak mediators appeared

1973 Detection of neutral currents in Gargamelle

1981 W, Z were directly observed UA1, UA2

Rubbia, Van der Meer Nobel 1984

Detector
Physicis \dagger

Accelerator Physicist

Charpak
Nobel 1992

Quark model -> SU(3) color

1954 Non-abelian gauge theories: Yang-Mills

1973 Asymptotic freedom

1974 DIS experiments

Politzer, Gross, Wilczek Nobel 2004

1974 Lattice QCD: confinement

Friedman, Kendall, Taylor Nobel 1990

Family structure

1963 Cabbibo (also Gell-Mann Levy): the first mixing angle 1964 CP violation discovered

Cronin.Fitch
Nobel 1980

1970 GIM: no FCNC prediction of charm
1973 Kobayashi-Maskawa predict 3 families to explain CP 1974 charm detected !

Richter, Ting Nobel 1976

Family structure

1974-78 third family shows up (tau lepton) Perl et al

1977 b-quark Lederman et al
M. Perl

Nobel 1995

1995 top quark Tevatron (DO, CDF) appears after many years of being chased through its quantum effects
$2000 v_{\tau}$

and...the scottish particle

Is this the end of the particle parade?

SM Nobel tapestry

