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Lecture I: the SM tapestry�

“The hunt of the Unicorn” �



The Standard Model (SM)�

Describes the dynamics of elementary particles in the  quantum/
relativistic domain: key in understanding atomic physics, nuclear physics, 
astrophysics…�
	  

Elementary as far as we know….�



SM is a Quantum Field Theory�
Unifying picture of the concepts of �
�
       Interactions (fields): electromagnetic,… strong, weak �
       Matter (particles): electron, proton, neutron,…, neutrinos, muons, �
   hadrons, quarks, …�
�
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QFT in a nutshell �
Elementary particles or interactions represented by (complex) causal 
quantum fields (operators in Fock space): �

a : flavour index

s : spin index

One (anti)particle states: �

|p, s, ai+ = âs†p,a|0i

|p, s, ai� = b̂s†p,a|0i

ua
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a
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QFT in a nutshell �
Elementary particles or interactions represented by (complex) causal�
quantum fields (operators in Fock space): �

For each p, s, a, one quantum harmonic oscillator�

EN (p, s, a) = (N + 1/2)Ep $ N particle state

Quantum relativistic particles�
        (second quantization) �

Fock Space: field operator�
 creates/destroys a particle at x�

Quantum fields�
    (canonical quantization) �

Harmonic osc.: a,a+ ladder operators �
create/destroy a quantum of energy�

�(x) =

Z
d

3
p

(2⇡)3
1p
2Ep

⇣
u

a

s
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Particle zoo vs. symmetries�
Symmetries are the underlying principle behind this structure: �
�
•   How many particles are there and number of degrees of 

freedom�
•   How particles interact �



Particle zoo vs. symmetries�

Ø  Symmetries seem to be a fundamental principle of Nature�

Ø  Groups are the mathematical representation of symmetries�

Ø  Representation of symmetry groups tell us about the structure of 
Nature (how many dofs are there ?)�

Space-time symmetries: Lorentz group SO(1,3)�
Discrete symmetries: eg. Parity �
Internal symmetries: SU(2) isospin,  SU(3) color �

Elementary particles: vectors on which symmetry transformations  
can act (irreducibly, without leaving invariant subspaces)�



Lorentz group: index s�

dim(j) = 2j + 1j = Z/2

Elementary particles are irreducible representations of the group of 
rotations (spin) �

+ Boosts: � (j1, j2) dim(j1, j2) = (2j1 + 1)(2j2 + 1)

+ Parity: � (j1, j2)!P (j2, j1)

 L/R ⌘ PL/R 

PL/R ⌘ 1⌥ �5
2

Rep. Field dim. Spin Parity
(0,0) H 1 0 Yes
( 12 ,0) qR, lR 2 1

2 No
(0, 12 ) qL, lL 2 1

2 No
( 12 ,

1
2 ) Aµ, Gµ,W±

µ , Zµ 4 1 Yes



Causal relativistic free fields�
Weyl fermion: �
�
�
�
�
�
Dirac fermion: �
�
�
�
�
Vector boson:�
�

L =  ̄L(i�µ@µ) L

 Two-component spinor: particle with negative helicity, antiparticle �
with negative one�

L = ( ̄L +  ̄R)(i�µ@µ �m)( L + R)

 Four-component spinor: particle and antiparticle with both helicities�

 Massless: two polarizations, Massive: three polarizations�

L = �1

4
(@µA⌫ � @⌫Aµ)

2 +
m2

2
A2

µ



Internal Symmetries vs.  
Interactions �

Two types of internal symmetries: �
�
    global: transforms in the same way fields at all space-time points�
�
    local: transform independently fields at each space-time point �

Local symmetries imply the existence of some �
fields and dictate how elementary particles interact ! �



Gauge Symmetry: U(1)�
Maxwell eqs. in terms of gauge potentials are invariant under�
�

 (x) ! e

iq↵(x) (x)

Aµ(x) ! Aµ(x) + @µ↵(x)

Eqs. of motion for any charged field will also remain invariant if�

e.m. gauge invariance <-> U(1) local gauge transformation �

Dµ ⌘ (@µ � iqAµ) ! eiq↵Dµ 

U(1) invariants: �

 ̄�µDµ Fµ⌫ = @µA⌫ � @⌫Aµ ̄ 



Gauge Symmetry: U(1)�

LQED = �1

4
F 2
µ⌫ +  ̄(i 6D �m) 

Dµ = @µ � iqAµ

Fµ⌫ = @µA⌫ � @⌫Aµ

A mass term             breaks symmetry: photon massless��m2
A

2
A2

µ



Gauge Symmetry: SU(N)�
Gauge transformation belongs to the special unitary group �

 (x) ! ⌦(x) (x) ⌦(x) ! N⇥N unitary matrix

⌦(x) = exp (i↵aT
a
)

T a†
= T a $ generators, a = 1, . . . , N2 � 1

(For N=2               )  �T a =
�a

2

fundamental rep.�

Adjoint rep.�Aa=1,..,N2�1
µ

 i=1,. . . ,N

gA

a
µT

a ! ⌦(x)gAa
µT

a⌦†(x) + i⌦(x)@µ⌦
†(x)



Gauge Symmetry SU(N)�

LSU(N) = �1

4
(F a

µ⌫)
2 +  ̄ (i 6D �m) 

F a
µ⌫T

a =
i

g
[Dµ, D⌫ ]Dµ = @µ � igAa

µT
a

A mass term                     would also break the gauge symmetry��1

2
m2

AA
a
µ

This is a gauge invariant Lagrangian, �
                         but is it the only one ?�

Dµ ! ⌦ Dµ F a
µ⌫T

a ! ⌦F a
µ⌫T

a⌦†



Gauge Symmetry SU(N)�

LSU(N) = �1

4
(F a

µ⌫)
2 +  ̄ (i 6D �m) 

Mediators self-interactions: �

/ Tr[T a[T b, T c]] / Tr[T a[T b, T c]]Tr[T a[T d, T e]]

a�

b �

c�

b �

c�

d�

e�



SM is a gauge theory�

Ga=1,..,8
µ

W a=1,2,3
µ⌫ , Bµ

SU(3)

SU(2)⇥U(1)Y

SU(3)⇥ SU(2)⇥ U(1)Y



SM gauge group �
SU(3)⇥ SU(2)⇥ U(1)Y

Flavour/�
family �

Parity (~helicity) conjugate�

Not only have they been detected, but have provided essential information on the
two most striking features of the fermionic content of the SM:

• Left-handedness of the weak interactions

• The family structure
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SM gauge group �
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The puzzle in the 60’s�

Ø  Particles with different names in the same gauge SU(2) multiplet �

Ø  Parity violation: L, R different charges, but fermions massive �

Ø  Three of the gauge fields not massless�

Ø   Weak interactions mix quark generations�

The SU(2)xU(1) symmetry is hidden �



Realization of continuous symmetries�

And all the states in the multiplet have the same energy�

Consider a field theory  invariant under some symmetry group �
�
Under infinitesimal transformation a field in a representation of the group with �
generators Ta:	  

Weyl-Wigner: �

Nambu-Goldstone�

[H,U ] = 0

� ! (I + i✏aT a)�

) T ah0|�|0i = 0

T ah0|�|0i 6= 0
for some a �

) U |0i 6= |0i

U |0i = |0i

	  Goldstone theorem: as many massless modes as broken generators�



Spontaneous Symmetry Breaking �

If this is how the SU(2) is broken �
                         where did the massless fields go ?�

An important intuition came from the Meissner effect in superconductors �
�
	  	  	  	  	  	  	  	  	  The photon becomes massive inside a superconductor due to the 
existence of a Cooper pair condensate which has e.m. charge       �

Anderson �



SSB of Gauge symmetry�

The effective field theory of superconductivity: a complex scalar field with �
charge q coupled to the U(1) gauge field  �

Dµ = @µ � iqAµ

V	


Introduction Introduction to Weak Decays Goldstone Bosons Abelian Higgs Model SU(2)×U(1)

Goldstone Bosons – Continuous Symmetries Cont.

V

! The existence of Goldstone Bosons can be understood in terms of zero
modes.

! O(N) has N(N−1)/2 generators and the residual symmetry O(N−1)
has (N−1)(N−2)/2 generators.

! The number of Broken Symmetries is therefore
1
2
{N(N−1)− (N−1)(N−2)} = N−1

which is the number of Goldstone Bosons .

Standard Model SUSSP61, Lecture 1, 9th August 2006

Lowest energy configuration (vacuum): �

� =
vp
2
ei✓

L = –
1

4
Fµ⌫F

µ⌫ + (Dµ�)
†Dµ�� V (�)

V (�) = �µ2�†�+ �(�†�)2

�†� =
µ2

2�
⌘ v2

2
Re	  Im	  

� > 0



V	


Perturbing around the true vacuum � � =
v + h(x)p

2
e

i✓(x)

Introduction Introduction to Weak Decays Goldstone Bosons Abelian Higgs Model SU(2)×U(1)

Goldstone Bosons – Continuous Symmetries Cont.

V

! The existence of Goldstone Bosons can be understood in terms of zero
modes.

! O(N) has N(N−1)/2 generators and the residual symmetry O(N−1)
has (N−1)(N−2)/2 generators.

! The number of Broken Symmetries is therefore
1
2
{N(N−1)− (N−1)(N−2)} = N−1

which is the number of Goldstone Bosons .

Standard Model SUSSP61, Lecture 1, 9th August 2006

is a Goldstone Boson �

GB:field with only derivative couplings�

θ	

θ	
 h	  

SSB of Gauge symmetry�

L(�, Aµ) = � 1
4Fµ⌫Fµ⌫

+ 1
2@µh@µh+ v2

2 @µ✓@µ✓ � qv2@µ✓Aµ + q2v2

2 AµAµ

� µ2h2 � �vh3 � �
4h

4



The ABEGH2KN Mechanism�

V	


L(2) = –
1

4
Fµ⌫F

µ⌫+
q2v2

2
AµAµ+

1

2
(@µh @µh�µ2h2)+

v2

2
@µ✓ @µ✓�qv2@µ✓Aµ

A0
µ = Aµ � 1

q
@µ✓Gauge transformation: �

= –
1

4
F 0
µ⌫F

0µ⌫ +
q2v2

2
A0

µA
0
µ +

1

2
(@µh @µh� µ2h2)

Goldstone mode -> massive gauge field (ie. longitudinal polarization)�
     �
       Goldstone mode “is eaten” by the gauge field to get massive: unitary gauge�
�
Radial mode -> massive neutral scalar field�
�

Anderson-Brout-Englert-Guralnik-Hagen-Higgs-Kibble-Nambu �



SM BEH mechanism�
A complex doublet with quantum numbers  Y=+1/2 and no color�

L� = Dµ�
†Dµ�� V (�)

A potential with a  minimum at �

h�i = 1p
2

✓
0
v

◆

� ! eiT
a↵a

� T a =

✓
�0

2
,
~�

2

◆

h�†�i = v2

2
=

µ2

2�

Introduction Introduction to Weak Decays Goldstone Bosons Abelian Higgs Model SU(2)×U(1)

Goldstone Bosons – Continuous Symmetries Cont.

V

! The existence of Goldstone Bosons can be understood in terms of zero
modes.

! O(N) has N(N−1)/2 generators and the residual symmetry O(N−1)
has (N−1)(N−2)/2 generators.

! The number of Broken Symmetries is therefore
1
2
{N(N−1)− (N−1)(N−2)} = N−1

which is the number of Goldstone Bosons .

Standard Model SUSSP61, Lecture 1, 9th August 2006

Dµ� = (@µ � igW a
µ
�a

2
� i

g0

2
Bµ)�

� =

✓
�1 + i�2

�0 + i�3

◆



SM BEH mechanism�

V	


Of the full symmetry group: �
	  

three broken generators: three massive gauge fields (W+-, Z0) and �
one massless photon �

SU(2)⇥ U(1) ! U(1)em

A U(1) subgroup remains unbroken �

(T 0 + T 3)h�i = 0

� ! eiT
a↵a

� T a =

✓
�0

2
,
~�

2

◆



Gauge boson masses�

� = e

i↵

a(x)Ta 1p
2

✓
0
v + h(x)

◆

Exercise: show that this is a general parametrization of the complex scalar field �



Gauge boson masses�

V	


� = e

i↵

a(x)Ta 1p
2

✓
0
v + h(x)

◆
In unitary gauge: �
	  

Dµ�
†Dµ� =

1

2
@µh @µh+

1

2
(0 v + h)

✓
gW a

µ
�a

2
+

1

2
g0Bµ

◆2 ✓
0
v + h

◆

W±
µ =

1p
2

�
W 1

µ ± iW 2
µ

�

Zµ =
1p

g2 + g02

�
gW 3

µ � g0Bµ

�

Aµ =
1p

g2 + g02

�
g0W 3

µ + gBµ

�

=
1

2

v2

4

�
g2
�
(W 1

µ)
2 + (W 2

µ)
2
�
+ (g0Bµ � gW 3

µ)
2
 
= m2

WW+
µ W�

µ +
1

2
m2

ZZµZµ +O(h)

Charged weak: �
�
�
Neutral weak �
�
�
Electromagnetic�

mZ ⌘
p

g2 + g02
v

2

mW ⌘ g
v

2



Question: why did we choose such normalization ? �



Question: why did we choose such normalization ? �

Exercise: check that the kinetic terms are properly �
            normalized�



Gauge Boson masses�

V	


Weak mixing angle� Zµ =
1p

g2 + g02

�
gW 3

µ � g0Bµ

�

Aµ =
1p

g2 + g02

�
g0W 3

µ + gBµ

�

✓
Zµ

Aµ

◆
=

✓
cos ✓W � sin ✓W
sin ✓W cos ✓W

◆✓
W 3

µ

Bµ

◆

cos ✓W ⌘ gp
g2 + g02

sin ✓W =

g0p
g2 + g02

mW = mZ cos ✓W



Neutral currents�
V	


All fermions are doublets  �
	  
	  	  

Dµ = (@µ � igW a
µ
�a

2
� iY g

0Bµ) 

Dµ =

✓
@µ � i

gp
2

(W+
µ T+

+W�
µ T�

)� i
g

cos ✓W
(T 3 � sin

2 ✓WQ )Zµ � ieQ Aµ

◆
 

Q ⌘ T 3 + Y e ⌘ gg0p
g2 + g02

= g sin ✓W

382 APPENDIX D. FEYNMAN RULES FOR THE STANDARD MODEL

D.4.4 Charged Current Interaction

i
gp
2
�µ

1� �5
2

(D.58)
 d,u

 u,d
W±

µ

D.4.5 Neutral Current Interaction

(D.59)

 f

 f

 f

 f

Zµ Aµ
i

g

cos ✓W
�µ

⇣
gfV � gfA�5

⌘
�ieQf�µ

where

gfV =
1

2
T 3
f �Qf sin

2 ✓W , gfA =
1

2
T 3
f . (D.60)

D.4.6 Fermion-Higgs and Fermion-Goldstone Interactions

�i
g

2

mf

mW
(D.61)

h

f

f

�g T 3
f

mf

mW
�5 (D.62)

'Z

f

f

i
gp
2

✓
mu

mW
PR,L � md

mW
PL,R

◆
(D.63)

'⌥

 d,u

 u,d

D.4.7 Triple Higgs-Gauge and Goldstone-Gauge Interactions

�i e (p+ � p�)µ (D.64)
Aµ

'+

'�
p�

p+
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D.4.6 Fermion-Higgs and Fermion-Goldstone Interactions
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 d,u

 u,d

D.4.7 Triple Higgs-Gauge and Goldstone-Gauge Interactions

�i e (p+ � p�)µ (D.64)
Aµ

'+

'�
p�

p+

Diagonal in isospin! �Off-diagonal in isospin! �



Neutral currents�
V	


Predicts all fermion couplings to neutral currents in terms of their	  
em charges: �

YlL = Qe +
1

2
= Q⌫ � 1

2
= �1

2

YqL = Qd +
1

2
= Qu � 1

2
=

1

6

YlR = Qe = �1

YuR = Qu =
2

3

YdR = Qd = �1

3

If there were right-handed neutrinos they would have �

Y⌫R = Q⌫ = 0



Higgs-Gauge couplings�
V	


384 APPENDIX D. FEYNMAN RULES FOR THE STANDARD MODEL

i
g

cos ✓W
mZ gµ⌫ (D.72)

Zµ

Z⌫

h

D.4.8 Quartic Higgs-Gauge and Goldstone-Gauge Interactions
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2
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Fermion masses�
Dirac fermion of mass m: �

�LDirac
m = m�̄� = m(�L + �R)(�L + �R) = m(�L�R + �R�L)✗

Breaks SU(2)xU(1) gauge invariance!  �

But we can have other invariants with the conjugated scalar doublet: �

�̃ ⌘ �2�⇤, �̃ : (1, 2,�1

2
), h�̃i =

✓ vp
2

0

◆

LSM � �Ydq̄L�dR � Yuq̄L�̃uR � Yl l̄L�lR

! �mdd̄LdR �muūLuR �ml l̄llR +O(h)



Exercise: check that the charge assignment of the tilde field is correct �

�̃ ⌘ �2�⇤, �̃ : (1, 2,�1

2
), h�̃i =

✓ vp
2

0

◆



Higgs-fermion couplings �
V	


(1 + h/v)
�
�mdd̄LdR �muūLuR �ml l̄LlR

�
+ h.c.
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D.4.4 Charged Current Interaction
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D.4.5 Neutral Current Interaction
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D.4.6 Fermion-Higgs and Fermion-Goldstone Interactions
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D.4.7 Triple Higgs-Gauge and Goldstone-Gauge Interactions

�i e (p+ � p�)µ (D.64)
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Flavour mixing �

No mixing between different families as it stands…but it turns out there�
are three families, why can’t these Yukawa interactions mix families ?�

Exercise:	  show that in the absence of Yukawa couplings, the Lagrangian �
has a flavour/family symmetry:�
	  
	  	  	  	   U(3)qL ⇥ U(3)lL ⇥ U(3)uR ⇥ U(3)dR ⇥ U(3)lR



Quark mixing �
There is flavour changing in charged currents: s -> u, but very suppressed�
 in neutral currents �

Br(K+ ! ⇡0e+⌫e) ' 5% Br(K+ ! ⇡+e+e�) ' 3⇥ 10�7

Fermions Quark Mixing FCNC Discrete Symmetries Higgs Mass

Quark Mixing
Two Experimental Numbers:

B(K+ → π0e+νe) " 5% (K+

e3 Decay) and B(K+ → π+e+e−) < 3×10−7 .

K+ π0,π+

leptons
s u,d

Measurements like this show that s→ u (charged-current) transitions are not
rare, but that Flavour Changing Neutral Current (FCNC) transitions, such as
s→ d are.
In the picture that we have developed so far, there are no transitions between
fermions of different generations. This has to be modified.

The picture which has emerged is the Cabibbo-Kobayashi-Maskawa (CKM)
theory of quark mixing which we now consider.

Standard Model SUSSP61, Lecture 2, 10th August 2006

How to explain mixing in CC without that in NC ? �

Glashow-Illiopoulos-Maiani mechanism �



Quark mixing: Cabbibo-Kobayashi-Maskawa �

The Yukawa couplings are generic matrices in flavour space: �
�
    basis where CC and NC diagonal  ≠  mass  eigenbasis�

LSM � �(d̄L, s̄L, b̄L) md|{z}
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CKM
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µ d0Lj + h.c.



Quark mixing: Cabbibo-Kobayashi-Maskawa �

The Yukawa couplings are generic matrices in flavour space: �
�
    basis where CC and NC diagonal  ≠  mass  eigenbasis�

LSM � �(d̄L, s̄L, b̄L) md|{z}
3⇥3

0

@
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1

A� (ūL, c̄L, t̄L) mu|{z}
3⇥3

0
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A� (ēL, µ̄L, ⌧̄L) mu|{z}
3⇥3

0
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µR
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1

A

mi = U†
LiDiag(mi)VRi
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L = ULuuL, d0L = ULddL, l0L = ULllL, u0
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Quark mixing: Cabbibo-Kobayashi-Maskawa �

Neutral currents diagonal also in the mass eigenbasis: only quarks�
in the same family can exchange a Z boson �
             �
�
�
�
�
�
Charged currents not diagonal: CKM 3x3 unitary matrix  �

It was quite of a challenge to come up with this when only 1.5 �
quark family was known: u, d, s -> prediction of the charm ! �

PDG	  



CKM Parametrization �
Not all entries are independent: how many physical parameters are there ?�
�
    3 Euler angles and 1 complex phase : s12 <-> Cabbibo angle�

Since s12 >> s23 >> s13:  Wolfenstein parametrization �

VCKM= �



# physical parameters =    # parameters in Yukawas�
                              - # parameters in field redefinitions �
                              + # parameters of exact symmetries �

	   	  	  	  	  Field	  Redef.	  	   	  Symmetries	   	  Physical	  

	  	  	  Yu	  ,	  Yd 	  UqL(n)xUdR(n)xUuR(n) 	  	  	  	  	  U	  (1)B

Moduli	   	  	  2	  x	  32 	  	  3	  x	  3 	  	  	  	  	  	  	  	  0 	  	  	  9

Phases 	  	  2	  x	  32 	  3	  x	  6 	  	  	  	  	  	  	  	  1
	  	  	  	  
	  	  	  1	  

Moduli = 9 = 6 masses + 3 angles �

Counting parameters�



Exercise:	  repeat the counting including the lepton Yukawa�
           can there be mixing in the lepton sector ?�
   �



Higgs self-couplings�
V	
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D.4.9 Triple Higgs and Goldstone Interactions
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D.4.10 Quartic Higgs and Goldstone Interactions
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From the Higgs potential: �



“Threads in a tapestry”…�
several Nobel-prize winning milestones�



At the beginning there were just electrons, nuclei, electromagnetism �
 (and gravity)…�



	  1930	  Neutrinos “showed up”�

Pauli (Nobel 1945)�

Reines (Nobel 1995)�



1934: Theory of beta decay�

E. Fermi�
(Nobel 1938)�

p

n Νe

e

GF



1956: Parity violation in β decay �

V-A structure of weak interactions: only left-handed fields involved in	  	  
beta-processes �

Yang, Lee�
(Nobel 1957)�

C-‐S	  Wu	  

Gell-Mann, Feynman, Sudarshan, Marshak 1958�



Cosmic Particle parade starts�
New-looking particles start to show up in Nature-given fixed-target �
experiment: cosmic rays�



	  Some elementary�



Many more not, but new symmetries 
start to be evident �

Gell-man �
(Nobel 1969)�

Gell-Mann �
(Nobel 1969)�

Quark model�



Accelerator Particle Parade�

Nobel 1988 �
Lederman � Schwartz� Steinberger�



SSB and BEH mechanism�

1960 Nambu-Goldstone spontaneous symmetry breaking, �
 Nambu-Goldstone bosons�
�
	  
1964 Englert-Brout-Higgs et al �
Massive gauge fields from goldstone bosons�

Nambu �
Nobel 2008�

Introduction Introduction to Weak Decays Goldstone Bosons Abelian Higgs Model SU(2)×U(1)

Goldstone Bosons – Continuous Symmetries Cont.

V

! The existence of Goldstone Bosons can be understood in terms of zero
modes.

! O(N) has N(N−1)/2 generators and the residual symmetry O(N−1)
has (N−1)(N−2)/2 generators.

! The number of Broken Symmetries is therefore
1
2
{N(N−1)− (N−1)(N−2)} = N−1

which is the number of Goldstone Bosons .

Standard Model SUSSP61, Lecture 1, 9th August 2006

Englert, Higgs �
Nobel 2013�



1967 Glashow,Weinberg,Salam �

SU(2) x U(1)�

Glashow , Weinberg, Salam�
Nobel 1979�

1971 it is renormalizable�
T’Hooft, Veltman �
Nobel 1999�



Weak mediators appeared�
1973 Detection of neutral currents in Gargamelle�
�
�
�
�
�
�
1981  W, Z were directly observed UA1, UA2�

Rubbia, Van der Meer�
Nobel 1984�

Charpak�
Nobel 1992�



Weak mediators appeared�
1973 Detection of neutral currents in Gargamelle�
�
�
�
�
�
�
1981  W, Z were directly observed UA1, UA2�

Rubbia, Van der Meer�
Nobel 1984�

Charpak�
Nobel 1992�

Detector �
Physicist �

Accelerator �
Physicist �



Quark model -> SU(3) color�

�
�
1973 Asymptotic freedom�
�
�
�
1974 DIS experiments�
�
�
�
1974 Lattice QCD: confinement �

1954 Non-abelian gauge theories: Yang-Mills	  
	  

Politzer, Gross, Wilczek �
Nobel 2004�

Friedman, Kendall, Taylor�
Nobel 1990�



Family structure�

Kobayashi, Maskawa �
  Nobel 2008�

1963 Cabbibo (also Gell-Mann Levy): the first mixing angle�
�
1964 CP violation discovered�
�
�
�
1970 GIM: no FCNC prediction of charm�
1973 Kobayashi-Maskawa predict 3 families to explain CP�
1974 charm detected ! �
 �

Richter, Ting Nobel 1976�

Cronin.Fitch�
  Nobel 1980�



Family structure�

M. Perl �
Nobel 1995�

1974-78 third family shows up (tau lepton)�
                                 Perl et al�
�
1977 b-quark Lederman et al�
�
�
1995 top quark Tevatron (D0, CDF) appears after many 
years of being chased through its quantum effects�
�
�
 �2000 ντ  	




and…the scottish particle�
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!  Significance: 
5.7σ obs. 
(5.2σ exp.) 

[arXiv:1407.0558, submitted to EPJC] 
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Is this the end of the particle parade ?�



SM Nobel tapestry�


