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Signals and Backgrounds

• What is the purpose of a neutrino experiment?

➡To provide convincing evidence for or against some 
hypothesis

➡To make measurements that are accurate enough to 
be useful
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Energy Range

• Need to detect a wide range of neutrino energies 

• Oscillation depends on distance and energy

• varying Eν is an important experimental handle

• ν-scattering probes different regimes of nucleon/
nuclear structure with different Eν 
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• (neglected efficiency and backgrounds)

• Written example : reactor neutrinos

• Noteworthy:

✓ Flux is really high!

✓Detector is really large!

➡Event rate is still very low!

Nevt = �⌫(E⌫)⇥ �⌫(E⌫)⇥Ntgt

Event rates
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• What do we actually want to measure?
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Signals

• What do we actually want to measure?

• Go through typical interaction channels in different 
energy regimes

• Consider final state particles, topologies, energies
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Low energy

• Reactor antineutrinos

• Solar neutrinos

• Geoneutrinos

➡Want to tag energy of charged lepton (electron) and tag 
presence of recoil nucleons
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τ = 30 µsec • Inverse beta decay (IBD)
• Delayed coincidence between e+ and n ,and 

larger cross section are useful to identify anti-
electron-neutrinos.

• “n” is often captured using Gd, Cl, or free 
protons
• excited states generate gamma rays 

O(10~100) µsec after n capture.
➡Tag e+, n
➡Measure energy of e+

 ν̅e+p→e++n
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Solar neutrinos

• No free neutrons in Nature, so the IBD doesn’t work

• Can interact via 

➡Measure direction and energy of e-

➡Tag recoil nucleons if possible

T

νe

e-

Eν
T: Target

W+
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Intermediate energies

• Recoiling particles have low multiplicities, but now have 
enough energy to be detected & tracked

• Want to tag lepton flavour, measure El, theta-l

• Tag and track secondary pions, nucleons

• Important also to tag the sign of the lepton
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Example: CCQE

• Tag lepton flavour - crucial for oscillation experiments

• Measure Eµ, θµ

• Can reconstruct neutrino energy with this information

• HW: derive CCQE energy formula

• Measure proton kinematics, if possible

νµ + n → µ + p µ-

p

(Eµ, pµ)θµ
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Example: CC resonant 
pion production

• Tag lepton flavour - crucial for oscillation experiments

• Measure Eµ, θµ

• Can reconstruct energy in this case as well

• Doesn’t work as well.  Why?

• Measure pion kinematics, nucleon if possible

• Allows better reconstruction of neutrino energy

• HW 2: Derive CC1π energy formula with π kinematics

νµ + n → µ + p + π

ν

µ-

p

(Eµ, pµ)θµ
π’s
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Example: NC resonant 
pion production

• Tag pi0, measure Epi thetapi

• Can’t reconstruct neutrino energy. Why not?

• Important channel for oscillation experiments

νµ + n → νµ + n + π0

ν

ν

n

(Eν, pν)θν

π0
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Example: Deep Inelastic Scattering
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Backgrounds

• Collect background events as well as signal

• Inevitable, given low signal rates

• Anything that shares characteristics with signal 
interactions is a potential background

• Degrades statistical precision!

• Backgrounds are different in different energy regimes
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Low energy
A. Radioactivity in detector materials
B. Cosmogenic neutrinos
C. (Unwanted) neutrinos 

• reactor neutrinos in solar experiments

• solar, geoneutrinos in reactor and (dark matter) 
experiments

• Mitigate backgrounds by:
A. Using clean detector materials
B. Going deep underground, analysis/triggering techniques
C. Location and Directionality
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• Coincident signals in multiple 
subdetectors allows BG 
discrimination
• More than 10 tonnes!

• Water serves as target for free 
antineutrinos
• Positrons annihilate in surrounding 

detectors

• Neutrons capture ~30ms or later 
on Cd

• Release gamma rays that leave signals in 
surrounding scintillator tanks

H2O w/
 CdCl

Savannah River
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Backgrounds
4

TABLE II: Systematic uncertainties on fluxes. The experi-
mental uncertainty for ES (not shown) is -4.8,+5.0 percent.
† denotes CC vs NC anti-correlation.

Source CC Uncert. NC Uncert. φµτ Uncert.
(percent) (percent) (percent)

Energy scale † -4.2,+4.3 -6.2,+6.1 -10.4,+10.3
Energy resolution † -0.9,+0.0 -0.0,+4.4 -0.0,+6.8
Energy non-linearity † ±0.1 ±0.4 ±0.6
Vertex resolution † ±0.0 ±0.1 ±0.2
Vertex accuracy -2.8,+2.9 ±1.8 ±1.4
Angular resolution -0.2,+0.2 -0.3,+0.3 -0.3,+0.3
Internal source pd † ±0.0 -1.5,+1.6 -2.0,+2.2
External source pd ±0.1 -1.0,+1.0 ±1.4
D2O Cherenkov † -0.1,+0.2 -2.6,+1.2 -3.7,+1.7
H2O Cherenkov ±0.0 -0.2,+0.4 -0.2,+0.6
AV Cherenkov ±0.0 -0.2,+0.2 -0.3,+0.3
PMT Cherenkov † ±0.1 -2.1,+1.6 -3.0,+2.2
Neutron capture ±0.0 -4.0,+3.6 -5.8,+5.2
Cut acceptance -0.2,+0.4 -0.2,+0.4 -0.2,+0.4
Experimental uncertainty -5.2,+5.2 -8.5,+9.1 -13.2,+14.1
Cross section [7] ±1.8 ±1.3 ±1.4

2928 events in the energy region selected for analysis, 5
to 20 MeV. Fig. 2(a) shows the distribution of selected
events in the cosine of the angle between the Cherenkov
event direction and the direction from the sun (cos θ!)
for the analysis threshold of Teff≥ 5 MeV and fiducial
volume selection of R ≤ 550 cm, where R is the recon-
structed event radius. Fig. 2(b) shows the distribution of
events in the volume-weighted radial variable (R/RAV)3,
where RAV = 600 cm is the radius of the acrylic ves-
sel. Figure 2(c) shows the kinetic energy spectrum of the
selected events.

In order to test the null hypothesis, the assumption
that there are only electron neutrinos in the solar neu-
trino flux, the data are resolved into contributions from
CC, ES, and NC events above threshold using pdfs in Teff,
cos θ!, and (R/RAV)3, derived from Monte Carlo calcu-
lations generated assuming no flavor transformation and
the standard 8B spectral shape [6]. Background event
pdfs are included in the analysis with fixed amplitudes
determined by the background calibration. The extended
maximum likelihood method used in the signal decompo-
sition yields 1967.7+61.9

−60.9 CC events, 263.6+26.4
−25.6 ES events,

and 576.5+49.5
−48.9 NC events [12], where only statistical un-

certainties are given. Systematic uncertainties on fluxes
derived by repeating the signal decomposition with per-
turbed pdfs (constrained by calibration data) are shown
in Table II.

Normalized to the integrated rates above the kinetic
energy threshold of Teff≥ 5 MeV, the flux of 8B neutri-
nos measured with each reaction in SNO, assuming the
standard spectrum shape [6] is (all fluxes are presented
in units of 106 cm−2s−1):

φSNO
CC = 1.76+0.06

−0.05(stat.)+0.09
−0.09 (syst.)

φSNO
ES = 2.39+0.24

−0.23(stat.)+0.12
−0.12 (syst.)

φSNO
NC = 5.09+0.44

−0.43(stat.)+0.46
−0.43 (syst.).

Electron neutrino cross sections are used to calculate all
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FIG. 2: (a) Distribution of cos θ! for R ≤ 550 cm. (b) Dis-
tribution of the volume weighted radial variable (R/RAV)3.
(c) Kinetic energy for R ≤ 550 cm. Also shown are the
Monte Carlo predictions for CC, ES and NC + bkgd neutron
events scaled to the fit results, and the calculated spectrum
of Cherenkov background (Bkgd) events. The dashed lines
represent the summed components, and the bands show ±1σ
uncertainties. All distributions are for events with Teff≥5
MeV.
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TABLE II: Systematic uncertainties on fluxes. The experi-
mental uncertainty for ES (not shown) is -4.8,+5.0 percent.
† denotes CC vs NC anti-correlation.

Source CC Uncert. NC Uncert. φµτ Uncert.
(percent) (percent) (percent)

Energy scale † -4.2,+4.3 -6.2,+6.1 -10.4,+10.3
Energy resolution † -0.9,+0.0 -0.0,+4.4 -0.0,+6.8
Energy non-linearity † ±0.1 ±0.4 ±0.6
Vertex resolution † ±0.0 ±0.1 ±0.2
Vertex accuracy -2.8,+2.9 ±1.8 ±1.4
Angular resolution -0.2,+0.2 -0.3,+0.3 -0.3,+0.3
Internal source pd † ±0.0 -1.5,+1.6 -2.0,+2.2
External source pd ±0.1 -1.0,+1.0 ±1.4
D2O Cherenkov † -0.1,+0.2 -2.6,+1.2 -3.7,+1.7
H2O Cherenkov ±0.0 -0.2,+0.4 -0.2,+0.6
AV Cherenkov ±0.0 -0.2,+0.2 -0.3,+0.3
PMT Cherenkov † ±0.1 -2.1,+1.6 -3.0,+2.2
Neutron capture ±0.0 -4.0,+3.6 -5.8,+5.2
Cut acceptance -0.2,+0.4 -0.2,+0.4 -0.2,+0.4
Experimental uncertainty -5.2,+5.2 -8.5,+9.1 -13.2,+14.1
Cross section [7] ±1.8 ±1.3 ±1.4

2928 events in the energy region selected for analysis, 5
to 20 MeV. Fig. 2(a) shows the distribution of selected
events in the cosine of the angle between the Cherenkov
event direction and the direction from the sun (cos θ!)
for the analysis threshold of Teff≥ 5 MeV and fiducial
volume selection of R ≤ 550 cm, where R is the recon-
structed event radius. Fig. 2(b) shows the distribution of
events in the volume-weighted radial variable (R/RAV)3,
where RAV = 600 cm is the radius of the acrylic ves-
sel. Figure 2(c) shows the kinetic energy spectrum of the
selected events.

In order to test the null hypothesis, the assumption
that there are only electron neutrinos in the solar neu-
trino flux, the data are resolved into contributions from
CC, ES, and NC events above threshold using pdfs in Teff,
cos θ!, and (R/RAV)3, derived from Monte Carlo calcu-
lations generated assuming no flavor transformation and
the standard 8B spectral shape [6]. Background event
pdfs are included in the analysis with fixed amplitudes
determined by the background calibration. The extended
maximum likelihood method used in the signal decompo-
sition yields 1967.7+61.9

−60.9 CC events, 263.6+26.4
−25.6 ES events,

and 576.5+49.5
−48.9 NC events [12], where only statistical un-

certainties are given. Systematic uncertainties on fluxes
derived by repeating the signal decomposition with per-
turbed pdfs (constrained by calibration data) are shown
in Table II.

Normalized to the integrated rates above the kinetic
energy threshold of Teff≥ 5 MeV, the flux of 8B neutri-
nos measured with each reaction in SNO, assuming the
standard spectrum shape [6] is (all fluxes are presented
in units of 106 cm−2s−1):
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CC = 1.76+0.06

−0.05(stat.)+0.09
−0.09 (syst.)
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ES = 2.39+0.24

−0.23(stat.)+0.12
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φSNO
NC = 5.09+0.44
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FIG. 2: (a) Distribution of cos θ! for R ≤ 550 cm. (b) Dis-
tribution of the volume weighted radial variable (R/RAV)3.
(c) Kinetic energy for R ≤ 550 cm. Also shown are the
Monte Carlo predictions for CC, ES and NC + bkgd neutron
events scaled to the fit results, and the calculated spectrum
of Cherenkov background (Bkgd) events. The dashed lines
represent the summed components, and the bands show ±1σ
uncertainties. All distributions are for events with Teff≥5
MeV.

SNO collaboration

Find ways that signals and backgrounds differ, 
like other variables
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Neutrino 2012 - Kyoto                                                        M. Pallavicini

BOREXINO EXPERIMENT

• Mainly, a solar neutrino experiment:
• ν + e- → ν + e-  in an organic liquid scintillator

• Ultra-low radioactive background obtained 
via selection, shielding, and purifications

• Low energy threshold, good energy resolution, 
spatial reconstruction, and pulse shape identification

• But also

• Geo-neutrinos, search for rare events

pp ± 1% 7Be ± 10.5 %

pep ± 2%

Solar neutrino spectrum

CNO 

7Be 
11C 

10C 

14C 

pp+pep+8B 

238U + 232Th 

Electron recoil spectrum of an ideal 
detector + irreducible backgrounds

Find ways that signals and backgrounds differ, 
like other variables
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Intermediate energy

A. (Unwanted) neutrinos 

• Other interactions processes

• Interactions outside detector volume
B. Cosmogenic particles

• Mitigate backgrounds by:
A. Timing, analysis
B. Going deep underground, analysis/triggering techniques

21Monday, 11 August 14



Imperial College  
London

Morgan O. 
WasckoINSS 2014 - Detectors

signal

bck

signal

bck

T2K

Neutrinos outside detecor
Establish “fiducial volume” for signals 
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•Timing the measurement: 

• running with beam off might help in measuring the background. 

FC events time distribution at SK
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Use background enriched data samples
2013 results, 6.30⇥1020POT of ⌫ beam data

CC-0⇡
sample

CC-1⇡
sample

CC-Other
sample

68.4% of CC inc.
sample

16.0% of CC inc.
sample

15.5% of CC inc.
sample

Data/MC distributions before any fit

Purity of each sample
CC-0⇡ CC-1⇡ CC-Other

CC-0⇡ 72.6% 6.4% 5.8%
CC-1⇡ 8.6% 49.4% 7.8%
CC-Other 11.4% 31.0% 73.8%
Bkg (NC+⌫̄µ) 2.3% 6.8% 8.7%
Out of fiducial 5.1% 6.5% 3.9%volume

5th July 2014 | Anthony Hillairet | INGRID and ND280 measurements | Slide 11 / 18
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水戸の梅の花

Thank you for your 
attention!

ご清聴ありがとうございました

Many thanks to: 
J Monroe, T Nakaya, F Sanchez for valuable input
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