Overview of the SM

Lecture I: the SM tapestry

- Particles as Quantum Fields
- Particle zoo vs symmetry
- Gauge invariance and particle interactions
- The origin of mass: Spontaneous Symmetry breaking
- The flavour of the SM

Lecture II: the SM swiss watch

- Observables and field correlation functions
- How we calculate ? Perturbation Theory and beyond
- Precision tests of the SM (LEP-TEVATRON-B factories)

Lecture III: the open-ended SM

- The SM at the LHC: Higgs physics
- Open questions

The puzzle in the 60's

$>$ Particles with different names in the same gauge $\operatorname{SU}(2)$ multiplet
> Parity violation: L, R different charges, but fermions massive
$>$ Three of the gauge fields not massless
> Weak interactions mix quark generations

The $S U(2) \times U(1)$ symmetry is hidden

Fermion masses

Dirac fermion of mass m:
$-\mathcal{L}_{m}^{\text {Dirac }}=m \bar{\psi} \psi=m\left(\overline{\psi_{L}+\psi_{R}}\right)\left(\psi_{L}+\psi_{R}\right)=m\left(\overline{\psi_{L}} \boldsymbol{\psi} \hat{\psi_{R}} \psi_{L}\right)$
Breaks $S U(2) \times U(1)$ gauge invariance!
But we can have other invariants with the conjugated scalar doublet:

$$
\begin{gathered}
\tilde{\phi} \equiv \sigma^{2} \phi^{*}, \quad \tilde{\phi}:\left(1,2,-\frac{1}{2}\right), \quad\langle\tilde{\phi}\rangle=\binom{\frac{v}{\sqrt{2}}}{0} \\
\mathcal{L}_{S M} \supset-Y_{d} \bar{q}_{L} \phi d_{R}-Y_{u} \bar{q}_{L} \tilde{\phi} u_{R}-Y_{l} \bar{l}_{L} \phi l_{R} \\
\rightarrow-m_{d} \bar{d}_{L} d_{R}-m_{u} \bar{u}_{L} u_{R}-m_{l} \bar{l}_{l} l_{R}+O(h)
\end{gathered}
$$

Exercise: check that the charge assignment of the tilde-field is correct

$$
\tilde{\phi} \equiv \sigma^{2} \phi^{*}, \quad \tilde{\phi}:\left(1,2,-\frac{1}{2}\right), \quad\langle\tilde{\phi}\rangle=\binom{\frac{v}{\sqrt{2}}}{0}
$$

Flavour mixing

No mixing between different families as it stands...but it turns out there are three families, why can't these Yukawa interactions mix families?
\(\left.\begin{array}{|cc|ccc|}\hline(1,2)_{-\frac{1}{2}} \& (3,2)_{\frac{1}{6}} \& (1,1)_{-1} \& (3,1)_{\frac{2}{3}} \& (3,1)_{-\frac{1}{3}}

\hline\binom{\nu_{e}}{e}_{L} \& \binom{u^{i}}{d^{i}} \& e_{R} \& u_{R}^{i} \& d_{R}^{i}

\binom{\nu_{\mu}}{\mu}^{L} \& \binom{c^{i}}{s^{i}}_{L}

\binom{\nu_{\tau}}{\tau}_{L} \& \binom{t^{i}}{b^{i}}_{L}\end{array}\right) |\)| μ_{R} | c_{R}^{i} | s_{R}^{i} |
| :---: | :---: | :---: |
| τ_{R} | t_{R}^{i} | b_{R}^{i} |

Quark mixing

There is flavour changing in charged currents: s-> u, but very suppressed in neutral currents

$$
\operatorname{Br}\left(K^{+} \rightarrow \pi^{0} e^{+} \nu_{e}\right) \simeq 5 \% \quad \operatorname{Br}\left(K^{+} \rightarrow \pi^{+} e^{+} e^{-}\right) \simeq 3 \times 10^{-7}
$$

How to explain mixing in CC without that in NC?

Glashow-Illiopoulos-Maiani mechanism

Quark mixing: Cabbibo-Kobayashi-Maskawa

The Yukawa couplings are generic matrices in flavour space:
basis where CC and NC diagonal \neq mass eigenbasis

$$
\begin{gathered}
\mathcal{L}_{S M} \supset-\left(\bar{d}_{L}, \bar{s}_{L}, \bar{b}_{L}\right) \underbrace{m_{d}}_{3 \times 3}\left(\begin{array}{c}
d_{R} \\
s_{R} \\
b_{R}
\end{array}\right)-\left(\bar{u}_{L}, \bar{c}_{L}, \bar{t}_{L}\right) \underbrace{m_{u}}_{3 \times 3}\left(\begin{array}{c}
u_{R} \\
c_{R} \\
t_{R}
\end{array}\right)-\left(\bar{e}_{L}, \bar{\mu}_{L}, \bar{\tau}_{L}\right) \underbrace{m_{u}}_{3 \times 3}\left(\begin{array}{c}
e_{R} \\
\mu_{R} \\
\tau_{R}
\end{array}\right) \\
m_{i}=U_{L i}^{\dagger} \operatorname{Diag}\left(m_{i}\right) V_{R i} \\
u_{L}^{\prime}=U_{L u} u_{L}, d_{L}^{\prime}=U_{L d} d_{L}, l_{L}^{\prime}=U_{L l} l_{L}, u_{R}^{\prime}=V_{R u} u_{R}, d_{R}^{\prime}=V_{R d} d_{R}, l_{R}^{\prime}=V_{R l} l_{R} \\
\mathcal{L}_{S M}^{C C} \supset-\frac{g}{\sqrt{2}} \bar{u}_{L i}^{\prime} \underbrace{\left(U_{L u} U_{L d}^{\dagger}\right) i j}_{C K M} \gamma_{\mu} W_{\mu}^{+} d_{L j}^{\prime}+h . c .
\end{gathered}
$$

Quark mixing: Cabbibo-Kobayashi-Maskawa

The Yukawa couplings are generic matrices in flavour space:
basis where CC and NC diagonal \neq mass eigenbasis

$$
\begin{gathered}
\mathcal{L}_{S M} \supset-\left(\bar{d}_{L}, \bar{s}_{L}, \bar{b}_{L}\right) \underbrace{m_{d}}_{3 \times 3}\left(\begin{array}{c}
d_{R} \\
s_{R} \\
b_{R}
\end{array}\right)-\left(\bar{u}_{L}, \bar{c}_{L}, \bar{t}_{L}\right) \underbrace{m_{u}}_{3 \times 3}\left(\begin{array}{c}
u_{R} \\
c_{R} \\
t_{R}
\end{array}\right)-\left(\bar{e}_{L}, \bar{\mu}_{L}, \bar{\tau}_{L}\right) \underbrace{m_{u}}_{3 \times 3}\left(\begin{array}{c}
e_{R} \\
\mu_{R} \\
\tau_{R}
\end{array}\right) \\
m_{i}=U_{L i}^{\dagger} \operatorname{Diag}\left(m_{i}\right) V_{R i} \\
u_{L}^{\prime}=U_{L u} u_{L}, d_{L}^{\prime}=U_{L d} d_{L}, l_{L}^{\prime}=U_{L l} l_{L}, u_{R}^{\prime}=V_{R u} u_{R}, d_{R}^{\prime}=V_{R d} d_{R}, l_{R}^{\prime}=V_{R l} l_{R} \\
\mathcal{L}_{S M}^{N C} \supset-\frac{g}{\cos \theta_{W}} \bar{d}_{L i}^{\prime}\left(-\frac{1}{2}+\frac{1}{3} \sin ^{2} \theta_{W}\right) \underbrace{\left(U_{L d} U_{L d}^{\dagger}\right)_{i j}}_{\delta_{i j}} \gamma_{\mu} Z_{\mu} d_{L j}^{\prime} \\
\quad-\frac{g}{\cos \theta_{W}} \bar{u}_{L i}^{\prime}\left(\frac{1}{2}-\frac{2}{3} \sin ^{2} \theta_{W}\right) \underbrace{\left(U_{L u} U_{L u}^{\dagger}\right)_{i j}}_{\delta_{i j}} \gamma_{\mu} Z_{\mu} u_{L j}^{\prime}
\end{gathered}
$$

Quark mixing: Cabbibo-Kobayashi-Maskawa

Neutral currents diagonal in the mass eigenbasis: only quarks in the same family can exchange a Z boson

Charged currents not diagonal: CKM 3×3 unitary matrix

$$
|V|_{\mathrm{CKM}}=\left(\begin{array}{ccc}
0.97427 \pm 0.00015 & 0.22534 \pm 0.0065 & (3.51 \pm 0.15) \times 10^{-3} \\
0.2252 \pm 0.00065 & 0.97344 \pm 0.00016 & \left(41.2_{-5}^{+1.1}\right) \times 10^{-3} \\
\left(8.67_{-0.31}^{+0.29}\right) \times 10^{-3} & \left(40.4_{-0.5}^{+1.1}\right) \times 10^{-3} & 0.999146_{-0.000046}^{+0.000021}
\end{array}\right)
$$

GIM

It was quite of a challenge to come up with this when only 1.5 quark family was known: $u, d, s \rightarrow$ prediction of the charm!

Exercise: draw diagrams that can mediate this process in the Fermi approximation (W integrated out)

$$
\operatorname{Br}\left(K^{+} \rightarrow \pi^{+} e^{+} e^{-}\right) \simeq 3 \times 10^{-7}
$$

CKM Parametrization

Not all entries are independent: how many physical parameters are there?
3 Euler angles and 1 complex phase : $s_{12} \sim$ Cabbibo angle

$$
\begin{aligned}
\mathbf{V}_{\mathrm{CKM}}= & {\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right]\left[\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i \delta_{13}} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta_{13}} & 0 & c_{13}
\end{array}\right]\left[\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right] } \\
& =\left[\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta_{13}} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta_{13}} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta_{13}} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta_{13}} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta_{13}} & c_{23} c_{13}
\end{array}\right] .
\end{aligned}
$$

Since $s_{12} \gg s_{23} \gg s_{13}$: Wolfenstein parametrization

$$
V=\left(\begin{array}{ccc}
1-\lambda^{2} / 2 & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\lambda^{2} / 2 & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)+\mathcal{O}\left(\lambda^{4}\right)
$$

Counting parameters

\# physical parameters = \# parameters in Yukawas

- \# parameters in field redefinitions
+ \# parameters of exact symmetries

		Field Redef.	Symmetries	Physical
	Y_{u}, Y_{d}	$U_{q L}(3) \times U_{d R}(3) \times U_{u R}(3)$	$U(1)_{B}$	
Moduli	2×3^{2}	3×3	0	9
Phases	2×3^{2}	3×6	1	1

Moduli $=9=6$ masses +3 angles

Higgs-fermion couplings

$$
(1+h / v)\left(-m_{d} \bar{d}_{L} d_{R}-m_{u} \bar{u}_{L} u_{R}-m_{l} \bar{l}_{L} l_{R}\right)+h . c .
$$

$$
-i \frac{g}{2} \frac{m_{f}}{m_{W}}
$$

Higgs couplings to fermions do not change flavour!

CP violation

Charge conjugation: particle <-> antiparticle (without changing helicity)

$$
C: \quad \Psi \rightarrow i \gamma_{2} \Psi^{*}=i \gamma_{2} \gamma_{0} \bar{\Psi}^{T}
$$

This is not a symmetry of the chiral SM

$$
c: \quad \bar{\Psi} i \gamma_{\mu} \partial_{\mu} P_{L} \Psi \rightarrow_{C} \bar{\Psi} i \gamma_{\mu} \partial_{\mu} P_{R} \Psi
$$

The combination CP is a good symmetry except if there are phases in the mixing matrix!

$$
\begin{aligned}
& \quad W_{\mu}^{+} \bar{u}_{i} \gamma_{\mu}\left(1-\gamma_{5}\right) V_{i j} d_{j}+W_{\mu}^{-} \bar{d}_{j} \gamma_{\mu}\left(1-\gamma_{5}\right) V_{i j}^{*} u_{i} \rightarrow_{C P} W_{\mu}^{+} \bar{u}_{i} \gamma_{\mu}\left(1-\gamma_{5}\right) V_{i j}^{*} d_{j}+ \\
& W_{\mu}^{-} \bar{d}_{j} \gamma_{\mu}\left(1-\gamma_{5}\right) V_{i j} u_{i}
\end{aligned}
$$

CP violation

$C P$ violation was discovered in the kaon sector

$$
\left|K_{0}\right\rangle=\bar{d} s \leftrightarrow_{C P}\left|\bar{K}_{0}\right\rangle=\bar{s} d
$$

Cronin, Fitch 1964

If there was no $C P$ violation, the mass eigenstates would be $C P$ eigenstates:

$$
\begin{gathered}
\left|K_{1,2}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|K_{0}\right\rangle \pm\left|K_{0}^{\dagger}\right\rangle\right), C P= \pm 1 \\
K_{1,2} \rightarrow \pi^{+} \pi^{-}(C P=+1), \pi^{0} \pi^{+} \pi^{-}(C P=-1)
\end{gathered}
$$

CP violation

$$
\begin{array}{r}
\left|K_{1}\right\rangle=\left|K_{S}\right\rangle,\left|K_{2}\right\rangle=\left|K_{L}\right\rangle \\
\tau_{K_{S}} \simeq 0.9 \times 10^{-10} s, c \tau \simeq 2.7 \mathrm{~cm} \\
\tau_{K_{L}} \simeq 5.2 \times 10^{-8} s, c \tau \simeq 15.5 \mathrm{~m}
\end{array}
$$

The CP forbidden decay $K_{L} \rightarrow \pi \pi$ was measured!

Exercise: would there be phases if there were two families?
Third family was conjectured based on this....

Higgs self-couplings

From the Higgs potential:

$$
-\frac{3}{4} i g^{2} \frac{m_{h}^{2}}{m_{W}^{2}}
$$

Lecture II: the SM swiss watch

- Observables and field correlation functions
- How we calculate ?
- Precision tests of the SM (LEP-TEVATRON-B factories)

QFT in a nutshell

What we need to compute ? x-sections

$$
\left.\frac{d N}{d \Omega d t}\right|_{\text {scattered }}=\left.\frac{d N}{d S d t}\right|_{\text {incident }} \times \frac{d \sigma}{d \Omega}
$$

$$
\sigma=\frac{1}{2 E_{\mathbf{p}_{1}} 2 E_{\mathbf{p}_{2}}\left|\mathbf{v}_{12}\right|} \int \prod_{f} \frac{d^{3} \mathbf{q}_{f}}{(2 \pi)^{2} 2 E_{\mathbf{q}_{f}}}|\mathcal{M}(i \rightarrow f)|^{2}(2 \pi)^{4} \delta^{(4)}\left(\sum_{i} p_{i}-\sum_{f} q_{f}\right)
$$

QFT in a nutshell

The observables: x-sections

Amplitude $=\left\langle\mathbf{q}_{1}, \ldots, \mathbf{q}_{n} ;\right.$ out $| \mathbf{p}_{1}, \mathbf{p}_{2} ;$ in $\rangle=\left\langle\mathbf{q}_{1}, \ldots, \mathbf{q}_{n}\right| \hat{S}\left|\mathbf{p}_{1}, \mathbf{p}_{2}\right\rangle$
S: time evolution operator $\quad \hat{S}=\hat{1}+i \hat{T}, \hat{S}^{\dagger}=\hat{S}^{-1}$
$\left\langle\mathbf{q}_{1}, \ldots, \mathbf{q}_{n}\right| \hat{T}\left|\mathbf{p}_{1}, \mathbf{p}_{2}\right\rangle \equiv(2 \pi)^{4} \delta^{(4)}\left(\sum_{i} p_{i}-\sum_{f} q_{f}\right) i \mathcal{M}\left(\mathbf{p}_{1}, \mathbf{p}_{2} ; \mathbf{q}_{1}, . ., \mathbf{q}_{n}\right)$

QFT in a nutshell

How do we compute ? LSZ reduction formulae:
S-matrix elements <-> T-ordered correlation functions of field operators
For the (real) scalar case:

$$
\begin{aligned}
& \prod_{i=1}^{2} \int d^{4} x_{i} e^{-i p_{i} \cdot x_{i}} \prod_{j=1}^{k} \int d^{4} y_{j} e^{i q_{j} \cdot y_{i}}\langle 0| T\left(\hat{\phi}\left(x_{1}\right) \ldots \hat{\phi}\left(x_{2}\right) \hat{\phi}\left(y_{1}\right) \ldots . . \hat{\phi}\left(y_{k}\right)\right)|0\rangle \\
&\left.\simeq_{p_{i}^{0} \rightarrow E_{\overrightarrow{p_{i}}}, q_{j}^{0} \rightarrow E_{\bar{q}_{j}}} \prod_{i=1}^{2}\left(\frac{i \sqrt{Z}}{p_{i}^{2}-m^{2}+i \epsilon}\right) \prod_{j=1}^{k}\left(\frac{i \sqrt{Z}}{q_{j}^{2}-m^{2}+i \epsilon}\right)\left\langle\vec{q}_{1}, \ldots, \vec{q}_{n} ; \text { out }\right| \vec{p}_{1}, \vec{p}_{2} ; \text { in }\right\rangle
\end{aligned}
$$

In the path integral formulation

$$
\begin{array}{r}
\langle 0| T\left(\hat{\phi}\left(x_{1}\right) \hat{\phi}\left(x_{2}\right) \hat{\phi}\left(y_{1}\right) \ldots . . \hat{\phi}\left(y_{k}\right)\right)|0\rangle=\frac{\int \mathcal{D} \phi \phi\left(x_{1}\right) \phi\left(x_{2}\right) \ldots \phi\left(y_{k}\right) e^{i S[\phi]}}{\int \mathcal{D} \phi e^{i S[\phi]}} \\
S[\phi]=\int d^{4} x \mathcal{L}(\phi)
\end{array}
$$

QFT in a nutshell

Method 1: Perturbation Theory

(Taylor expansion in coefficients of non-quadratic terms in Lagrangian)
$S[\phi]=S_{0}[\phi]+S_{\text {int }}[\phi]=\int d^{4} x \mathcal{L}_{0}[\phi]+\int d^{4} x \mathcal{L}_{\text {int }}[\phi]$
$\langle 0| T\left(\hat{\phi}\left(x_{1}\right) \hat{\phi}\left(x_{2}\right) \hat{\phi}\left(y_{1}\right) \ldots \hat{\phi}\left(y_{k}\right)\right)|0\rangle=\frac{\int \mathcal{D} \phi \phi\left(x_{1}\right) \phi\left(x_{2}\right) \ldots \phi\left(y_{k}\right) \sum_{n} \frac{i^{n}}{n} S_{i n}[\phi]^{n} e^{i S_{0}[\phi]}}{\int \mathcal{D} \phi \sum_{n} \frac{i^{i}}{n!} S_{n i n}[\phi]^{n} e^{n} S_{0}(\phi]}$
> All integrals are Gaussian because S_{0} is quadratic in the fields

$$
\int d \mathbf{x} x_{i} x_{j} e^{-\frac{1}{2} \mathbf{x}^{T} A \mathbf{x}} / \int d \mathbf{x} e^{-\frac{1}{2} \mathbf{x}^{T} A \mathbf{x}}=\left(A^{-1}\right)_{i j}
$$

> Can be represented by a sum of connected Feynman diagrams
Wick's theorem: all fields paired-up in propagators

QFT in a nutshell

Method 1: Perturbation Theory

$$
\mathcal{L}(\phi)=\underbrace{\frac{1}{2} \partial_{\mu} \phi \partial_{\mu} \phi-\frac{m^{2}}{2} \phi^{2}}_{\mathcal{L}_{0}}-\underbrace{\frac{\lambda}{4!} \phi^{4}}_{\mathcal{L}_{i n t}}
$$

Free propagator(s)
Vertices

$-i \lambda(2 \pi)^{4} \delta\left(\sum_{i} p_{i}\right)$

QFT in a nutshell

Method 1: Perturbation Theory

$>$ Draw the external points x_{1}, x_{2} and the vertices z_{i}
(from each external point emerges one line from each vertex 4 lines emerge)
> Pair-up all the lines and link them via a propagator in such a way that the diagram remains connected
> Calculate the contribution of each diagram:

$$
\int \prod_{I} \frac{d^{4} p}{(2 \pi)^{4}} \prod_{I}(\text { Internal propagators }) \times \prod_{V}(\text { couplings vertex }) \times \delta\left(\sum_{i} p_{i}\right)
$$

$>$ Multiply by the symmetric factor (this is the hardest part)

QFT in a nutshell

Generic diagram is divergent (L loops, I internal propagators, V vertices N external lines):

$$
\propto \int \prod_{l=1}^{L} d^{4} k_{l} \prod_{i=1}^{I} \frac{1}{r_{i}(k_{l} ; \underbrace{p_{1}, p_{2}, q_{1}, \ldots q_{n}}_{\text {external momenta }})^{2}+m^{2}} \propto \Lambda^{\omega}
$$

Superficial UV divergence

$$
\omega=4 L-2 I
$$

$$
4 V=N+2 I \quad L=I-V+1
$$

$$
\omega=4-N
$$

Only divergences in diagrams with 2 or 4 external legs !
Can be reabsorbed in a redefinition of the field normalization, mass and coupling: the theory is renormalizable!

QFT in a nutshell

Imagine we had an interaction Lagrangian of the form

$$
\mathcal{L}_{i n t} \supset g \phi^{N_{\phi}} \quad[g]=4-N_{\phi}
$$

At each new vertex there are N_{ϕ} fields

$$
\omega=4-N-[g] V
$$

If [g] < 0 , diagrams with arbitrary N become divergent for large enough V : the theory is non-renormalizable

Only interactions with at most $d=4$ can be added!!

The SM is renormalizable

t^{\prime} Hooft, Veltman 73

- Gauge symmetry principle is essential
- Any modification of the relations between the couplings would destroy this property
- Generically the renormalization procedure involves a scale dependence of the renormalized couplings:

$$
\lambda_{R}(\mu)=\lambda+C \lambda^{2} \log \left(\frac{\Lambda^{2}}{Q^{2}}\right) Q_{Q}^{2}=\mu^{2}
$$

Running couplings

Physics quantities do not depend on this scale, but we can improve the convergence of the series by setting it appropriately

$$
\mu^{2} \sim p_{\mathrm{ext}}^{2}
$$

The change of the couplings with the renormalization scale is called running and it is defined in terms of beta-functions:

$$
\beta(g) \equiv \mu \frac{\partial g(\mu)}{\partial \mu} \quad \beta(g) \equiv \beta_{0} \frac{g^{3}}{16 \pi^{2}}+\beta_{1} \frac{g^{5}}{\left(16 \pi^{2}\right)^{2}}
$$

Partial resumation of the perturbative series

$$
g^{2}(\mu)=\frac{g^{2}(\Lambda)}{1-\frac{\beta_{0}}{16 \pi^{2}} \log \left(\frac{\mu^{2}}{\Lambda^{2}}\right)}
$$

Running couplings

Very different behaviour depending on the sign of β_{0}

$$
g^{2}(\mu)=\frac{g^{2}(\Lambda)}{1-\frac{\beta_{0}}{16 \pi^{2}} g^{2}(\Lambda) \log \left(\frac{\mu^{2}}{\Lambda^{2}}\right)}
$$

probing small distance scales (x) \rightarrow

large momentum transfer $\left(Q^{2}\right) \rightarrow$

Running couplings

Very different behaviour depending on the sign of β_{0}

$$
g^{2}(\mu)=\frac{g^{2}(\Lambda)}{1-\frac{\beta_{0}}{16 \pi^{2}} g^{2}(\Lambda) \log \left(\frac{\mu^{2}}{\Lambda^{2}}\right)}
$$

QCD

QED

Asymptotic freedom

QCD coupling: $\quad \beta_{0}=-\left(11-\frac{2}{3} N_{q}\right)$

Triviality \& Landau Poles

QED:

$$
\beta_{0}=\frac{4}{3} \quad g^{2}(\mu)=\frac{g^{2}(\Lambda)}{1-\frac{\beta_{0}}{16 \pi^{2}} g^{2}(\Lambda) \log \left(\frac{\mu^{2}}{\Lambda^{2}}\right)}
$$

Triviality vs Stability

Higgs self-coupling

$$
16 \pi^{2} \mu \frac{d \lambda}{d \mu}=12 \lambda^{2}+12 \lambda g_{t}^{2}-12 g_{t}^{4}+\ldots
$$

Precision QCD ?

Asymptotic freedom was a fundamental step in confirming QCD experimentally via deep inelastic experiments, but made it impossible to use perturbation theory to understand the rich hadron spectrum

- Method 2: Lattice field theory

After discretizing space-time and performing a Wick rotation, correlation functions can be computed via Montecarlo methods
$\frac{\int \mathcal{D} \phi \phi\left(x_{1}\right) \phi\left(x_{2}\right) \ldots \phi\left(y_{k}\right) e^{i S[\phi]}}{\int \mathcal{D} \phi e^{i S[\phi]}} \rightarrow^{\text {Wick rotation }} \frac{\int \mathcal{D} \phi \phi\left(x_{1}\right) \phi\left(x_{2}\right) \ldots \phi\left(y_{k}\right) e^{-S[\phi]}}{\int \mathcal{D} \phi e^{-S[\phi]}}$

Lattice QCD is QCD

Running coupling beyond perturbation theory:

Confinement

The potential between static charges grows linearly with distance: quark confinement

Light Hadron spectrum from lattice QCD

EW precision tests

In the 90's LEP/SLD and Tevatron tested the SM at few per mille level!
e+e- colliders LEP1 (s=90GeV), LEP2 (200 GeV)

p pbar collider $s=2 \mathrm{TeV}$

EW precision tests

Need to fix the free parameters of the SM:

$$
g_{s}, g, g^{\prime}, v, M_{h}
$$

$$
\begin{array}{ll}
\alpha^{-1}=137.035999074(44) & \rightarrow(g-2) e \\
G_{F}=1.1663787(6) \times 10^{-5} \mathrm{GeV} & \rightarrow \text { Muon lifetime } \\
M_{Z}=91.1876(21) \mathrm{GeV} & \rightarrow \text { Z-pole mass (LEP) }
\end{array}
$$

EW precision tests

Need to fix the free parameters of the SM:

$$
\begin{array}{ll}
\alpha^{-1}=137.035999074(44) & \rightarrow(\mathrm{g}-2) e \\
G_{F}=1.1663787(6) \times 10^{-5} \mathrm{GeV} & \text {-> Muon lifetime } \\
M_{Z}=91.1876(21) \mathrm{GeV} & \text {-> Z-pole mass (LEP) }
\end{array}
$$

$$
\left.\begin{array}{c}
M_{W}^{2} \sin ^{2} \theta_{W}=\frac{\pi \alpha}{\sqrt{2} G_{F}} \\
\sin ^{2} \theta_{W}=1-\frac{M_{W}^{2}}{M_{Z}^{2}}
\end{array}\right\} \rightarrow M_{W}=80.938 \mathrm{GeV}, \sin ^{2} \theta_{W}=0.212
$$

EW precision tests

Need one loop corrections: also virtual effects of heavy particles enter

$$
\begin{aligned}
G_{F} & =\frac{\pi \alpha}{\sqrt{2} M_{W}^{2} \sin ^{2} \theta_{W}}(1+\Delta r) \\
\Delta r & =-\frac{3 G_{F} m_{t}^{2}}{8 \sqrt{2} \pi^{2}} \frac{\cos ^{2} \theta_{W}}{\sin ^{2} \theta_{W}}+\frac{11 G_{F} M_{W}^{2}}{24 \sqrt{2} \pi^{2}} \log \frac{M_{h}^{2}}{M_{W}^{2}}
\end{aligned}
$$

LEP

10 million Z's

$$
\begin{aligned}
& B R(Z \rightarrow f \bar{f})=\frac{\Gamma_{f}}{\Gamma_{Z}} \\
& M_{Z}, \Gamma_{Z}, \sigma_{f}\left(M_{Z}\right)=\frac{12 \pi}{M_{Z}^{2}} \frac{\Gamma_{e} \Gamma_{f}}{\Gamma_{Z}^{2}}
\end{aligned}
$$

LEP: 3 flavours/families

$$
N_{\nu}=\frac{\Gamma_{\text {inv }}}{\Gamma_{\nu \bar{\nu}}}=2.984 \pm 0.008
$$

Thanks to the lightest of neutrinos we know that no new heavier families will show up

LEP: gauge boson selfcouplings

TEVATRON

TEVATRON: top quark

	Measurement	Fit	$10^{\text {meas }}-\mathrm{O}^{\text {fit }} / / \sigma^{\text {meas }}$		
$\triangle \alpha_{\text {had }}^{(5)}\left(m_{z}\right)$	0.02750 ± 0.00033	0.02759	-		
m_{z} [GeV]	91.1875 ± 0.0021	91.1874			
$\Gamma_{Z}[\mathrm{GeV}]$	2.4952 ± 0.0023	2.4959	-		
$\sigma_{\text {had }}^{0}[\mathrm{nb}]$	41.540 ± 0.037	41.478			
R_{1}	20.767 ± 0.025	20.742			
$\mathrm{A}_{\mathrm{fb}}^{0, \mathrm{I}}$	0.01714 ± 0.00095	0.01645			
$\mathrm{A}_{l}\left(\mathrm{P}_{\tau}\right)$	0.1465 ± 0.0032	0.1481			
R_{b}	0.21629 ± 0.00066	0.21579			
R_{c}	0.1721 ± 0.0030	0.1723			
$\mathrm{A}_{\mathrm{fb}}^{0, \mathrm{~b}}$	0.0992 ± 0.0016	0.1038			
$\mathrm{A}_{\mathrm{fb}}^{0, \mathrm{c}}$	0.0707 ± 0.0035	0.0742			
A_{b}	0.923 ± 0.020	0.935			
A_{c}	0.670 ± 0.027	0.668			
$A_{1}($ SLD $)$	0.1513 ± 0.0021	0.1481			
$\sin ^{2} \theta_{\text {eff }}^{\text {lept }}\left(Q_{\text {fb }}\right)$	0.2324 ± 0.0012	0.2314			
$\mathrm{m}_{\mathrm{w}}[\mathrm{GeV}]$	80.385 ± 0.015	80.377			
$\Gamma_{\mathrm{W}}[\mathrm{GeV}]$	2.085 ± 0.042	2.092	\square		
$\mathrm{m}_{\mathrm{t}}[\mathrm{GeV}]$	173.20 ± 0.90	173.26	1		
March 2012			01	1	23

$$
\begin{gathered}
\mathcal{A}^{f}=\frac{\sigma_{L}-\sigma_{R}}{\sigma_{L}+\sigma_{R}} \\
\mathcal{A}_{F B}^{f}=\frac{\int_{0}^{1} d \cos \theta \frac{d d_{f}}{d c o s}-\int_{-1}^{0} d \cos \theta \frac{d \sigma_{f}}{d \cos \theta}}{\int_{-1}^{1} d \cos \theta \frac{d \sigma_{f}}{d \cos \theta}}
\end{gathered}
$$

Higgs mass before the discovery

Higgs mass before the discovery

Flavour Precision Physics

$\left|V_{C K M}\right|=\left(\begin{array}{lll}\left|V_{u d}\right| & \left|V_{u s}\right| & \left|V_{u b}\right|^{2} \\ \text { Nuclear } \beta \text { decay } & K \rightarrow \pi l \nu, K, \pi \rightarrow l \nu & B \rightarrow \pi l \nu \\ & & \\ V_{c d} \mid & \left|V_{c s}\right| & \left|V_{c b}\right|^{2} \\ D \rightarrow \pi l \nu, \nu d \rightarrow c X & D \rightarrow K l \nu, W^{+} \rightarrow c \bar{s} & B \rightarrow D l \nu, b \rightarrow c l \nu \\ & & \\ \left|V_{t d}\right| & \left|V_{t s}\right| & \left|V_{t b}\right| \\ \text { loops } & \text { loops } & p \bar{p} \rightarrow t b+X\end{array}\right)$

Extract precision physics from hadronic observables is a major achievement!

Flavour Precision Physics

One example: a precise determination of $|V u s| /|V u d|$ comes from comparing K, pi leptonic decays:

$$
\begin{aligned}
& \mathcal{A}(M \rightarrow \mu \nu) \propto G_{F}\langle\mu \nu| \bar{\mu} \gamma_{\mu}\left(1-\gamma_{5}\right) \nu|0\rangle \underbrace{\langle 0| \bar{q} \gamma_{\mu}\left(1-\gamma_{5}\right) q|M(q)\rangle}_{i f_{M} q_{\mu}} \\
& \frac{\Gamma(K \rightarrow \mu \nu)}{\Gamma(\pi \rightarrow \mu \nu)}=\frac{\left|V_{u s}\right|^{2}}{\left|V_{u d}\right|^{2}} \frac{f_{K}^{2}}{f_{\pi}^{2}} \frac{m_{K}\left(1-m_{l}^{2} / m_{K}^{2}\right)^{2}}{m_{\pi}\left(1-m_{l}^{2} / m_{\pi}^{2}\right)^{2}}\left(1+\delta_{E M}\right)
\end{aligned}
$$

requires a non-perturbative evaluation

Extract precision physics from hadronic observables is a major achievement!

Flavour Precision Physics

FLAG WG

Percent level non-perturbative determination
Extract precision physics from hadronic observables is a major achievement!

Flavour Precision Physics

Phases of CKM: only one for three families.

We can formulate the criterium for $C P$ violation in the quark sector in terms of a basis independent invariant:

$$
\begin{gathered}
\operatorname{Im}\left\{\operatorname{det}\left[Y_{u} Y_{u}^{\dagger}, Y_{d} Y_{d}^{\dagger}\right]\right\} \neq 0 \\
\operatorname{Im}\left[V_{i j} V_{i k}^{*} V_{l k} V_{l j}^{*}\right]=\mathcal{J} \sum_{m, n} \epsilon_{i l m} \epsilon_{j k n}
\end{gathered}
$$

In terms of the usual parametrization:

$$
\mathcal{J}=c_{12} c_{23} c_{13}^{2} s_{12} s_{23} s_{13} \sin \delta
$$

Flavour Precision Physics

The unitarity triangles: all have the same area J, but sides are different

$$
\begin{aligned}
& \mathbf{V}_{u d}^{*} \mathbf{V}_{u s}+\mathbf{V}_{c d}^{*} \mathbf{V}_{c s}+\mathbf{V}_{t d}^{*} \mathbf{V}_{t s}=0, \\
& \mathbf{V}_{u s}^{*} \mathbf{V}_{u b}+\mathbf{V}_{c s}^{*} \mathbf{V}_{c b}+\mathbf{V}_{t s}^{*} \mathbf{V}_{t b}=0, \\
& \mathbf{V}_{u b}^{*} \mathbf{V}_{u d}+\mathbf{V}_{c b}^{*} \mathbf{V}_{c d}+\mathbf{V}_{t b}^{*} \mathbf{V}_{t d}=0
\end{aligned}
$$

The last one has larger area/sides: CP violation more significant in B sector $I \subset 0.0$

Angles:

$$
\begin{aligned}
& \beta=\phi_{1}=\arg \left(-\frac{V_{c d} V_{c b}^{*}}{V_{t d} V_{t b}^{*}}\right) \\
& \alpha=\phi_{2}=\arg \left(-\frac{V_{t d} V_{t b}^{*}}{V_{u d} V_{u b}^{*}}\right), \\
& \gamma=\phi_{3}=\arg \left(-\frac{V_{u d} V_{u b}^{*}}{V_{c d} V_{c b}^{*}}\right) .
\end{aligned}
$$

