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The puzzle in the 60’s�

Ø  Particles with different names in the same gauge SU(2) multiplet �

Ø  Parity violation: L, R different charges, but fermions massive �

Ø  Three of the gauge fields not massless    ✔ �
Ø   Weak interactions mix quark generations�

The SU(2)xU(1) symmetry is hidden �



Fermion masses�
Dirac fermion of mass m: �

�LDirac
m = m�̄� = m(�L + �R)(�L + �R) = m(�L�R + �R�L)✗

Breaks SU(2)xU(1) gauge invariance!  �

But we can have other invariants with the conjugated scalar doublet: �
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Exercise: check that the charge assignment of the tilde-field is correct �
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Flavour mixing �

No mixing between different families as it stands…but it turns out there�
are three families, why can’t these Yukawa interactions mix families ?�

Not only have they been detected, but have provided essential information on the
two most striking features of the fermionic content of the SM:

• Left-handedness of the weak interactions

• The family structure
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Quark mixing �
There is flavour changing in charged currents: s -> u, but very suppressed�
 in neutral currents �

Br(K+ ! ⇡0e+⌫e) ' 5% Br(K+ ! ⇡+e+e�) ' 3⇥ 10�7

Fermions Quark Mixing FCNC Discrete Symmetries Higgs Mass

Quark Mixing
Two Experimental Numbers:

B(K+ → π0e+νe) " 5% (K+

e3 Decay) and B(K+ → π+e+e−) < 3×10−7 .

K+ π0,π+

leptons
s u,d

Measurements like this show that s→ u (charged-current) transitions are not
rare, but that Flavour Changing Neutral Current (FCNC) transitions, such as
s→ d are.
In the picture that we have developed so far, there are no transitions between
fermions of different generations. This has to be modified.

The picture which has emerged is the Cabibbo-Kobayashi-Maskawa (CKM)
theory of quark mixing which we now consider.

Standard Model SUSSP61, Lecture 2, 10th August 2006

How to explain mixing in CC without that in NC ? �

Glashow-Illiopoulos-Maiani mechanism �



Quark mixing: Cabbibo-Kobayashi-Maskawa �

The Yukawa couplings are generic matrices in flavour space: �
�
    basis where CC and NC diagonal  ≠  mass  eigenbasis�
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Quark mixing: Cabbibo-Kobayashi-Maskawa �
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ū0
Li

✓
1

2

� 2

3

sin

2 ✓W

◆
(ULuU

†
Lu)ij| {z }

�ij

�µZµu
0
Lj



Quark mixing: Cabbibo-Kobayashi-Maskawa �

Neutral currents diagonal in the mass eigenbasis: only quarks�
in the same family can exchange a Z boson �

PDG	
  

Charged currents not diagonal: CKM 3x3 unitary matrix  �



GIM�

Br(K+ ! ⇡+e+e�) ' 3⇥ 10�7

Exercise: draw diagrams that can mediate this process in the Fermi �
approximation (W integrated out)�

It was quite of a challenge to come up with this when only 1.5 �
quark family was known: u, d, s -> prediction of the charm ! �



CKM Parametrization �
Not all entries are independent: how many physical parameters are there ?�
�
    3 Euler angles and 1 complex phase : s12 ~ Cabbibo angle�

Since s12 >> s23 >> s13:  Wolfenstein parametrization �

VCKM= �



# physical parameters =    # parameters in Yukawas�
                              - # parameters in field redefinitions �
                              + # parameters of exact symmetries �

	
   	
  	
  	
  	
  Field	
  Redef.	
  	
   	
  Symmetries	
   	
  Physical	
  

	
  	
  	
  Yu	
  ,	
  Yd 	
  UqL(3)xUdR(3)xUuR(3) 	
  	
  	
  	
  	
  U	
  (1)B

Moduli	
   	
  	
  2	
  x	
  32 	
  	
  3	
  x	
  3 	
  	
  	
  	
  	
  	
  	
  	
  0 	
  	
  	
  9

Phases 	
  	
  2	
  x	
  32 	
  3	
  x	
  6 	
  	
  	
  	
  	
  	
  	
  	
  1
	
  	
  	
  	
  
	
  	
  	
  1	
  

Moduli = 9 = 6 masses + 3 angles �

Counting parameters�



Higgs-fermion couplings �
V	



(1 + h/v)
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D.4.4 Charged Current Interaction
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D.4.5 Neutral Current Interaction
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D.4.6 Fermion-Higgs and Fermion-Goldstone Interactions
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D.4.7 Triple Higgs-Gauge and Goldstone-Gauge Interactions
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Higgs couplings to fermions do not change flavour! �



CP violation �
Charge conjugation: particle <-> antiparticle (without changing helicity) �

 ! i�2 
⇤ = i�2�0 ̄

TC:	
  

This is not a symmetry of the chiral SM�

C: �  ̄i�µ@µPL !C  ̄i�µ@µPR 

The combination CP is a good symmetry except if there are phases in the 
mixing matrix! �
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CP violation �
CP violation was discovered in the kaon sector �

|K0i = d̄s $CP |K̄0i = s̄d

If there was no CP violation, the mass eigenstates would be CP �
eigenstates: �
 �
	
  	
  

Introduction Kaon Physics B-Physics Summary

K0 –  K0 Mixing

d s

s d

u,c, t u,c, t

d s

s d

u,c, t

u,c, t

• The CP-eigenstates (K1 and K2) are linear combinations of the two
strong-interaction eigenstates:

|K1〉 =
1√
2

(|K0〉+ |  K0〉) CP|K1〉 = |K1〉

and
|K2〉 =

1√
2

(|K0〉− |  K0〉) CP|K2〉 = −|K2〉 .

! I use the phase convention so that CP|K0〉 = |  K0〉.

Standard Model SUSSP61, Lecture 5, 15th August 2006

|K1,2i =
1p
2
(|K0i± |K†

0i), CP = ±1

K1,2 ! ⇡+⇡�(CP = +1),⇡0⇡+⇡�(CP = �1)

Cronin, Fitch 1964�



CP violation �

Exercise: would there be phases if there were two families ?�

Third family was conjectured based on this….�

|K1i = |KSi, |K2i = |KLi

⌧KS ' 0.9⇥ 10�10s, c⌧ ' 2.7cm

⌧KL ' 5.2⇥ 10�8s, c⌧ ' 15.5m

The CP forbidden decay � KL ! ⇡⇡ was measured ! �

Kobayashi, Maskawa �



Higgs self-couplings�
V	
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D.4.10 Quartic Higgs and Goldstone Interactions
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From the Higgs potential: �



Lecture II: the SM swiss watch�

•  Observables and field correlation functions�
•  How we calculate ?�
•  Precision tests of the SM (LEP-TEVATRON-B factories)�





QFT in a nutshell�

Interac(on*
region*

dN
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What we need to compute  ?    x-sections�
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QFT in a nutshell�

Interac(on*
region*

out-­‐states	
  

|p1,p2; ini |q1, . . . ,qn; outi

Amplitude  � = hq1, . . . ,qn; out|p1,p2; ini = hq1, . . . ,qn|Ŝ|p1,p2i

Ŝ = 1̂ + iT̂ , Ŝ† = Ŝ�1

The observables: x-sections�

in-­‐states	
  

hq1, . . . ,qn|T̂ |p1,p2i ⌘ (2⇡)4�(4)(
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i pi �
P
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S: time evolution operator�



QFT in a nutshell�
How do we compute ? LSZ reduction formulae: �
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For the (real) scalar case: �

In the path integral formulation �
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QFT in a nutshell�

Method 1: Perturbation Theory �
(Taylor expansion in coefficients of non-quadratic terms in Lagrangian) �

S[�] = S0[�] + Sint[�] =

Z
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4
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Z
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4
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Ø  All integrals are Gaussian because S0 is quadratic in the fields�
�
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QFT in a nutshell�
Method 1: Perturbation Theory �

Free propagator(s) �

Vertices  �

5 Feynman diagrams 13

5 Feynman diagrams

Example: �4-theory
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• Free (kinetic) Lagrangian (terms with exactly two fields) determines parti-
cles of the theory and their propagators. Here we have just one scalar field:

φ

• Interaction Lagrangian (terms with three or more fields) determines possible
vertices. Here, again, there is just one vertex:

φ

φ

φ

φ

We construct all possible diagrams with fixed outer particles. E.g. for scatter-
ing of two scalar particles in this theory we would have

M(1 + 2! 3 + 4) = + + + . . .

1
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4
t

In these diagrams time flows from left to right. Some people draw Feynman
diagrams with time flowing up, which is more in accordance with the way we
usually draw space-time in relativity physics.

Since each vertex corresponds to one interaction Lagrangian (Hamiltonian)
term in (42), diagrams with loops correspond to higher orders of perturbation
theory. Here we will work only to the lowest order, so we will use tree diagrams
only.

To actually write down the Feynman amplitudeM, we have a set of Feynman
rules that associate factors with elements of the Feynman diagram. In particular,
to get �iM we construct the Feynman rules in the following way:

• the vertex factor is just the i times the interaction term in the (momentum
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QFT in a nutshell�
Method 1: Perturbation Theory �

Ø  Draw the external points x1, x2 and the vertices zi�
     (from each external point emerges one line from each vertex 4 lines emerge)�
�
Ø  Pair-up all the lines and link them via a propagator in such a way that the  �
   diagram remains connected �
�
Ø  Calculate the contribution of each diagram: �

 �

Ø  Multiply by the symmetric factor (this is the hardest part)�
               �
             �
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QFT in a nutshell�
Generic diagram is divergent (L loops, I internal propagators, V vertices�
                                    N external lines):   �

/
Z
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d4k
l

IY

i=1
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r
i
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Superficial UV divergence� ! = 4L� 2I

4V = N + 2I L = I � V + 1

! = 4�N

 Only divergences in diagrams with 2 or 4 external legs ! �
�
 Can be reabsorbed in a redefinition of the field normalization, �
mass and coupling: the theory is renormalizable! �

/ ⇤!



QFT in a nutshell�

If [g] < 0, diagrams with arbitrary N become divergent for large �
enough V: the theory is non-renormalizable �

Imagine we had an interaction Lagrangian of the form �
	
  
	
  

At each new vertex there are� N�

! = 4�N � [g]V

Only interactions with at most d=4 can be added!! �

Lint � g�N� [g] = 4�N�

fields�



The SM is renormalizable�
t’Hooft, Veltman 73�

•  Gauge symmetry principle is essential �

•  Any modification of the relations between the couplings would destroy�
 this property �
�
•  Generically the renormalization procedure involves a scale dependence of �
the renormalized couplings: �
�
 �
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Q2 is a physical scale s,t,u,m2�

�R(µ) = |Q2=µ2



Running couplings �

The change of the couplings with the renormalization scale is called running �
and it is defined in terms of beta-functions: �

Physics quantities do not depend on this scale, but we can improve�
the convergence of the series by setting it appropriately �
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Partial resumation of the perturbative series �



Running couplings �
Very different behaviour depending on the sign of β0�
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Running couplings �
Very different behaviour depending on the sign of β0�
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Asymptotic freedom�
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QCD coupling: � 9. Quantum chromodynamics 33

QCD αs(Mz) = 0.1185 ± 0.0006

Z pole fit  
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Figure 9.4: Summary of measurements of αs as a function of the energy scale Q.
The respective degree of QCD perturbation theory used in the extraction of αs is
indicated in brackets (NLO: next-to-leading order; NNLO: next-to-next-to leading
order; res. NNLO: NNLO matched with resummed next-to-leading logs; N3LO:
next-to-NNLO).
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Figure 6: Summary of LEP results on the measurement
of the running of the electromagnetic coupling. The band
represents the L3 measurement at high Q2. The full
symbols represent the OPAL and the L3 measurements
at low and intermediate Q2. The open symbols are the
reference values to which the measurement are anchored,
as discussed in the last section of the text. The solid line
shows the QED predictions of Reference [5].

−Q2 < 3434 GeV2 (Equation 11) are represented with
two symbols each. The empty symbols represent the
values of α−1(Q2) at the lower end of each Q2 range.
They are fixed by using Equation 1 and the QED de-
scription of ∆α(Q2) of Reference [5]. The full symbols
represent the values of α−1(Q2) at the higher end of
each Q2 range extracted from the fixed values and
from the measurements in Equations 13, 9 and 11.
All measurements are in excellent agreement with the
QED predictions of Reference [5], presented as a solid
line.

Figure 7 presents a combination of all LEP results.
This combination is obtained in several steps. First,
the L3 measurement at 2.1 GeV2 < −Q2 < 6.2 GeV2

and the OPAL measurement at 1.8 GeV2 < −Q2 <
6.1 GeV2, from Equations 13 and 9 respectively, are
combined into a single measurement. In order to per-
form this combination the L3 measurement is trans-
ported to the Q2 range of the OPAL measurement.
The combined result is:

α(−6.1 GeV2) − α(−1.8 GeV2) = (363 ± 52) × 10−7,
(17)

where the uncertainty combines statistical and sys-
tematic effects. This combined result and the L3
measurement at intermediate Q2 are plotted in Fig-
ure 7 as two single points at Q2 = −6.1 GeV2 and
Q2 = −3434 GeV2, respectively. The values of α(Q2)
at these two points are extracted by anchoring the
value of α(Q2) at the lower end of each Q2 range
by using the L3 measurement of C at 1800 GeV2 <
−Q2 < 21600 GeV2 and assuming it also describes

the running of α for lower values of Q2: the values of
α(−1.8 GeV2) and α(−12.25 GeV2) are fixed by us-
ing the measured value of C from Equation 16, the
evolution expected from Equation 15 and the QED
description of ∆α(Q2) of Reference [5]. The value of
α(−6.1 GeV2) is finally extracted by using this fixed
value of α(−1.8 GeV2) and Equation 17, with an addi-
tional uncertainty which follows from the 14% uncer-
tainty on C. A similar procedure is followed to extract
the value of α(−3434 GeV2) from Equation 11.
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α
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Figure 7: Combined LEP results on the measurement of
the running of the electromagnetic coupling in three
different Q2 regimes, compared with the QED
predictions of Reference [5]. The treatment of data is
discussed in the last section of the text.

In conclusion, the LEP experiments have estab-
lished the the evolution of the electromagnetic cou-
pling with the squared four-momentum transfer in a
new energy domain. These measurements, combined
in Figure 7, span three orders of magnitude in Q2 and
confirm the QED predictions for the running of α.
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Precision QCD ?�

•  Method 2: Lattice field theory�

Asymptotic freedom was a fundamental step in confirming QCD �
experimentally via deep inelastic experiments, but made it impossible to �
 use perturbation theory to understand the rich hadron spectrum  �

After discretizing space-time and performing a Wick rotation, �
correlation functions can be computed via  Montecarlo methods  �
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Lattice QCD is QCD �
Running coupling beyond perturbation theory: �



Confinement �

The potential between static charges grows linearly with distance: �
quark confinement �



Light Hadron spectrum from lattice QCD �



EW precision tests�
In the 90’s LEP/SLD and Tevatron tested the SM at few per mille level! �
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EW precision tests�
Need to fix the free parameters of the SM: �
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↵�1 = 137.035999074(44)

GF = 1.1663787(6)⇥ 10�5GeV

MZ = 91.1876(21)GeV

-> (g-2)e�
�
-> Muon lifetime�
�
-> Z-pole mass (LEP)�

gs, g, g
0, v,Mh

M2
W sin2 ✓W = ⇡↵p

2GF
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! MW = 80.938 GeV, sin2 ✓W = 0.212– 2–
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Entries               0

80.2 80.6
MW[GeV]

ALEPH 80.440±0.051

DELPHI 80.336±0.067

L3 80.270±0.055

OPAL 80.416±0.053

LEP2 preliminary 80.376±0.033
χ2/dof =  49 / 41

CDF [Run-1/2] 80.389±0.019

D∅ [Run-1/2] 80.383±0.023

Tevatron 80.387±0.016
χ2/dof =   4.2 / 6

Overall average 80.385±0.015

Figure 1: Measurements of the W-boson mass
by the LEP and Tevatron experiments.

In order to compute the LEP average W mass, each ex-

periment provided its measured W mass for the qqqq and

qq!ν!, ! = e, µ, τ channels at each center-of-mass energy,

along with a detailed break-up of errors: statistical, uncor-

related, partially correlated and fully correlated systematics [1].

These have been combined to obtain a LEP W mass of

MW = 80.376±0.033 GeV. Errors due to uncertainties in LEP

energy (9 MeV), and possible effect of color reconnection (CR)

and Bose-Einstein correlations (BEC) between quarks from dif-

ferent W’s (8 MeV) are included. The mass difference between

qqqq and qq!ν! final states (due to possible CR and BEC effects)

is −12±45 MeV. In a similar manner, the width results obtained

at LEP have been combined, resulting in ΓW = 2.196 ± 0.083

GeV [1].
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|MW (exp)�MW (tree)| = 553(15)MeV

Tree level relations get modified at higher orders ! �



EW precision tests�
Need one loop corrections: also virtual effects of heavy particles�
enter �
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LEP�

Standard Model Phenomenology N. Rius   TAE 2011

Z Peak

 (s = MZ
2)

• Assume energy near Z pole, so include only Z
exchange:

10 million Z’s �

Table 3: Experimental determinations of the ratios gl/gl′ [18, 34]

Γτ→ντe ν̄e/Γµ→νµe ν̄e Γτ→ντπ/Γπ→µ ν̄µ Γτ→ντK/ΓK→µ ν̄µ ΓW→τ ν̄τ /ΓW→µ ν̄µ

|gτ/gµ| 1.0004 ± 0.0022 0.996 ± 0.005 0.979 ± 0.017 1.039 ± 0.013

Γτ→ντµ ν̄µ/Γτ→ντe ν̄e Γπ→µ ν̄µ/Γπ→e ν̄e ΓK→µ ν̄µ/ΓK→e ν̄e ΓK→πµ ν̄µ/ΓK→πe ν̄e

|gµ/ge| 1.0000 ± 0.0020 1.0017 ± 0.0015 1.012 ± 0.009 1.0002 ± 0.0026

ΓW→µ ν̄µ/ΓW→e ν̄e Γτ→ντµ ν̄µ/Γµ→νµe ν̄e ΓW→τ ν̄τ /ΓW→e ν̄e

|gµ/ge| 0.997 ± 0.010 |gτ/ge| 1.0004 ± 0.0023 1.036 ± 0.014

Another interesting quantity is the Z decay width into invisible modes,

Γinv

Γl
≡

Nν Γ(Z → ν̄ ν)

Γl
=

2Nν

(1 − 4 sin2 θW )2 + 1
, (5.6)

which is usually normalized to the charged leptonic width. The comparison with the measured value,
Γinv/Γl = 5.942 ± 0.016 [29,30], provides very strong experimental evidence for the existence of three
different light neutrinos.

5.1 Fermion-pair production at the Z peak

f−e

e+

f

θ
− e+

f f

eγ , Z

Fig. 16: Tree-level contributions to e+e− → f̄ f and kinematical configuration in the centre-of-mass system.

Additional information can be obtained from the study of the process e+e− → γ, Z → f̄f
(Fig. 16). For unpolarized e+ and e− beams, the differential cross-section can be written, at lowest
order, as

dσ

dΩ
=

α2

8s
Nf

{
A (1 + cos2 θ) + B cos θ − hf

[
C (1 + cos2 θ) + D cos θ

]}
, (5.7)

where hf = ±1 denotes the sign of the helicity of the produced fermion f , and θ is the scattering angle
between e− and f in the centre-of-mass system. Here,

A = 1 + 2 vevf Re(χ) +
(
v2
e + a2

e

) (
v2
f + a2

f

)
|χ|2 ,

B = 4 aeaf Re(χ) + 8 veaevfaf |χ|2 ,

C = 2 veaf Re(χ) + 2
(
v2
e + a2

e

)
vfaf |χ|2 ,

D = 4 aevf Re(χ) + 4 veae
(
v2
f + a2

f

)
|χ|2 , (5.8)

and χ contains the Z propagator

χ =
GF M2

Z

2
√

2πα

s

s − M2
Z + isΓZ/MZ

. (5.9)
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BR(Z ! ff̄) =
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12⇡
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Z
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Z

the possible new physics contributions to the Zb̄b vertex are much more restricted and, in any case,
different. Therefore, the independent experimental measurement of the two effects is very valuable in
order to disentangle possible new physics contributions from the SM corrections. In addition, since the
‘non-decoupling’ vertex effect is related toWL-exchange, it is sensitive to the SSB mechanism.

5.4 SM electroweak fit
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Fig. 20: Combined LEP and SLD measurements of sin2 θlept
eff and Γl (left) and the corresponding effective vector and axial-

vector couplings vl and al (right). The shaded region shows the SM prediction. The arrows point in the direction of increasing
values of mt and MH . The point shows the predicted values if, among the electroweak radiative corrections, only the photon
vacuum polarization is included. Its arrow indicates the variation induced by the uncertainty in α(M2

Z) [29, 30].

The leptonic asymmetry measurements from LEP and SLD can all be combined to determine the
ratios vl/al of the vector and axial-vector couplings of the three charged leptons, or equivalently the
effective electroweak mixing angle

sin2 θlept
eff ≡

1

4

(
1 −

vl

al

)
. (5.17)

The sum (v2
l + a2

l ) is derived from the leptonic decay widths of the Z , i.e., from Eq. (5.4) corrected with
a multiplicative factor

(
1 + 3

4
α
π

)
to account for final-state QED corrections. The signs of vl and al are

fixed by requiring ae < 0.
The resulting 68% probability contours are shown in Fig. 20, which provides strong evidence

of the electroweak radiative corrections. The good agreement with the SM predictions, obtained for
low values of the Higgs mass, is lost if only the QED vacuum polarization contribution is taken into
account, as indicated by the point with an arrow. Notice that the uncertainty induced by the input value
of α(M2

Z)−1 = 128.93 ± 0.05 is sizeable. The measured couplings of the three charged leptons confirm
lepton universality in the neutral-current sector. The solid contour combines the three measurements
assuming universality.

The neutrino couplings can also be determined from the invisible Z decay width, by assuming
three identical neutrino generations with left-handed couplings, and fixing the sign from neutrino scat-
tering data. Alternatively, one can use the SM prediction for Γinv to get a determination of the number
of light neutrino flavours [29, 30]:

Nν = 2.9840 ± 0.0082 . (5.18)

Figure 21 shows the measured values of Al and Ab, together with the joint constraint obtained
from A0,b

FB (diagonal band). The direct measurement of Ab at SLD agrees well with the SM prediction;
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LEP: 3 flavours/families�

Thanks to the lightest of neutrinos we know that no new heavier families will �
show up�



LEP: gauge boson selfcouplings�
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Fig. 24: ∆χ2 = χ2 − χ2
min versus MH , from the global

fit to the electroweak data. The vertical band indicates the
95% exclusion limit from direct searches [29, 30].

Measurement Fit |Omeas−Ofit|/σmeas

0 1 2 3

0 1 2 3

Δαhad(mZ)Δα(5) 0.02758 ± 0.00035 0.02768
mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1875
ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4957
σhad [nb]σ0 41.540 ± 0.037 41.477
RlRl 20.767 ± 0.025 20.744
AfbA0,l 0.01714 ± 0.00095 0.01645
Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1481
RbRb 0.21629 ± 0.00066 0.21586
RcRc 0.1721 ± 0.0030 0.1722
AfbA0,b 0.0992 ± 0.0016 0.1038
AfbA0,c 0.0707 ± 0.0035 0.0742
AbAb 0.923 ± 0.020 0.935
AcAc 0.670 ± 0.027 0.668
Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1481
sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314
mW [GeV]mW [GeV] 80.398 ± 0.025 80.374
ΓW [GeV]ΓW [GeV] 2.140 ± 0.060 2.091
mt [GeV]mt [GeV] 170.9 ± 1.8 171.3

Fig. 25: Comparison between the measurements included
in the combined analysis of the SM and the results from
the global electroweak fit [29, 30].

Taking all direct and indirect data into account, one obtains the best constraints onMH . The global
electroweak fit results in the∆χ2 = χ2−χ2

min curve shown in Fig. 24. The lower limit onMH obtained
from direct searches is close to the point of minimum χ2. At 95% C.L., one gets [29, 30]

114.4 GeV < MH < 144 GeV. (5.19)

The fit provides also a very accurate value of the strong coupling constant, αs(M2
Z) = 0.1186 ± 0.0027,

in very good agreement with the world average value αs(M2
Z) = 0.119 ± 0.002 [7, 35]. The largest

discrepancy between theory and experiment occurs forA0,b
FB, with the fitted value being nearly 3σ larger

than the measurement. As shown in Fig. 25, a good agreement is obtained for all other observables.

5.5 Gauge self-interactions
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−e
γ , Z
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+e
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+W

Fig. 26: Feynman diagrams contributing to e+e−→ W +W− and e+e−→ ZZ.

At tree level, theW -pair production process e+e− → W+W− involves three different contribu-
tions (Fig. 26), corresponding to the exchange of νe, γ andZ . The cross-section measured at LEP2 agrees
very well with the SM predictions. As shown in Fig. 27, the νe-exchange contribution alone would lead
to an unphysical growing of the cross-section at large energies and, therefore, would imply a violation of
unitarity. Adding the γ-exchange contribution softens this behaviour, but a clear disagreement with the
data persists. The Z-exchange mechanism, which involves the ZWW vertex, appears to be crucial in
order to explain the data.
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Fig. 27: Measured energy dependence of σ(e+e− → W +W−) (left) and σ(e+e− → ZZ) (right). The three curves
shown for the W -pair production cross-section correspond to only the νe-exchange contribution (upper curve), νe exchange
plus photon exchange (middle curve) and all contributions including also the ZWW vertex (lower curve). Only the e-exchange
mechanism contributes to Z–pair production [29, 30].

Since the Z is electrically neutral, it does not interact with the photon. Moreover, the SM does not
include any local ZZZ vertex. Therefore, the e+e− → ZZ cross-section only involves the contribution
from e exchange. The agreement of the SM predictions with the experimental measurements in both
production channels, W+W− and ZZ , provides a test of the gauge self-interactions. There is a clear
signal of the presence of a ZWW vertex, with the predicted strength, and no evidence for any γZZ or
ZZZ interactions. The gauge structure of the SU(2)L ⊗ U(1)Y theory is nicely confirmed by the data.

5.6 Higgs decays

1

50 100 200 500 1000

10—1

10—2

10—3

MH [GeV]

BR
(H

) 

WW

ZZ

Zγγγ

τ+τ—

gg tt

cc

bb

1

50 100 200 500 1000

10—1

10—2

10—3

102

  10

MH [GeV]

Γ
(H

) [
G

eV
]

Fig. 28: Branching fractions of the different Higgs decay modes (left) and total decay width of the Higgs boson (right) as
function ofMH [44].

The couplings of the Higgs boson are always proportional to some mass scale. The Hff̄ inter-
action grows linearly with the fermion mass, while the HWW and HZZ vertices are proportional to
M2

W and M2
Z , respectively. Therefore, the most probable decay mode of the Higgs will be the one into

the heaviest possible final state. This is clearly illustrated in Fig. 28. The H → bb̄ decay channel is
by far the dominant one below the W+W− production threshold. When MH is large enough to al-
low the production of a pair of gauge bosons, H → W+W− and H → ZZ become dominant. For
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TEVATRON �
O(10) million W’s �

Introduction Asymptotic Freedom Infrared Safety σ(e+e− → hadrons) Deep Inelastic Scattering

Hard Scattering Processes in Hadronic Collisions

! Before leaving the parton model, consider some hard scattering process
in hadron-hadron collisions.

p1

p2

x1p1

x2p2
} Y

! For example, Y can be a heavy particle (resonance, Higgs, i.e. Drell-Yan
Processes) or two (or more) jets at large transverse momentum.

σ(h1(p1)+h2(p2) → Y+X) =
∫ 1

0
dx1

∫ 1

0
dx2 ∑

f1,f2
ff1(x1)ff2(x2)σ(f1+ f2 → Y) .

Standard Model SUSSP61, Lecture 3, 11th August 2006

�(h1 + h2 ! Y +X) =

Z

x1

Z

x2

X

f1,f2

f

p1(x1)fp2(x2)�(f1 + f2 ! Y )

MW ,�W , BR0s



TEVATRON: top quark �
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Measurement Fit |Omeas−Ofit|/σmeas

0 1 2 3

0 1 2 3

Δαhad(mZ)Δα(5) 0.02750 ± 0.00033 0.02759
mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1874
ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4959
σhad [nb]σ0 41.540 ± 0.037 41.478
RlRl 20.767 ± 0.025 20.742
AfbA0,l 0.01714 ± 0.00095 0.01645
Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1481
RbRb 0.21629 ± 0.00066 0.21579
RcRc 0.1721 ± 0.0030 0.1723
AfbA0,b 0.0992 ± 0.0016 0.1038
AfbA0,c 0.0707 ± 0.0035 0.0742
AbAb 0.923 ± 0.020 0.935
AcAc 0.670 ± 0.027 0.668
Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1481
sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314
mW [GeV]mW [GeV] 80.385 ± 0.015 80.377
ΓW [GeV]ΓW [GeV] 2.085 ± 0.042 2.092
mt [GeV]mt [GeV] 173.20 ± 0.90 173.26
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Higgs mass before the discovery�
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Fig. 24: ∆χ2 = χ2 − χ2
min versus MH , from the global

fit to the electroweak data. The vertical band indicates the
95% exclusion limit from direct searches [29, 30].

Measurement Fit |Omeas−Ofit|/σmeas

0 1 2 3

0 1 2 3

Δαhad(mZ)Δα(5) 0.02758 ± 0.00035 0.02768
mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1875
ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4957
σhad [nb]σ0 41.540 ± 0.037 41.477
RlRl 20.767 ± 0.025 20.744
AfbA0,l 0.01714 ± 0.00095 0.01645
Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1481
RbRb 0.21629 ± 0.00066 0.21586
RcRc 0.1721 ± 0.0030 0.1722
AfbA0,b 0.0992 ± 0.0016 0.1038
AfbA0,c 0.0707 ± 0.0035 0.0742
AbAb 0.923 ± 0.020 0.935
AcAc 0.670 ± 0.027 0.668
Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1481
sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314
mW [GeV]mW [GeV] 80.398 ± 0.025 80.374
ΓW [GeV]ΓW [GeV] 2.140 ± 0.060 2.091
mt [GeV]mt [GeV] 170.9 ± 1.8 171.3

Fig. 25: Comparison between the measurements included
in the combined analysis of the SM and the results from
the global electroweak fit [29, 30].

Taking all direct and indirect data into account, one obtains the best constraints onMH . The global
electroweak fit results in the∆χ2 = χ2−χ2

min curve shown in Fig. 24. The lower limit onMH obtained
from direct searches is close to the point of minimum χ2. At 95% C.L., one gets [29, 30]

114.4 GeV < MH < 144 GeV. (5.19)

The fit provides also a very accurate value of the strong coupling constant, αs(M2
Z) = 0.1186 ± 0.0027,

in very good agreement with the world average value αs(M2
Z) = 0.119 ± 0.002 [7, 35]. The largest

discrepancy between theory and experiment occurs forA0,b
FB, with the fitted value being nearly 3σ larger

than the measurement. As shown in Fig. 25, a good agreement is obtained for all other observables.

5.5 Gauge self-interactions

−e

−e
γ , Z

e+

−

W +

e −W

+e

Z

Z

νe

−e

+e

−W

+W

Fig. 26: Feynman diagrams contributing to e+e−→ W +W− and e+e−→ ZZ.

At tree level, theW -pair production process e+e− → W+W− involves three different contribu-
tions (Fig. 26), corresponding to the exchange of νe, γ andZ . The cross-section measured at LEP2 agrees
very well with the SM predictions. As shown in Fig. 27, the νe-exchange contribution alone would lead
to an unphysical growing of the cross-section at large energies and, therefore, would imply a violation of
unitarity. Adding the γ-exchange contribution softens this behaviour, but a clear disagreement with the
data persists. The Z-exchange mechanism, which involves the ZWW vertex, appears to be crucial in
order to explain the data.
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Flavour Precision Physics�

|VCKM | =

0

BBBBBBBBBB@

|Vud| |Vus| |Vub|2
Nuclear � decay K ! ⇡l⌫, K,⇡ ! l⌫ B ! ⇡l⌫

Vcd| |Vcs| |Vcb|2
D ! ⇡l⌫, ⌫d ! cX D ! Kl⌫, W+ ! cs̄ B ! Dl⌫,b ! cl⌫

|Vtd| |Vts| |Vtb|
loops loops pp̄ ! tb+X

1

CCCCCCCCCCA

Extract precision physics from hadronic observables is a major achievement! �



Flavour Precision Physics�

Extract precision physics from hadronic observables is a major achievement! �

One example: a precise determination of |Vus|/|Vud| comes from comparing �
K, pi leptonic decays: �
�

�(K ! µ⌫)

�(⇡ ! µ⌫)
=

|Vus|2

|Vud|2
f2
K

f2
⇡

mK(1�m2
l /m

2
K)2

m⇡(1�m2
l /m

2
⇡)

2
(1 + �EM )

A(M ! µ⌫) / GF hµ⌫|µ̄�µ(1� �5)⌫|0i h0|q̄�µ(1� �5)q|M(q)i
| {z }

ifMqµ

requires a non-perturbative evaluation �
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Extract precision physics from hadronic observables is a major achievement! �

[77]
[78]
[79]
[80]
[81]

Figure 1: Comparison of lattice results (squares) for f+(0) and fK/fπ with various model esti-
mates based on χPT (blue circles). The black squares and grey bands indicate our estimates.
The significance of the colours is explained in section 2.

The lattice results shown in the left panel of Figure 1 indicate that the higher order
contributions ∆f ≡ f+(0) − 1 − f2 are negative and thus amplify the effect generated by f2.
This confirms the expectation that the exotic contributions are small. The entries in the lower
part of the left panel represent various model estimates for f4. In [81] the symmetry breaking
effects are estimated in the framework of the quark model. The more recent calculations are
more sophisticated, as they make use of the known explicit expression for the K"3 form factors
to NNLO in χPT [80, 82]. The corresponding formula for f4 accounts for the chiral logarithms
occurring at NNLO and is not subject to the ambiguity mentioned above.3 The numerical
result, however, depends on the model used to estimate the low energy constants occurring in
f4 [77–80]. The figure indicates that the most recent numbers obtained in this way correspond
to a positive rather than a negative value for ∆f . We note that FNAL/MILC 12 [36] have
made an attempt at determining some of the low energy constants appearing in f4 from lattice
data.

4.3 Direct determination of f+(0) and fK±/fπ±

All lattice results for the form factor and the ratio of decay constants that we summarize
here (Tables 1 and 2) have been computed in isospin-symmetric QCD. The reason for this
unphysical parameter choice is that simulations of SU(2) isospin-breaking effects in lattice
QCD, while ultimately the cleanest way for predicting these effects, are still rare and in
their infancy [29, 32, 33, 83–86]. In the meantime one relies either on chiral perturbation
theory [48, 72] to estimate the correction to the isospin limit or one calculates the breaking
at leading order in (mu − md) in the valence quark sector by making a suitable choice of the
physical point to which the lattice data is extrapolated. Aubin 08, MILC and Laiho 11 for
example extrapolate their simulation results for the kaon decay constant to the physical value

3Fortran programs for the numerical evaluation of the form factor representation in [80] are available on
request from Johan Bijnens.

4

Percent level non-perturbative determination �

FLAG WG �



Flavour Precision Physics�
Phases of CKM: only one for three families. �
�
We can formulate the criterium for CP violation in the quark sector in terms�
of a basis independent invariant: �
�
�
 � Im

n

det[YuY
†
u , YdY

†
d ]
o

6= 0

Jarkskog	
  85	
  

In terms of the usual parametrization: �

Im[VijV
⇤
ikVlkV

⇤
lj ] = J

X

m,n

✏ilm✏jkn

J = c12c23c
2
13s12s23s13 sin �
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Figure 11.2: Constraints on the ρ̄, η̄ plane. The shaded areas have 95% CL.

The CKM matrix elements can be most precisely determined by a global fit that
uses all available measurements and imposes the SM constraints (i.e., three generation
unitarity). The fit must also use theory predictions for hadronic matrix elements, which
sometimes have significant uncertainties. There are several approaches to combining the
experimental data. CKMfitter [6,101] and Ref. 124 (which develops [125,126] further) use
frequentist statistics, while UTfit [108,127] uses a Bayesian approach. These approaches
provide similar results.

The constraints implied by the unitarity of the three generation CKM matrix
significantly reduce the allowed range of some of the CKM elements. The fit for the
Wolfenstein parameters defined in Eq. (11.4) gives

λ = 0.22535± 0.00065 , A = 0.811+0.022
−0.012 ,

ρ̄ = 0.131+0.026
−0.013 , η̄ = 0.345+0.013

−0.014 . (11.26)

These values are obtained using the method of Refs. [6,101]. Using the prescription
of Refs. [108,127] gives λ = 0.22535 ± 0.00065, A = 0.817 ± 0.015, ρ̄ = 0.136 ± 0.018,
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Without performing any detailed calculation, one can make the following general statements on
the implications of the CKM mechanism of CP violation:

– Owing to unitarity, for any choice of i, j, k, l (between 1 and 3),

Im
[
VijV

∗
ikVlkV

∗
lj

]
= J

3∑

m,n=1

εilmεjkn , (6.20)

J = c12 c23 c2
13 s12 s23 s13 sin δ13 ≈ A2λ6η < 10−4 . (6.21)

Any CP-violation observable involves the product J [73]. Thus, violations of the CP symmetry
are necessarily small.

– In order to have sizeable CP-violating asymmetries A ≡ (Γ − Γ)/(Γ + Γ), one should look for
very suppressed decays, where the decay widths already involve small CKM matrix elements.

– In the SM, CP violation is a low-energy phenomenon, in the sense that any effect should disappear
when the quark mass difference mc − mu becomes negligible.

– B decays are the optimal place for CP-violation signals to show up. They involve small CKM
matrix elements and are the lowest-mass processes where the three quark generations play a direct
(tree-level) role.

The SM mechanism of CP violation is based on the unitarity of the CKM matrix. Testing the
constraints implied by unitarity is then a way to test the source of CP violation. The unitarity tests in
Eqs. (6.14) and (6.15) involve only the moduli of the CKM parameters, while CP violation has to do
with their phases. More interesting are the off-diagonal unitarity conditions:

V
∗
udVus + V

∗
cdVcs + V

∗
tdVts = 0 , (6.22)

V
∗
usVub + V

∗
csVcb + V

∗
tsVtb = 0 , (6.23)

V
∗
ubVud + V

∗
cbVcd + V

∗
tbVtd = 0 . (6.24)

These relations can be visualized by triangles in a complex plane which, owing to Eq. (6.20), have the
same area |J |/2. In the absence of CP violation, these triangles would degenerate into segments along
the real axis.

In the first two triangles, one side is much shorter than the other two (the Cabibbo suppression
factors of the three sides are λ, λ and λ5 in the first triangle, and λ4, λ2 and λ2 in the second one). This
is why CP effects are so small for K mesons (first triangle), and why certain asymmetries in Bs decays
are predicted to be tiny (second triangle). The third triangle looks more interesting, since the three sides
have a similar size of about λ3. They are small, which means that the relevant b-decay branching ratios
are small, but once enough B mesons have been produced, the CP-violation asymmetries are sizeable.
The present experimental constraints on this triangle are shown in Fig. 31, where it has been scaled by
dividing its sides byV∗

cbVcd. This aligns one side of the triangle along the real axis and makes its length
equal to 1; the coordinates of the 3 vertices are then (0, 0), (1, 0) and (ρ̄, η̄) ≡ (1 − λ2/2)(ρ, η).

One side of the unitarity triangle has been already determined in Eq. (6.18) from the ratio |Vub/Vcb|.
The other side can be obtained from the measured mixing between the B0

d and B̄0
d mesons (Fig. 32),

∆Md = 0.507 ± 0.004 ps−1 [67], which fixes |Vtb|. Additional information has been provided by the
recent observation of B0

s–B̄0
s oscillations at CDF, implying ∆Ms = 17.77 ± 0.12 ps−1 [74]. From the

experimental ratio ∆Md/∆Ms = 0.0286 ± 0.0003, one obtains |Vtd|/|Vts|. A more direct constraint
on the parameter η is given by the observed CP violation in K0 → 2π decays. The measured value of
|εK | = (2.232 ± 0.007) · 10−3 [7] determines the parabolic region shown in Fig. 31.

B0 decays into CP self-conjugate final states provide independent ways to determine the angles
of the unitarity triangle [75, 76]. The B0 (or B̄0) can decay directly to the given final state f , or do

35

8 11. CKM quark-mixing matrix

11.2.8. |Vtb| :

The determination of |Vtb| from top decays uses the ratio of branching fractions
R = B(t → Wb)/B(t → Wq) = |Vtb|2/(

∑
q |Vtq|2) = |Vtb|2, where q = b, s, d. The CDF

and DØ measurements performed on data collected during Run II of the Tevatron give
|Vtb| > 0.78 [71] and 0.99 > |Vtb| > 0.90 [72], respectively, at 95% CL. CMS recently
measured the same quantity at 7 TeV and gives |Vtb| > 0.92 [73] at 95% CL. The
direct determination of |Vtb| without assuming unitarity is possible from the single
top-quark-production cross section. The (2.71+0.44

−0.43) pb average cross section measured
by DØ [74] and CDF [75,76] implies |Vtb| = 0.87 ± 0.07. The recent CMS measurement,
(83.6 ± 29.8) pb [77] at 7 TeV, implies |Vtb| = 1.14 ± 0.22. The average of above gives

|Vtb| = 0.89 ± 0.07 . (11.15)

An attempt at constraining |Vtb| from the precision electroweak data was made in
Ref. 78. The result, mostly driven by the top-loop contributions to Γ(Z → bb̄), gives
|Vtb| = 0.77+0.18

−0.24.

11.3. Phases of CKM elements

As can be seen from Fig. 11.1, the angles of the unitarity triangle are

β = φ1 = arg

(
−

VcdV
∗
cb

VtdV
∗
tb

)
,

α = φ2 = arg

(
−

VtdV
∗
tb

VudV ∗
ub

)
,

γ = φ3 = arg

(
−

VudV ∗
ub

VcdV ∗
cb

)
. (11.16)

Since CP violation involves phases of CKM elements, many measurements of CP -violating
observables can be used to constrain these angles and the ρ̄, η̄ parameters.

11.3.1. ε and ε′ :

The measurement of CP violation in K0–K0 mixing, |ε| = (2.233± 0.015)× 10−3 [79],
provides important information about the CKM matrix. In the SM, in the basis where
VudV ∗

us is real [80]

|ε| =
G2

F f2
KmKm2

W

12
√

2 π2∆mK
B̂K

{
η1S(xc) Im[(VcsV

∗
cd)2]

+ η2S(xt) Im[(VtsV
∗
td)2] + 2η3S(xc, xt) Im(VcsV

∗
cdVtsV

∗
td)

}
, (11.17)

where S is an Inami-Lim function [81], xq = m2
q/m2

W , and ηi are perturbative
QCD corrections. The constraint from ε in the ρ̄, η̄ plane is bounded by approximate
hyperbolas. The dominant uncertainties are due to the bag parameter, for which we use

December 18, 2013 11:58

The unitarity triangles: all have the same area J, but sides are different �

The last one has larger area/sides: �
CP violation more significant in B sector �
�

Angles: �


