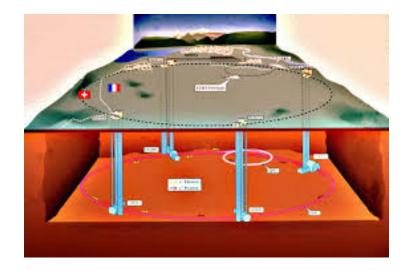
Overview of the SM

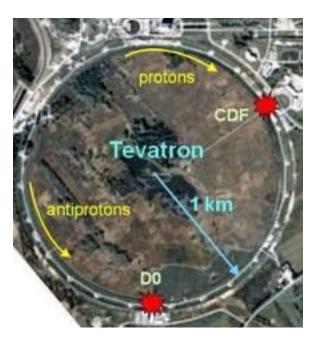
Lecture I: the SM tapestry

- Particles as Quantum Fields
- Particle zoo vs symmetry
- Gauge invariance and particle interactions
- The origin of mass: Spontaneous Symmetry breaking
- The flavour of the SM

Lecture II: the SM swiss watch


- Observables and field correlation functions
- How we calculate ? Perturbation Theory and beyond
- Precision tests of the SM (LEP-TEVATRON-B factories)

Lecture III: the open-ended SM


- The SM at the LHC: Higgs physics
- Open questions

In the 90's LEP/SLD and Tevatron tested the SM at few per mille level!

e+e- colliders LEP1 (s=90GeV), LEP2 (200GeV)

p pbar collider s=2 TeV

Need to fix the free parameters of the SM:

$$g_s, g, g', v, M_h$$

 $lpha^{-1} = 137.035999074(44)$ -> (g-2)e $G_F = 1.1663787(6) \times 10^{-5} \text{GeV}$ -> Muon lifetime $M_Z = 91.1876(21) \text{GeV}$ -> Z-pole mass (LEP)

Need to fix the free parameters of the SM:

$$g_s, g, g', v, M_h$$

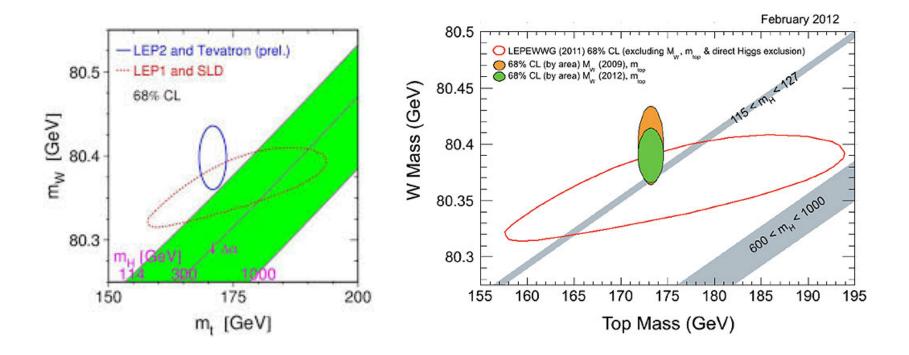
 $\alpha^{-1} = 137.035999074(44)$ $G_F = 1.1663787(6) \times 10^{-5} \text{GeV}$ $M_Z = 91.1876(21) \text{GeV}$

-> (q-2)e

-> Muon lifetime

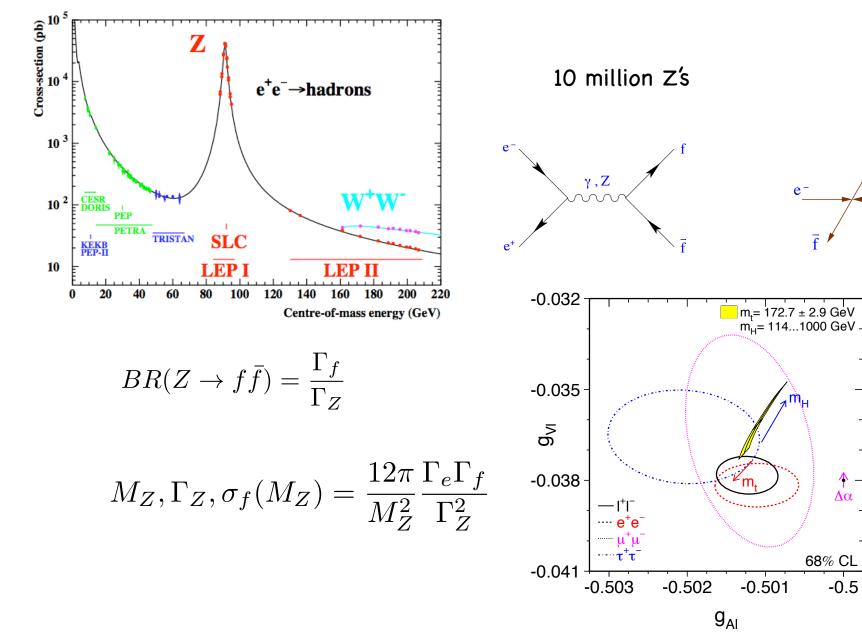
-> Z-pole mass (LEP)

$$\frac{M_W^2 \sin^2 \theta_W = \frac{\pi \alpha}{\sqrt{2}G_F}}{\sin^2 \theta_W = 1 - \frac{M_W^2}{M_Z^2}} \} \to M_W = 80.938 \text{ GeV}, \sin^2 \theta_W = 0.212$$

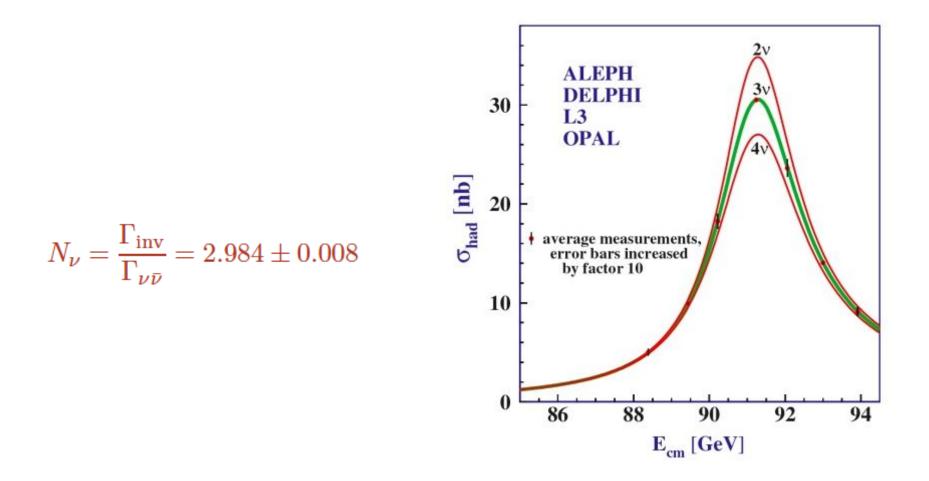

 $|M_W(exp) - M_W(tree)| = 553(15)MeV$

Tree level relations get modified at higher orders !

ALEPH	80.440±0.051							
	80.336±0.067							
L3 —	80.270±0.055							
	= 80.416±0.053							
LEP2 preliminary —	80.376±0.033							
CDF [Run-1/2]	- 80.389±0.019							
DØ [Run-1/2] -	80.383±0.023							
Tevatron	- 80.387±0.016 χ²/dof = 4.2/6							
Overall average	80.385±0.015							
80.2	80.6							
M _w [GeV]								

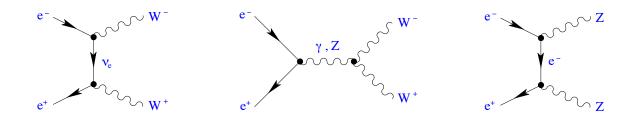

Need one loop corrections: also virtual effects of heavy particles enter

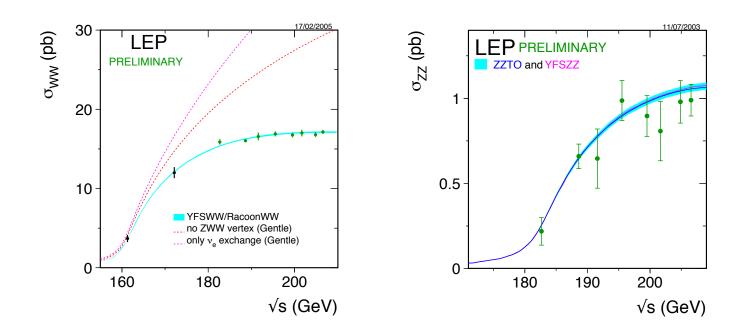
$$G_{F} = \frac{\pi \alpha}{\sqrt{2}M_{W}^{2} \sin^{2} \theta_{W}} (1 + \Delta r)$$
$$\Delta r = -\frac{3G_{F}m_{t}^{2}}{8\sqrt{2}\pi^{2}} \frac{\cos^{2} \theta_{W}}{\sin^{2} \theta_{W}} + \frac{11G_{F}M_{W}^{2}}{24\sqrt{2}\pi^{2}} \log \frac{M_{h}^{2}}{M_{W}^{2}}$$

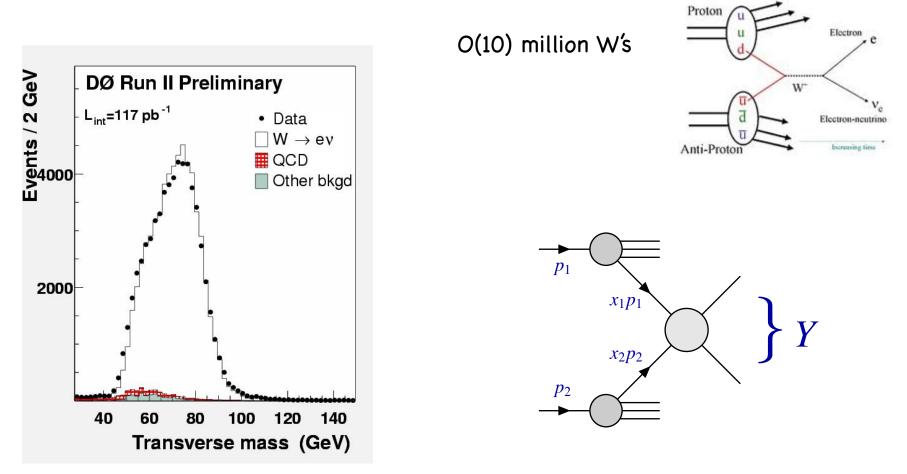


LEP

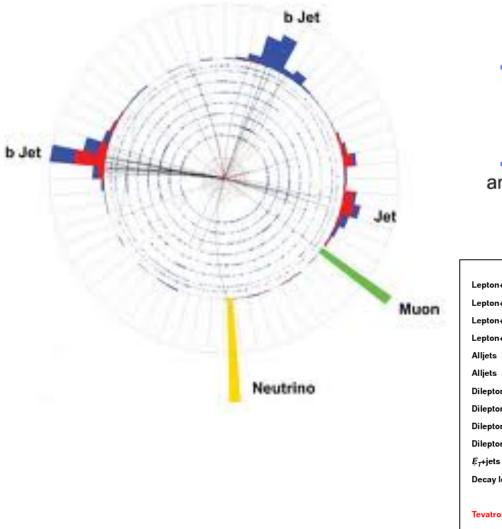
θ

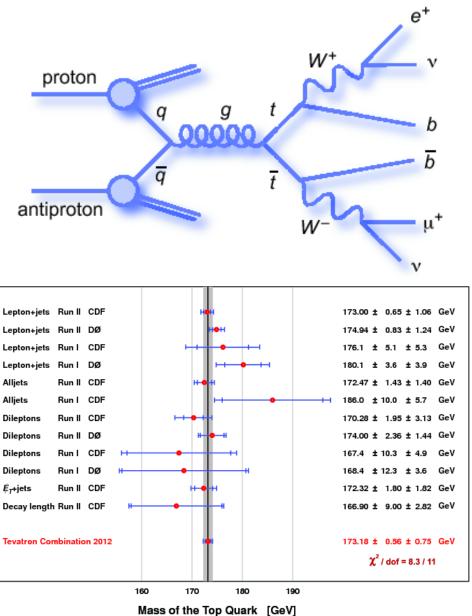



LEP: 3 flavours/families


Thanks to the lightest of neutrinos we know that no new heavier families will show up

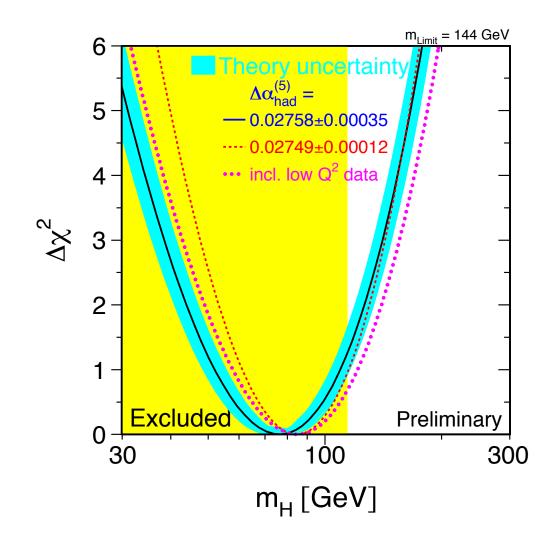
LEP: gauge boson selfcouplings




TEVATRON

$$\sigma(h_1 + h_2 \to Y + X) = \int_{x_1} \int_{x_2} \sum_{f_1, f_2} f_{p_1}(x_1) f_{p_2}(x_2) \sigma(f_1 + f_2 \to Y)$$
$$M_W, \Gamma_W, BR's$$

TEVATRON: top quark

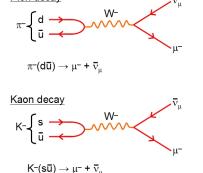


	Measurement	Fit	IO ^{meas} –O ^{fit} I/o ^{meas} 0 1 2 3
$\Delta \alpha_{had}^{(5)}(m_Z)$	0.02750 ± 0.00033	0.02759	
	91.1875 ± 0.0021	91.1874	
Г _Z [GeV]	2.4952 ± 0.0023	2.4959	
$\sigma_{\sf had}^0[{\sf nb}]$	41.540 ± 0.037	41.478	
	20.767 ± 0.025	20.742	
A ^{0,I} _{fb}	0.01714 ± 0.00095	0.01645	
A _I (Ρ _τ)	0.1465 ± 0.0032	0.1481	
R _b	0.21629 ± 0.00066	0.21579	
R _c	0.1721 ± 0.0030	0.1723	
A ^{0,b} A ^{0,c} _{fb}	0.0992 ± 0.0016	0.1038	
A ^{0,c}	0.0707 ± 0.0035	0.0742	
A _b	0.923 ± 0.020	0.935	
A _c	0.670 ± 0.027	0.668	
A _l (SLD)	0.1513 ± 0.0021	0.1481	
$sin^2 \theta_{eff}^{lept}(Q_{fb})$	0.2324 ± 0.0012	0.2314	
	80.385 ± 0.015		
Г _w [GeV]	2.085 ± 0.042	2.092	
m _t [GeV]	173.20 ± 0.90	173.26	
March 2012			0 1 2 3

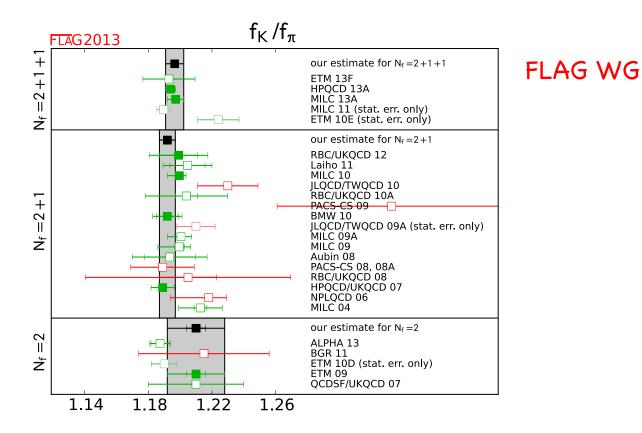
$$\mathcal{A}^f = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R}$$

$$\mathcal{A}_{FB}^{f} = \frac{\int_{0}^{1} d\cos\theta \frac{d\sigma_{f}}{d\cos\theta} - \int_{-1}^{0} d\cos\theta \frac{d\sigma_{f}}{d\cos\theta}}{\int_{-1}^{1} d\cos\theta \frac{d\sigma_{f}}{d\cos\theta}} - \frac{\int_{-1}^{0} d\cos\theta \frac{d\sigma_{f}}{d\cos\theta}}{\int_{-1}^{1} d\cos\theta \frac{d\sigma_{f}}{d\cos\theta}}} - \frac{\int_{-1}^{0} d\cos\theta \frac{d\sigma_{f}}{d\cos\theta}}{\int_{-1}^{0} d\cos\theta \frac{d\sigma_{f}}{d\cos\theta}}} - \frac{\int_{-1}^{0} d\cos\theta \frac{d\sigma_{f}}{d\cos\theta}}{\int_{-1}^{0} d\cos\theta \frac{d\sigma_{f}}{d\cos\theta}}} - \frac{\int_{-1}^{0} d\cos\theta \frac{d\sigma_{f}}{d\cos\theta}}{\int_{-1}^{0} d\cos\theta}} - \frac{\int_{-1}^{0} d\cos\theta \frac{d\sigma_{f}}{d\cos\theta}}{\int_{-1}^{0} d\cos\theta \frac{d\sigma_{f}}{d\cos\theta}}} - \frac{\int_{-1}^{0} d\cos\theta$$

Higgs mass before the discovery



$$|V_{CKM}| = \begin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}|^2 \\ \text{Nuclear } \beta \text{ decay} & K \to \pi l \nu, K, \pi \to l \nu & B \to \pi l \nu \\ V_{cd}| & |V_{cs}| & |V_{cb}|^2 \\ D \to \pi l \nu, \nu d \to c X & D \to K l \nu, W^+ \to c \bar{s} & B \to D l \nu, b \to c l \nu \\ |V_{td}| & |V_{ts}| & |V_{tb}| \\ \text{loops} & \text{loops} & p \bar{p} \to t b + X \end{pmatrix}$$


Extract precision physics from hadronic observables is a major achievement!

One example: a precise determination of |Vus|/|Vud| comes from comparing K, pi leptonic decays:

$$\begin{split} \mathcal{A}(M \to \mu\nu) &\propto G_F \langle \mu\nu | \bar{\mu}\gamma_{\mu}(1-\gamma_5)\nu | 0 \rangle \underbrace{\langle 0 | \bar{q}\gamma_{\mu}(1-\gamma_5)q | M(q) \rangle}_{if_M q_{\mu}} \\ \frac{\Gamma(K \to \mu\nu)}{\Gamma(\pi \to \mu\nu)} &= \frac{|V_{us}|^2}{|V_{ud}|^2} \underbrace{\int_{K}^{2}}_{f_{\pi}^2} \frac{m_K(1-m_l^2/m_K^2)^2}{m_{\pi}(1-m_l^2/m_{\pi}^2)^2} (1+\delta_{EM}) \\ \text{requires a non-perturbative evaluation} \end{split}$$

Extract precision physics from hadronic observables is a major achievement!

Percent level non-perturbative determination

Extract precision physics from hadronic observables is a major achievement!

Phases of CKM: only one for three families.

We can formulate the criterium for CP violation in the quark sector in terms of a basis independent invariant:

$$\operatorname{Im}\left\{\det[Y_{u}Y_{u}^{\dagger},Y_{d}Y_{d}^{\dagger}]\right\}\neq0$$

$$Jarkskog 85$$

$$\operatorname{Im}[V_{ij}V_{ik}^{*}V_{lk}V_{lj}^{*}] = \mathcal{J}\sum\epsilon_{ilm}\epsilon_{jkn}$$

m,n

In terms of the usual parametrization:

$$\mathcal{J} = c_{12}c_{23}c_{13}^2s_{12}s_{23}s_{13}\sin\delta$$

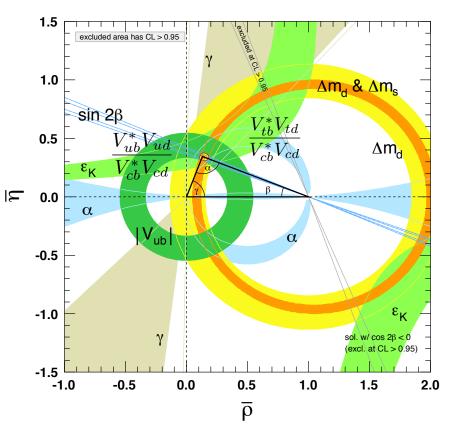
Unitarity Triangles
$$VV^{\dagger} = I \rightarrow \sum_{k} V_{ik}V_{jk}^{*} = 0 \quad i \neq j$$

The unitarity triangles: all have the same area J, but sides are different

$$\mathbf{V}_{ud}^* \mathbf{V}_{us} + \mathbf{V}_{cd}^* \mathbf{V}_{cs} + \mathbf{V}_{td}^* \mathbf{V}_{ts} = 0,$$

$$\mathbf{V}_{us}^* \mathbf{V}_{ub} + \mathbf{V}_{cs}^* \mathbf{V}_{cb} + \mathbf{V}_{ts}^* \mathbf{V}_{tb} = 0,$$

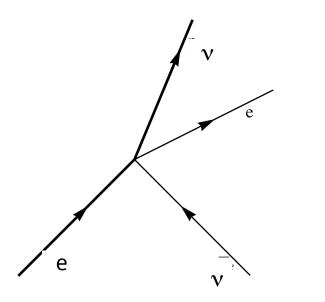
$$\mathbf{V}_{ub}^* \mathbf{V}_{ud} + \mathbf{V}_{cb}^* \mathbf{V}_{cd} + \mathbf{V}_{tb}^* \mathbf{V}_{td} = 0.$$


The last one has larger area/sides: CP violation more significant in B sector F

Angles:

$$\beta = \phi_1 = \arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right),$$

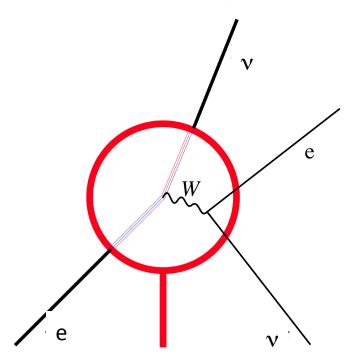
$$\alpha = \phi_2 = \arg\left(-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}\right),$$


$$\gamma = \phi_3 = \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right).$$

Lecture III: the SM open end

- The SM at the LHC: Higgs physics
- Open questions in the SM

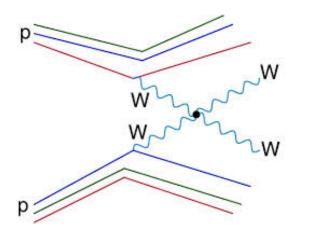
Unitarity & effective theories

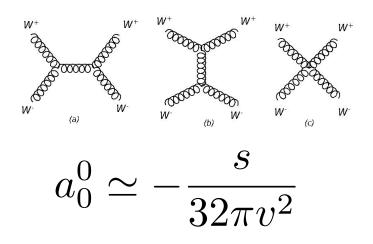

Violates unitarity at large energies:

$$\sigma(\nu e \to \nu e) = \frac{G_F^2 s}{\pi}$$

Something must pop up when we approach the unitarity bound:

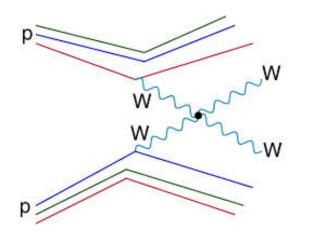
$$\sigma = \frac{16\pi}{s} \sum_{l} (2l+1)|a_{l}|^{2} \qquad \sigma = \frac{1}{s} \operatorname{Im}[A(\theta = 0)] = \frac{16\pi}{s} \sum_{l} (2l+1) \operatorname{Im}[a_{l}]$$
$$\operatorname{Im}[a_{l}] = |a_{l}|^{2} \to \operatorname{Re}[a_{l}] \le \frac{1}{2} \qquad \text{s-wave unitarity} \qquad \sigma \le \frac{16\pi}{s}$$
$$s \ge (1 \text{ TeV})^{2}$$

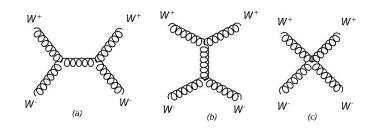

Unitarity & effective theories

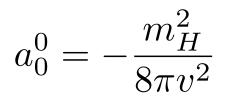

The W, Z restore unitarity:

 $\sigma_{\nu e \to \nu e} \propto G_F^2 M_W^2$

WW scattering and Higgs mass

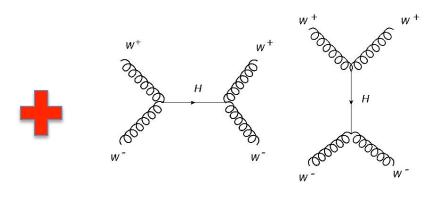

Without the Higgs:


Unitarity violated

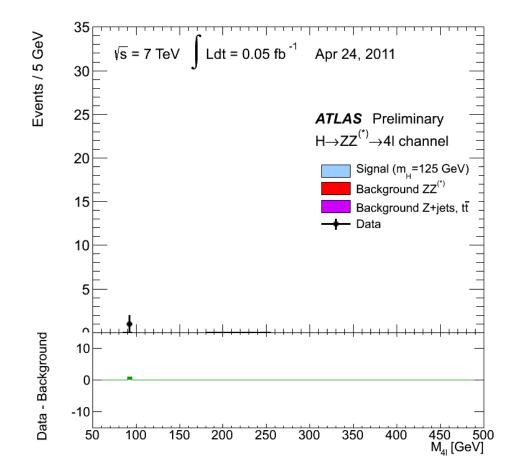

$$s \ge (1.7 \text{ TeV})^2$$

WW scattering and Higgs mass

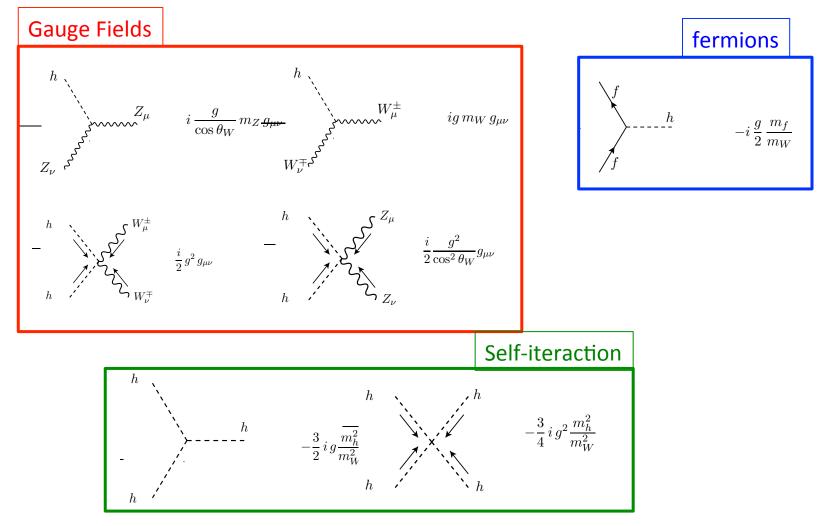
Without the Higgs:



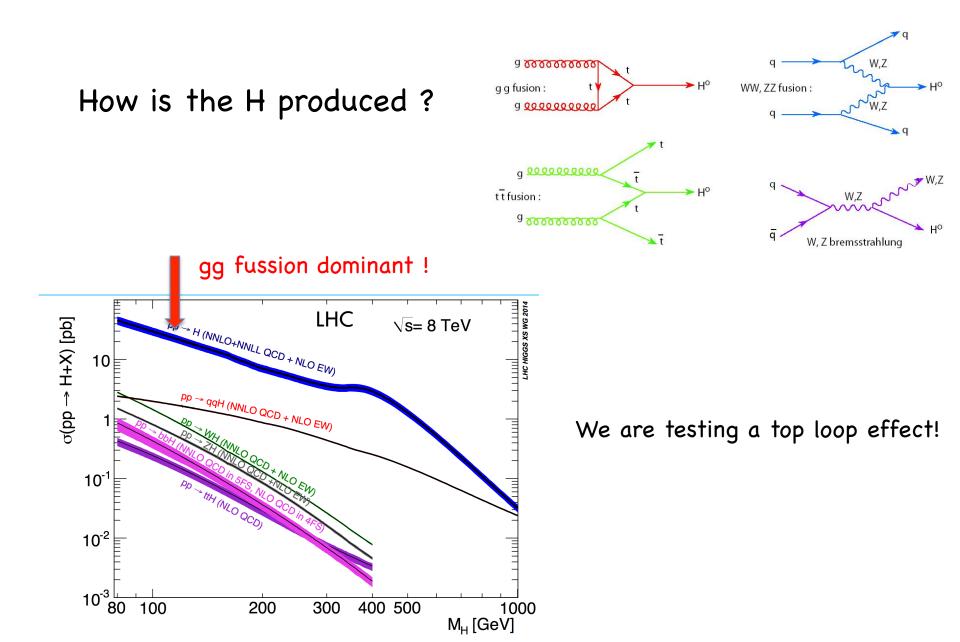
Unitarity restored if:


 $m_H \leq 800 \text{ GeV}$

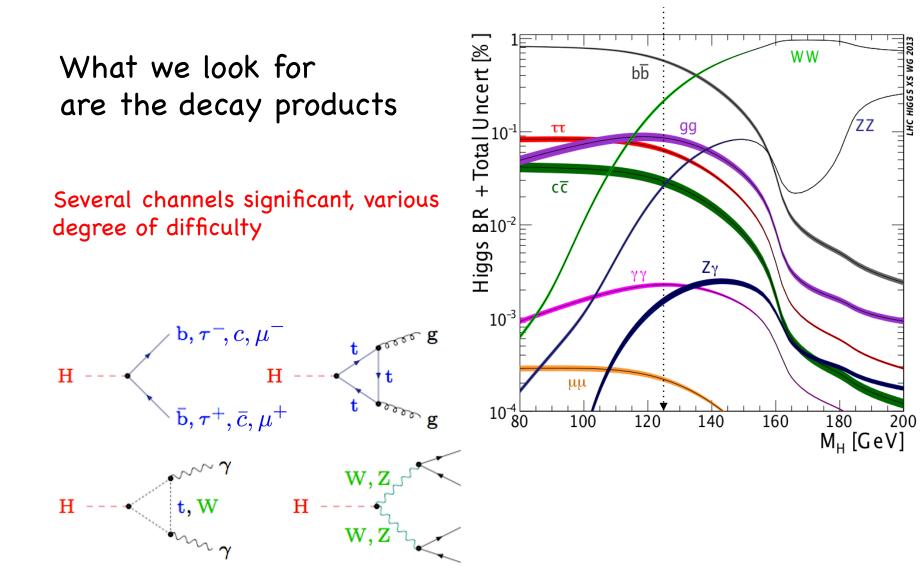
WWH couplings exactly as in the SM!


 $g_{WWH} = gM_W$

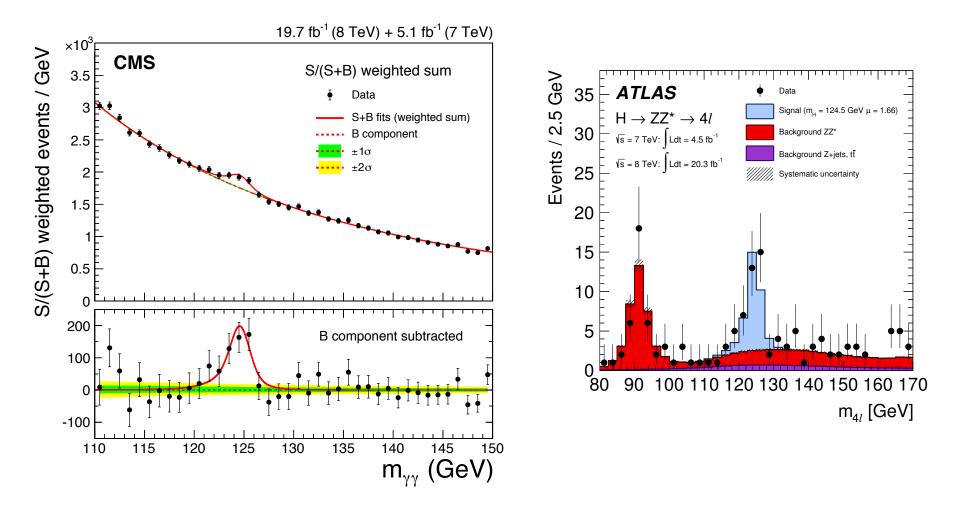
The missing piece showed up...

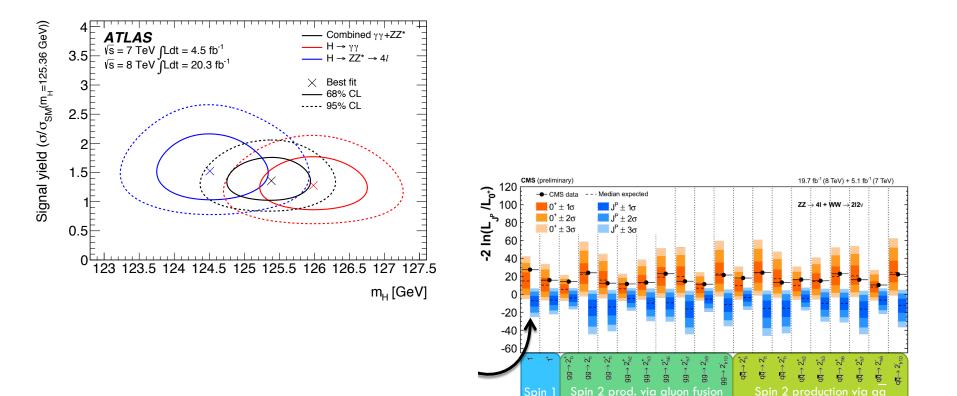

Higgs couplings

No more freedom, after the higgs mass is known all higgs couplings are fixed

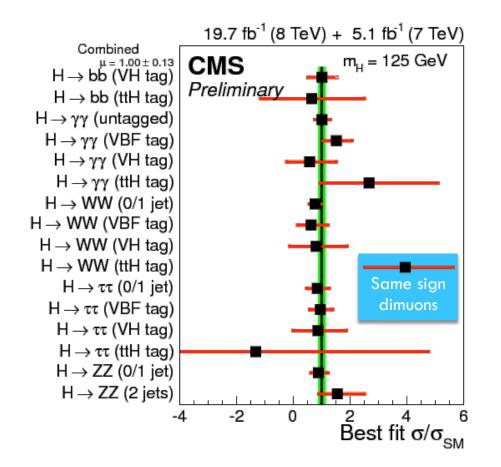


Any change would bring unitarity violations back- > New physics


Higgs @LHC


Higgs @LHC

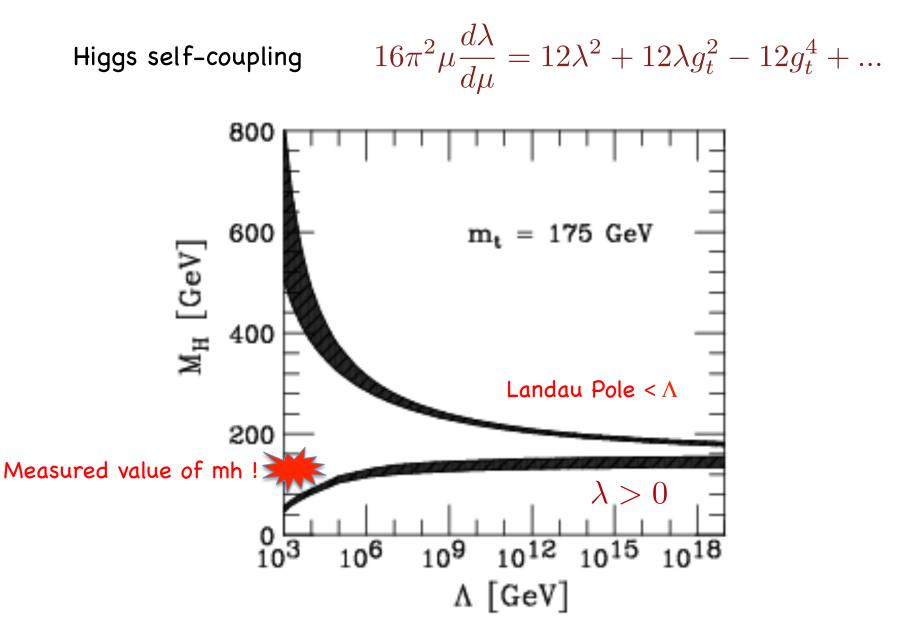
The Higgs resonance



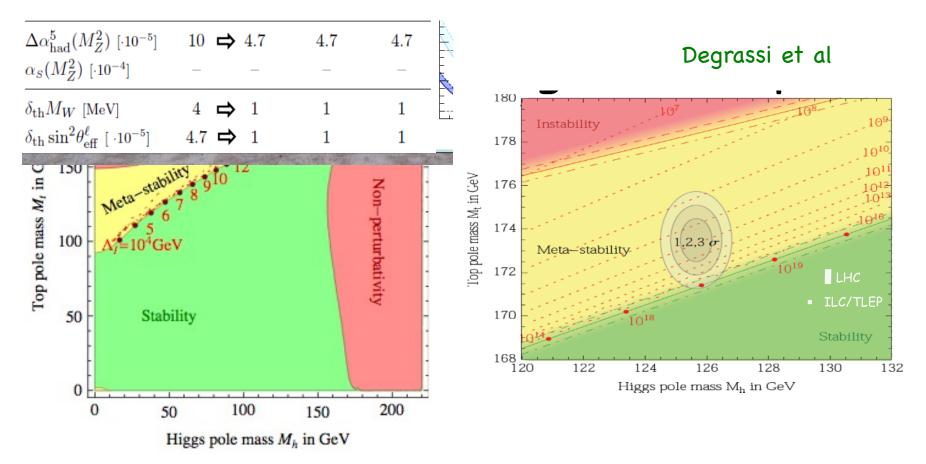
The O⁺ Higgs resonance

ATLAS: 125.36 +- 0.37 (stat) +-0.18 (syst) CMS: 125.03 +- 0.27 (stat) +-0.15 (syst)

Higgs couplings



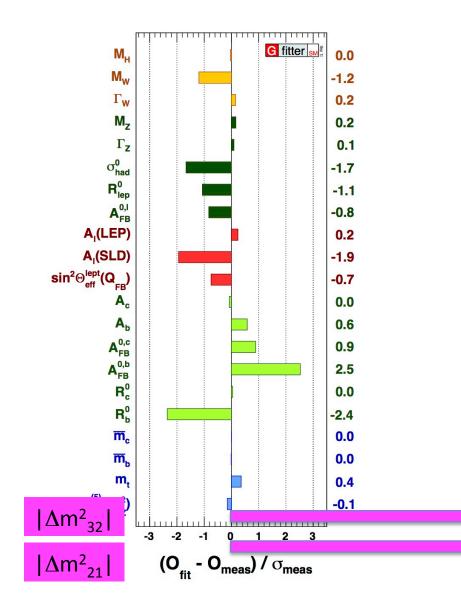
ATLAS Prelim. m _H = 125.5 GeV	$\sigma(sta)$ $\sigma(sta)$ 	s inc.) ory		l unco lo on	ertain μ	ty
Η → γγ	+ 0.23 - 0.22				-	Ŧ
$\mu = 1.57^{+0.0}_{-0.2}$	0 - 0.12	İ				-
H → ZZ* → 4I	+ 0.35 - 0.32					-
$\mu = 1.44^{+0.4}_{-0.3}$	55 - 0.10					
$H \rightarrow WW^* \rightarrow h/h_V$	+ 0.21 - 0.21					
$\mu = 1.00^{+0.2}_{-0.2}$	82 + 0.24 - 0.19 + 0.16 - 0.08					
Combined	+ 0.14 - 0.14			F		
H →γγ, ZZ *, WW * $\mu = 1.35^{+0.2}_{-0.2}$	21 + 0.16 - 0.14 + 0.13 - 0.11			F		
W711 LE	±0.5 ⊢					
W,Z H \rightarrow bb	.7 ±0.4	:				
$\mu = 0.2^{+0}_{-0}$						
$\mathbf{H} \rightarrow \tau \tau$ (8 TeV data only	+ 0.3 - 0.3					
$\mu = 1.4^{+0}_{-0}$.5 +0.4 -0.3 +0.2 -0.1			· · · · · ·		-
Combined	+ 0.24 - 0.24	:			-	
H→bb , ττ μ = 1.09 ^{+0.0}	+ 0.27 - 0.21					
μ = 1.000.0	32 + 0.08 - 0.04	. İ.				
Combined	+ 0.12 - 0.12 + 0.14 - 0.11			F		
$\mu = 1.30^{+0.7}_{-0.7}$	+0.10 7 -0.08				+ 1	
√s = 7 TeV ∫Ldt = 4.6-4.8	_{fb-1} -0.5	0	0.5	1	1.5	
√s = 8 TeV ∫Ldt = 20.3 fb⁻¹		5	Signal	strer	ngi	NN 22


The origin of mass

Triviality vs Stability

Stability

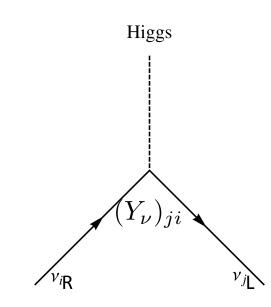
Living in a meta-stable world...


(the cutoff cannot be really taken all the way to infinity...)

SM valid theory until the Planck scale...

The SM is not complete (experiment dixit)

> Neutrinos have a mass !!

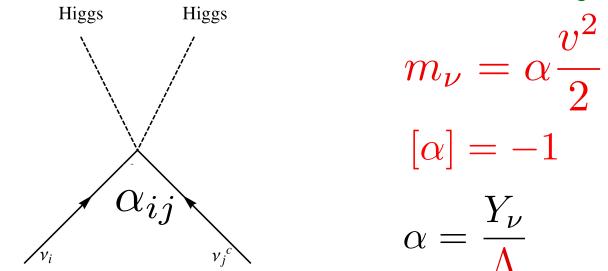


40σ

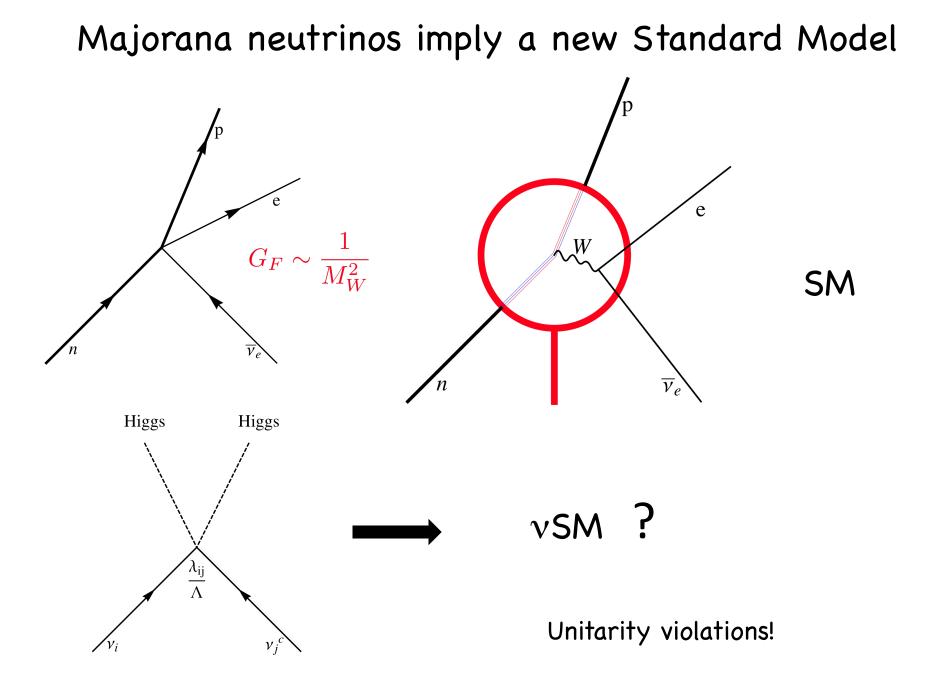
Massive Dirac neutrinos & SSB ? $\tilde{\phi} \equiv \sigma_2 \phi^*, \quad \tilde{\phi} : (1, 2, -\frac{1}{2}), \quad \left\langle \tilde{\phi} \right\rangle = \begin{pmatrix} \frac{v}{2} \\ 0 \end{pmatrix}$

Massive Dirac neutrino

$$-\mathcal{L}_m^{\text{Dirac}} = Y_\nu \underbrace{\bar{L}}_{(1,1,0)} \underbrace{\bar{\nu}_R}_{(1,1,0)} + h.c \to SSB \to Y_\nu \bar{\nu}_L \frac{v}{\sqrt{2}} \nu_R + h.c.$$



$$m_{\nu} = Y_{\nu} \frac{v}{\sqrt{2}}$$

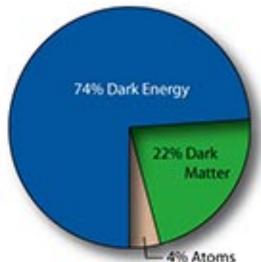

Massive Majorana neutrinos & SSB? $\tilde{\phi} \equiv \sigma_2 \phi^*, \quad \tilde{\phi} : (1, 2, -\frac{1}{2}), \quad \left\langle \tilde{\phi} \right\rangle = \begin{pmatrix} \frac{v}{2} \\ 0 \end{pmatrix}$

Massive Majorana neutrino

$$-\mathcal{L}^{\text{Majorana}} = \alpha \bar{L} \ \tilde{\phi} \ C \tilde{\phi}^T \bar{L}^T + h.c. \rightarrow SSB \rightarrow \alpha \frac{v^2}{2} \bar{\nu}_L C \bar{\nu}_L^T + h.c.$$

Weinberg's operator

Implies the existence of a new physics scale unrelated to v !



The SM is not complete (experiment dixit)

The SM can not complete:

> Neutrinos have a mass !!

We cannot explain the content of the Universe!

The SM is not complete (experiment dixit)

Neutrinos have a mass !!

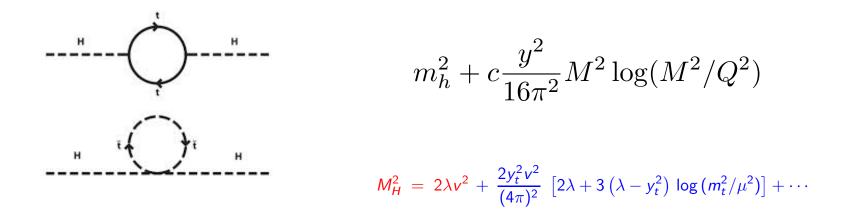
Dark matter

(caveat: maybe our lack of understanding of gravity)

> Baryons in the Universe

(caveat: primordial asymmetry)

The SM can not complete (desiderium)


- Hierarchy problem
- Gauge unification: quark/lepton symmetry, em charge quantization
- Flavour Puzzle
- ≻Parity

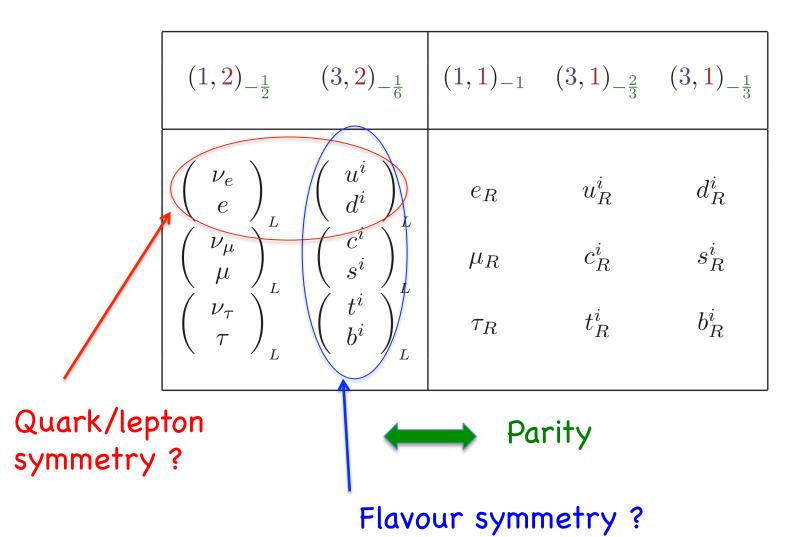
Hierarchy Problem

This is a well-defined problem if and only if there is new physics M >> v

There is a dimensionfull coupling in the SM

$$V(\phi) = -\mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2 \qquad \mu^2 <-> m_h^2$$

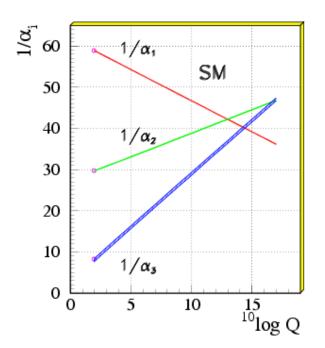
Need to finetune the renormalized mass: not natural


The SM can not complete (desiderata)

Hierarchy problem

Gauge unification: quark/lepton symmetry, em charge quantization

SM gauge group: particles

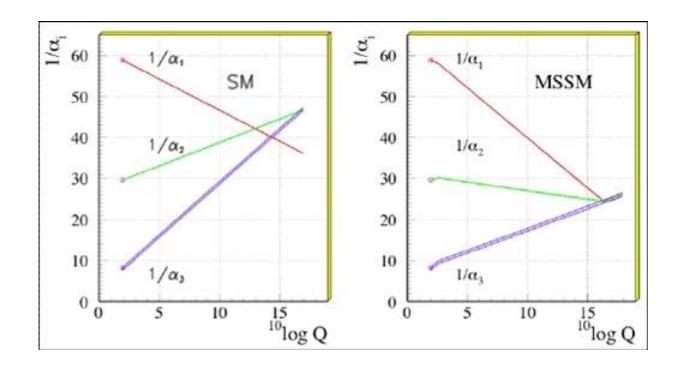

 $SU(3) \times SU(2) \times U(1)_Y$

SM gauge group: interactions

$$SU(3) \times SU(2) \times U(1)_Y$$

 $G^{a=1,...,8}$
 $W^{a=1,2,3}_{\mu}$
 B_{μ}

Gauge unification ?

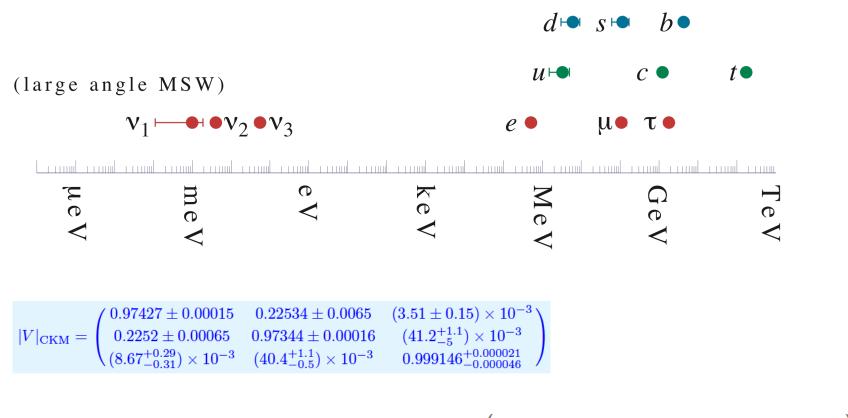


$$\alpha_i = \frac{g_i^2}{4\pi}$$

The motivation for SUSY

No quadratic corrections to the Higgs mass: cancellation between particles and SUSY partners.

Gauge unification


The SM can not complete (desiderata)

- > Hierarchy problem
- Gauge unification: quark/lepton symmetry
- Flavour Puzzle

≻Parity

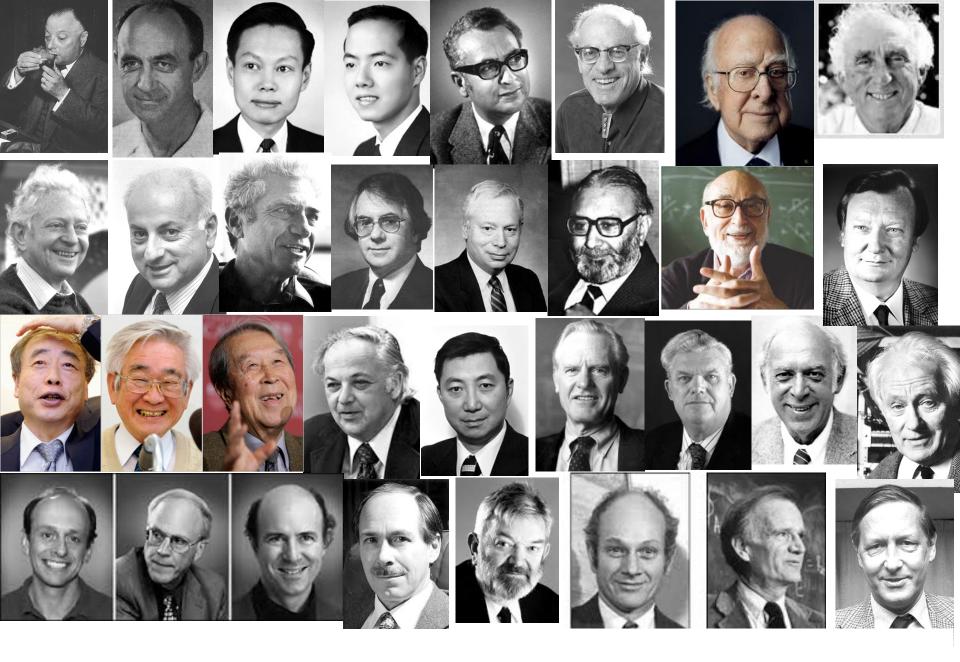
Flavour Puzzle

Where do these "random" looking numbers come from ?

	$(0.795 \rightarrow 0.846)$	$0.513 \rightarrow 0.585$	$0.126 \rightarrow 0, 178$
U =	$0.205 \rightarrow 0.543$	$0.416 \rightarrow 0.730$	$0.579 \rightarrow 0.808$
	0.215 ightarrow 0.548	$0.409 \rightarrow 0.725$	$0.567 \rightarrow 0.800$

SM as an effective field theory

Weinberg; Buchmuller, Wyler;...


If $\Lambda >> v$ low-energy effects should be well described by an effective field theory:

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} rac{lpha_i}{\Lambda} O_i^{d=5} + \sum_{i} rac{eta_i}{\Lambda^2} O_i^{d=6} + ...$$

O_i^d built from SM fields satisfying the gauge symmetries

d=5: only one: neutrino mass ! d=6: > 80 !

For α , $\beta = O(1)$: $\Lambda \geq \text{few TeV}$ $\Lambda \geq O(1000\text{TeV}) \text{ FCNC}$

SM Nobel tapestry