Neutro Detectors

Mo Wascko Imperial College London

drews

Specific Examples

- Day 1: Signals and backgrounds
- Day 2: Radiation in matter and detection techniques
- Today: Examples of real neutrino experiments building on techniques already discussed

MiniBooNE Overview: Beam and Detector

Protons: $4x10^{12}$ protons per 1.6 µs pulse, at 3 - 4 Hz from Fermilab Booster accelerator, with E_{proton}=8.9 GeV. *First result uses (5.58* ± 0.12) x 10²⁰ protons on target.

LMC

Mesons: mostly π⁺, some K⁺, produced in p-Be collisions, + signs focused into 50 m decay region.

J.L. Raar

Neutrinos: traverse 450 m soil berm before the detector hall. Intrinsic v_e flux ~ 0.5% of v_u flux.

focusing hom

Detector: 6 m radius, 250,000 gallons of mineral oil (CH₂), which emits Cherenkov and scintillation light. 1280 inner PMTs, 240 PMTs in outer veto region

Booster

INSS 2014 - Detectors

Absorber

⊿gan O. Wascko

MiniBooNE Detector

MiniBooNE Detector: Optics

charged final state particles produce $\gamma_{
m s}$

Cherenkov radiation

- Light emitted by oil if particle v > c/n
- forward and prompt in time

Scintillation

- Excited molecules emit de-excitation γ s
- isotropic and late in time

Extinction Rate for MiniBooNE Marcol 7 Mineral Oil

*γ*s are (possibly) detected by PMTs after undergoing absorption, reemission, scattering, fluorescence

Particle track

Molecular energ

evels of oi

"the optical model"

Wednesday, 13 August 14

Imper

Lond

MiniBooNE Detector: Hits

First set of cuts based on simple hit clusters in time: "sub-events."

Most events are from v_{μ} CC interactions, with characteristic two "sub-event" structure from stopped μ decay.

 v_e CC interactions have 1 "sub-event".

Simple cuts eliminate cosmic ray events: 1. Require < 6 veto PMT hits, 2. Require > 200 tank PMT hits.

Wednesday, 13 August 14

:ko 7

0

MiniBooNE Detector: Reconstruction and Particle ID

0.0 0.0° 0.0 0.03 PM⁻ Time⁶⁰(ns) **Reconstruction:** 0.0 PMTs collect γ s, record t and q, fit time and angular distributions to find tracks

Final State Particle Identification:

muons have sharp Cherenkov rings and long tracks

electrons have fuzzy rings, from multiple scattering, and short tracks neutral pions decay to 2 γs, which convert and produce 2 fuzzy rings, *easily misidentified as electrons if one ring gets lost!*

Imperial College London Wednesday, 13 August 14

INSS 2014 - Detectors

Morgan O. Wascko

MiniBooNE Detector: PMT Calibration

Calibrating Muons in MiniBooNE

 Hodoscope + 7 scintillator cubes track cosmic ray muons entering the tank

• Trigger: match tank subevents with cube hits

Scintillation cube

Imperial College London

INSS 2014 - Detectors

Morgan O. Wasၛစ္ပ 10

Calibrating Muons in MiniBooNE

0.12

0.08

- Muon tracker determines event pars (x, t, u)
- Corrected times, angles w/ known track center
- Cherenkov rings and time peaks; isotropic and delayed emission
- Use cube data for optical model studies lacksquare
 - separate scintillation and fluorescence

London

Calibrating Muons in MiniBooNE

Imperial College

London

Wednesday, 13 August 14

30

MiniBooNE Beam & Detector: Stability

Neutrinos per proton on target throughout the neutrino run:

Wednesday, 13 August 14

London

MiniBooNE Detector: MC Tuning

Corrected time (ns)

Wednesday, 13 August 14

Im

MiniBooNE Detector: Analysis

0.3

MiniBooNE Detector: e/µ Likelihood

Events with $\log(L_e/L_\mu) > 0$ (e-like) undergo additional fit with two-track hypothesis.

MiniBooNE Detector: e/π^0 Likelihood

Test e- π^0 *separation on data:*

Imperial College

INSS 2014 - Detectors

19

Super-Kamiokande

- 1km underground at Kamioka
 - Muon flux is 1E-5 from the surface.
- Total mass is 50kton and the fiducial mass is 22.5 kton.
 - Inner detector: 11,129 20inch PMT
 - Outer detector: 1,885 8inch PMT
- Dead-time-less DAQ
- GPPS record for the coincidence with the accelerator.

Booster Proton accelerator

8 GeV protons sent to target

Target Hall

- Beryllium target: 71cm long 1cm diameter
- Resultant mesons focused with magnetic horn
- Reversible horn polarity

50m decay volume

- Mesons decay to $\mu \& v_{\mu}$
- Short decay pipe minimizes $\mu{\rightarrow}v_edecay$
- SciBooNE located 100m from the beryllium target

London

SciBooNE detector

SciBar detector

- Extruded scintillators with WLS fiber readout
- Scintillators are the neutrino target
- 3m x 3m x 1.7m (Total: 15 tons)
- 14,336 channels
- Detect short tracks (>8cm)
- Distinguish a proton from a pion by dE/dx

Clear identification of v interaction process

SciBar readout

Long attenuation length (~350cm)
 → Light Yield : ~20p.e./1.3cm/MIP

Imperial College London ADC for all 14,336 channels

TDC for 448 sets (32 channels-OR)

Electron Catcher (EC)

- "spaghetti" calorimeter
- 1mm diameter fibers in the grooves of lead foils
- 4x4cm² cell read out from both ends
- 2 planes (11X₀)

Horizontal: 32 modules Vertical : 32 modules

- Total 256 readout channels
- Expected resolution 14%/VE (GeV)
- Linearity: better than 10%

dE/dx distribution of vertical plane for cosmic ray muons

Wednesday, 13 August 14

INSS 2014 - Detectors

25

Muon Range Detector (MRD)

A new detector built with the used scintillators, iron plates and PMTs to measure the muon momentum up to 1.2 GeV/c.

- Iron Plates
 - 305x274x5cm³
 - Total 12 layers
- Scintillator Planes
 - Alternating horizontal and vertical planes
 - Total 362 channels

26

Imperial College London

INSS 2014 - Detectors

Morgan O. Wascko

27

Neutrino event displays

Wednesday, 13 August 14

London

```
28
```

MuCL calculation

MuCL: combined confidence level

$$MuCL = P \times \sum_{i=0}^{n-1} \frac{(-\ln P)^i}{i!} \qquad P = \prod_{i=1}^n CL_i$$

Imperial College London

Wednesday, 13 August 14

Morgan O. Was පුගු 29

INSS 2014 - Detectors

Charged Current (CC) event selection

- Muons identified using MRD
- Tracks should start from SciBar fiducial volume

SciBar-MRD matched event (~30k events)

93% pure CC-inclusive (v+N \rightarrow µ+X) sample

KamLAND detector

Energy range : few hundred keV ~ few ten MeV

²³⁸U : 3.5×10^{-18} g/g ²³²Th : 5.2×10^{-17} g/g in LS 100m

Shield of cosmic ray background ~10⁻⁵ than ground

Neutrino

1,000 tons pure liquid scintillator (LS) Buffer oil : Shield for environmental radiation PMT : 17inch :1325 + 20inch : 554 Water cherencov anti counter 225 20inch PMT with water

Cosmic ray

Resolution : ~12cm / √E(MeV) ~6.4% / √E(MeV)

INSS 2014 - Detectors

Physics targets of KamLAND

~500 events / day (7Be) ~1 events/day (⁸B)

The Sun

Verification of solar model

~1event / 20days

Interior of the Earth Verification of earth evolution model

Ve

Double beta decay Majorana neutrino Neutrino mass hierarchy few events/year ?

~1event / day **Precision** measurements of neutrino oscillation

Imperial College l ondon Wednesday, 13 August 14

INSS 2014 - Detectors

Morgan O. Wascko

KamLAND-Zen

total 600+ kg in the mine production reaches 700kg in this year

Imperial College London

INSS 2014 - Detectors

SBL Reactor Ve detectors

	Exp't	Power (GWth)	Distance N/F (m)	Target N/F (t)
	Double Chooz	8.6	400/1050	8.6/8.6
DUBLE	RENO	17.3	290/1380	16/16
	Daya Bay	11.6 (17.4)	360(500)/ 1990(1620)	6×20
				0

Wednesday, 13 August 14

INSS Eightrese Courtesy M. Dierckxsens, Chicago

Morgan O. Wascko

Daya Bay

Double Chooz detector

 $\begin{array}{c} \textbf{Outer Veto: Plastic scintillator strips} \\ Identify cosmic \, \mu \end{array}$

Steel shield (15cm thick)

v-target: Gd loaded (1g/l) liquid scint. (10m³) Target of neutrino interaction Neutrons captured on Gd Acrylic vessel

 γ-catcher: Liquid scintillator (22m³) Measure γ's escaped from v-target
 Acrylic vessel
 Buffer:

Mineral oil (110m³) & 390 10-inch PMT Reduction of environmental γ's

Steel tank

Inner Veto:

Liquid scintillator (90m³) & 78 8-inch PMT Identify cosmic μ &reduction neutronş
RENO Detector

중성미자검출설비구축공사

- 354 ID +67 OD 10" PMTs
- Target : 16.5 ton Gd-LS, R=1.4m, H=3.2m
- Gamma Catcher: 30 ton LS, R=2.0m, H=4.4m
- Buffer: 65 ton mineral oil, R=2.7m, H=5.8m
- Veto : 350 ton water, R=4.2m, H=8.8m

Imperial College London

Antineutrino Detectors

LS

6 'functionally identical' detectors: Reduce systematic uncertainties

Target mass measured to 3 kg (0.015%) during filling.

Calibration robots insert radioactive sources and LEDs.

common GdLS tanks.

All detectors filled from

192 8" PMTs detect light in target, ~163 p.e./MeV.

Reflectors improve light collection uniformity.

20t GdLS target

6/4/12

Improved Measurement of Electron-antineutrino Disappearance

5m

3

Imperial College London

INSS 2014 - Detectors

Wascko

Morgan O.

Muon Tagging System

Dual tagging systems: 2.5 meter thick two-section water shield and RPCs

W STREET

RPCs

- Outer layer of water veto (on sides and bottom) is 1m thick, inner layer >1.5m. Water extends 2.5m above ADs
 - 288 8" PMTs in each near hall
 - 384 8" PMTs in Far Hall
- 4-layer RPC modules above pool
 - 54 modules in each near hall
 - 81 modules in Far Hall
- Goal efficiency: > 99.5% with uncertainty <0.25%

Improved Measurement of Electron-antineutrino Disappearance

inner water shield

outer water shield

PMTs

Tyvek

Imperial College

London

INSS 2014 - Detectors

Hall 1: Pool Filled

6/4/12

Daya Bay

6/4/12

Hall 2 and Hall 3

Hall 2: Began 1 AD operation on Nov. 5, 2011

> Hall 3: Began 3 AD operation on Dec. 24, 2011

2 more ADs still in assembly; installation planned for late 2012

Improved Measurement of Electron-antineutrino Disappearance

Wednesday, 13 August 14

INSS 2014 - Detectors

Morgan O. Wascko

40

MINOS Detectors

- 980 ton Near Detector
- 5.4 kiloton Far Detector
 - Magnetised to 1.3T
 - Similar design mitigates many systematic uncertainties
 - Event-by-event charge discrimination of muons

9 MINOS @ Neutrino 2012 by Ryan Nichol

Imperial College London

Wednesday, 13 August 14

- Magnetised steel-scintillator tracking calorimeters
 - 2.54cm steel planes
 - 1cm x 4.1cm scintillator strips
 - Hamamatsu multi-anode PMTs

Wednesday, 13 August 14

Morgan O. Wascko

Event Topologies

UZ

٧Z

UZ

vz

H. Gallagher **Tufts University** Neutrino 2008 May 27, 2008

Monte Carlo

v_{e} CC Event

•long µ track+ hadronic activity at vertex

 v_{μ} CC Event

υz

 short event, often diffuse

$$\mathbf{E}_{\mathbf{v}} = \mathbf{E}_{\mathrm{shower}} + \mathbf{P}_{\mu}$$

 short, with typical EM shower profile

6% range, 10% curvature 55%/VE

Wednesday, 13 August 14

h

12

1.8m

NC Event

3.5m يستند البالساتاء

The MINERvA Detector

INSS 2014 - Detectors

Imperial College London

INSS 2014 - Detectors

Morgan O. Wascko

Detector description

- 30K scintillator channels grouped into inner and outer detectors
- Electromagnetic (lead) and hadronic (iron) calorimetry regions
- Nuclear targets (⁴He, C, Fe, Pb, H₂O)
- Veto wall in front of the detector
- MINOS near detector as muon catcher

Bari Osmanov@DPS2001of

DPF-2011, Brown University, RI, USA, August 9-13, 2011

Imperial College

Wednesday, 13 August 14

INSS 2014 - Detectors

Morgan O. Wascko

Neutrino Beam Monitor

T2K-ND280 Detector components

Wednesday, 13 August 14

48

ND280: Photosensers MPPCs

Scintillator detectors read out via WLS fiber coupled to Si MPPC (667 pixel avalanche photodiode, area of ______1.3x 1.3mm²).

First large-scale use in HEP experiment: ~50,000 MPPCs for ND280

 After First year of operation with MPPCs few-tonone have failed.

Properties:
Can isolate single PE's!
High γ eff, ~20-30% (green)
gain similar to PMT's
Operating voltage ~70V.
Hard to damage
Insensitive to magnetic fields
But..
High dark noise rates: ~0.5MHz.
Cross-talk/afterpulsing.
Properties (e.g. gain) depend strongly on temp and voltage.

Wednesday, 13 August 14

49

Morgan O

OFF-AXIS DETECTOR PERFORMANCES

System	Channels	Bad chan.	Fraction
DSECAL	3400	П	0.3%
SMRD	4016	3	0.07%
POD	10400	7	0.07%
INGRID	8360	8	0.1%
TPC	124416	12	0.01%
FGD	8448	55	0.7%

Very small number of bad channels

Wednesday, 13 August 14

OFF-AXIS DETECTOR MEASUREMENTS

A few ND280 neutrino interaction candidates

Imperial College London

Imperial College London

Wascko

The Basic Detector element

Wednesday, 13 August 14

APD Advantage

INSS 2014 - Detectors

Wednesday, 13 August 14

Events in NOvA

Superb spatial granularity for a detector of this scale

 $X_0 = 38 \text{ cm}$ (6 cell depths, 10 cell widths)

Wednesday, 13 August 14

London

Assembly status

- Pivoter essentially complete

 (a few reinforcement plates to be added; final flate
 imming)
- Bookend, lifter
- 1st block as

- cs ready
 gin this month!
- NP avation and assembly to p avallel at Fermilab
- Chang. g to (96 cell) × (96 cell) design - NDOS is 64×96

- Improved ND event containment

Lifting fixture and adhesive dispenser

NOvA module factory

Ryan Patterson, Caltech

Neutrino 2012

57

The "electronic bubble chamber"

Imperial College

London

Physical parameters and challenges

60

7

Calorimetric performance

Michel electrons form stopping muon decay sample

$$\frac{\sigma_e}{E} \simeq \frac{11\%}{\sqrt{E(\text{MeV})}} \oplus 4\%$$

MC simulations at higher energies:

Imperial Collegesday, June 6, 12

A. Rubbia

INSS 2014 - Detectors

6 Morgan O. Wascko

6

The ICARUS T600 detector

Two identical modules

- 3.6 x 3.9 x 19.6 ≈ 275 m³ each
- Liquid Ar active mass: ≈ 476 t
- Drift length = 1.5 m (1 ms)
- HV = -75 kV E = 0.5 kV/cm
- v-drift = 1.55 mm/µs

Taking data in LNGS hall B

4 wire chambers:

- 2 chambers per module
 - 3 readout wire planes per chamber, wires at 0,±60°
 - ≈ 54000 wires, 3 mm pitch, 3 mm plane spacing
- 20+54 PMTs , 8" Ø, for scintillation light detection:
 - VUV sensitive (128nm) with wave shifter (TPB)

F. Pietropaolo@NEUTRINO2012

INSS 2014 - Detectors

lr...

l ondon

Slide: 3 o

3D reconstruction and particle identification

- 3D reconstruction from 2D based on Polygonal Line Algorithm (PLA), linking hits in different views according to:
 - drift sampling;
 - sequence of hits.
- > Particle identification based on:
 - distance between nearby 3D hits: dx
 - 3D hits and charge deposition : dE/dx
- > Energy reconstructed, quenching included

pid MC	р	К	π	μ	efficiency [%]	purity [%]
р	481	4	0	0	99.2	98.0
K	10	380	0	0	97.4	99.0
π	0	0	196	40	83.1	98.5
μ	0	0	3	216	98.6	84.4

F. Pietropaolo@NEUTRINO2012

Slide: 10 morgan O. Wascko

lmperial conege London

6 protons, 1 pion decays at rest

Imperia Jonege London

INSS 2014 - Detectors

wascko

15

F. Pietropaolo@NEUTRINO2012

ArgoNeuTTPC and cryostat

The TPC, about to enter the inner cryostat

Cryostat Volume	500 Liters	
TPC Volume	170 Liters	
# Electronic Channels	480	
Wire Pitch	4 mm	
Electronics Style (Temperature)	JFET (293 K)	
Max. Drift Length	47 cm	
Light Collection	None	

The fully-instrumented detector in the beamline J. Spitz@NNN11 Detectors

Imperial College London

Differential cross sections on argon

arXiv:1111.0103, Submitted to PRL

Wednesday, 13 August 14

London

Future LAr TPC detectors

Project	LAr mass (tons)	Goal	Baseline (km)	Where	Status
MicroBOONE	170 (70 fid.)	short baseline	0.47	FNAL BNB	Under construction
LAr1	≈1'000	2 nd detector for short baseline	≈0.7	FNAL BNB	Proposal submitted
ICARUS-NESSIE	150 + 478	two-detectors short baseline	0.3 + 1.6	CERN + new SBL beam	Proposal submitted
MODULAr	5'000 unit	shallow depth far detector	730	Italy, new lab nearby LNGS	plan
GLADE	5000	surface	810	NUMI off-axis	Letter of Intent
LBNE LAr (*)	2x17'000(*)	underground(*) far detector	1300(*)	Homestake(*) + new FNAL beam(*)	CD-0
GLACIER LAGUNA-LBNO	initially 20'000 (incremental)	underground far detector	2300	Finland + new CERN LBL beam	Expression of interest in preparation
GLACIER Okinoshima	up to 100'000	underground far detector	665	Japan + JPARC neutrino beam	R&D proposal at JPARC

(*) LBNE reconfiguration for cost reduction / staging in progress (cf. Svoboda's talk)

A. Rubbia

Future liquid Argon detectors (Neutrino 2012)

ETH

Imperial Qylegesday, June 6, 12 London

INSS 2014 - Detectors

67

MicroBOONE @ FNAL

- Single phase LAr TPC located in new Liquid Argon Test Facility (LArTF) at Fermilab in the Booster Neutrino Beam (BNB) but also NUMI off-axis
- Parameters:
 - ~70 t active mass (170 t total mass)
 - 2.5m drift length, 3 mm wire pitch, 8256 wires
- ★ Physics goals:
 - Study electrons or photons in neutrino interactions to test help resolve MiniBoone "low energy excess" puzzle with >3sigma stat. C.L.
 - Electron efficiency ~2x better than MiniBooNE
 - e/ γ differentiation removes $\nu\mu$ induced single photon backgrounds
 - good efficiency for low energy (down to MeV)
 - First <u>large statistics</u> neutrino exclusive final states in GeV range and cross-section measurements
- Technology achievements:
 - Purity without evacuation
 - Foam insulation
 - Cold (in liquid) electronics

LArTF under construction; ready in 2013

A. Rubbia Imperial College Sday, June 6, 12 London Wednesday, 13 August 14 Future liquid Argon detectors (Neutrino 2012) INSS 2014 - Detectors |2 ₁₂Morgan O. Wascko

6.1 Emulsion

Imperial College London

Wednesday, 13 August 14

London

Morgan O. Wascko

ECC features

Momentum measurement

Measurement of the position or angular displacement given by Multiple Coulomb Scattering (MCS) Ref: New Journal of Physics 14(2012)013026

Soft muon data sample

Muon momenta measured by MCS as a function of the momenta obtained from the electronic detectors.

3

5

The relative difference between the two measurements with respect to the electronic detector measurement.

Particle ID

Particle ID is possible in ECC by detecting secondary interactions (Hadron), cascade showers (Electron) and dE/dX measurement.

Imperial College London

INSS 2014 - Detectors

6.2 Ice/Ocean Cherenkov detector

Concept of Large Neutrino Telescopes

Imperial College London

Wednesday, 13 August 14

INSS 2014 - Detectors

Morgan O. Wascko

Wednesday, 13 August 14

Imperial College

10⁷ to 10¹¹ GeV: Radio ice Cherenkov detection

Detection principle: Coherent radio emission from e.m. cascade

Gurgen Askaryan, 1962 proposes radio detection of showers

Principle:

Charge asymmetry in particle shower development produces a net charge of cm extension.

 \rightarrow coherent radio emission moving charge when c > c_medium.

→Radio cone maximum at Cherenkov angle cone narrows for higher frequencies - analogous to single slit diffraction

see eg.: J. Alvarez-Muniz et al., Astrop. Phys. 35 (2012) 287-299 and references therein

SLAC 25 GeV electrons on a block of ice make radio pulses in good agreement of theory with data: D. Saltzberg *et al.*, PRL **86**, 2802 (2001)

Add coherently!

 $\lambda >> \ell$

A. Karle@NEUTRINO2012

Imperial College

75

10⁷ to 10¹¹ GeV: Radio ice Cherenkov detection Askaryan Radio Array (ARA)

- a very large radio neutrino detector at the South Pole

Ref: Allison et al., Astropart.Phys. 35 (2012) 457-477, arXiv:1105.2854 (Design and performance paper)

Scientific Goal:

- Discover and determine the flux of highest energy cosmic neutrinos.
- Understanding of highest energy cosmic rays, other phenomena at highest energies.

Method:

Monitor the ice for radio pulses generated by interactions of cosmic neutrinos with nuclei of the 2.8km thick ice sheet at the South Pole Poster session at this conference:

- \rightarrow H. Landsman, ARA Design and Status
- \rightarrow J. Davies, ARA prototype and first station

40

A. Karle@NEUTRINO2012

Imperial College London

Wednesday, 13 August 14

INSS 2014 - Detectors

6.4 Double beta decay detector

P. Grabmavr@NEUTRINO2012

Wednesday, 13 August 14

77

Wednesday, 13 August 14

London

Morgan O. Wascko 78

The EXO-200 TPC

40 cm

- 38 U triplet wire channels (charge)
- 38V triplet wire channels, crossed at 60° (induction)
- 234 large area avalanche photodiodes (APDs, light in groups of 7)
- Wire pitch 3 mm (9 mm per channel)
- Wire planes 6 mm apart and 6 mm from APD plane
- All signals digitized at I MS/s, ±1024S around trigger
- Drift field 376 V/cm
 - Field shaping rings: copper
 - Supports: acrylic
 - Light reflectors/diffusers: Teflon
 - APD support plane: copper; Au (Al) coated for contact (light reflection)
 - Central cathode, U+V wires: photo-etched phosphor bronze
 - Flex cables for bias/readout: copper on kapton, no glue

Comprehensive material screening program

Goal: 40 cnts/2y in $0\nu\beta\beta \pm 2\sigma$ ROI, 140 kg LXe J. Farine@NEUTRINO2012

Imperial College London

40 cm

Morgan O. Wascko

Thank you for your attention!

ご清聴ありがとうございました

水戸の梅の花

Many thanks to: J Monroe, T Nakaya, F Sanchez