Standard Model Puzzles

Standard Model Lectures

The problem of flavour - the problem of the undetermined fermion masses and mixing angles (including neutrino masses and lepton mixing angles) together with the CP violating phases, in conjunction with the observed smallness of flavour changing neutral currents and very small strong CP violation.

The origin of mass - the origin of the weak scale, its stability under radiative corrections, and the solution to the hierarchy problem (most urgent problem of LHC)

The quest for unification - the question of whether the three known forces of the standard model may be related into a grand unified theory, and whether such a theory could also include a unification with gravity.

What is the origin of Quark and Lepton Masses?

What is the origin of Quark and Lepton Mixing?

CKM

C
t
b

v_{2}
v_{3}■
\square
\square

Neutrino
Mass and
Neutrinos have tiny masses (much less than electron)Neutrinos mix a lot (unlike the quarks)At least 7 new params: 3 masses, 3 angles, 1 phaseFirst (and so far only) new physics BSMLepton Flavor is not conserved: L_{e}, L_{μ}, L_{τ} brokenNentrino mass may be Dirac or MajoranaThe Origin of neutrino mass is unknown

A Brief History (98-)
Neutrino Oscillation Lectures
If Atmospheric v_{μ} disappear, large θ_{23} (SK) (98)
IV solar v_{e} disappear, large θ_{12} (H/S, Ga,SK) (O2)
IV Solar v_{e} are converted to $v_{\mu}+v_{\tau}$ (SNO) (O2)
I] Reactor anti-ve disappear/reappear (KamLAND) (04)
I] Accelerator v_{μ} disappear (K2K 04 , MINOS 06)
I] Accelerator v_{μ} converted to v_{τ} (OPERA 10)
[1 Accelerator v_{μ} converted to $v_{e}, \theta_{13} \operatorname{hint}(T 2 K$, MINOS,DC) (11)
IV Reactor anti-v disappear, θ_{13} meas. (Daya Bay, RENO) (12)

Implications for PP and CosmologyOrigin of tiny neutrino mass Lecture 2
see-saw mechanism, loop models, RPV SUSY, Extra dímensionsUnification of matter, forces and flavour GUTs, Family symmetry....

Lecture 3Did neutrinos play a role in our existence? Leptogenesis

Cosmology LecturesDid neutrinos play a role in forming galaxies?
Hot/Warm Dark matter componentDid neutrinos play a role in birth of the universe? sneutrino inflationcan neutrinos shed light on dark energy? $\Lambda \sim m_{v}{ }^{4}$

Constructing the mixing matrix

Standard Model Lectures
$\mathcal{L}=-v^{u} Y_{i j}^{u} \bar{u}_{\mathrm{L}}^{i} u_{\mathrm{R}}^{j}-v^{d} Y_{i j}^{d} \bar{d}_{\mathrm{L}}^{i} d_{\mathrm{R}}^{j}+$ h.c. Quark sector

$$
U_{u_{\mathrm{L}}} Y^{u} U_{u_{\mathrm{R}}}^{\dagger}=\left(\begin{array}{ccc}
y_{u} & 0 & 0 \\
0 & y_{c} & 0 \\
0 & 0 & y_{t}
\end{array}\right), \quad U_{d_{\mathrm{L}}} Y^{d} U_{d_{\mathrm{R}}}^{\dagger}=\left(\begin{array}{ccc}
y_{d} & 0 & 0 \\
0 & y_{s} & 0 \\
0 & 0 & y_{b}
\end{array}\right)
$$

$\mathcal{L}^{C C}=-\frac{g}{\sqrt{2}}\left(\begin{array}{lll}\bar{u}_{L} & \bar{c}_{L} & \bar{t}_{L}\end{array}\right) U_{\mathrm{CKM}} \gamma^{\mu} W_{\mu}^{+}\left(\begin{array}{l}d_{L} \\ s_{L} \\ b_{L}\end{array}\right) \quad 5$ phases removed

$$
\left.\begin{array}{c}
L=-\frac{1}{2} m^{\nu} \bar{\nu}_{\mathrm{L}}^{i} \nu_{\mathrm{L}}^{c j}-v^{d} Y_{i j}^{e} \bar{e}_{\mathrm{L}}^{i} e_{\mathrm{R}}^{j}+\text { h.c. } \quad \text { Lepton sector } \\
U_{\nu_{\mathrm{L}}} m^{\nu} U_{\nu_{\mathrm{L}}}^{T}=\left(\begin{array}{ccc}
m_{1} & 0 & 0 \\
0 & m_{2} & 0 \\
0 & 0 & m_{3}
\end{array}\right) \quad U_{e_{\mathrm{L}}} Y^{e} U_{e_{\mathrm{R}}}^{\dagger}=\left(\begin{array}{ccc}
y_{e} & 0 & 0 \\
0 & y_{\mu} & 0 \\
0 & 0 & y_{\tau}
\end{array}\right) \\
\mathcal{L}^{C C}=-\frac{g}{\sqrt{2}}\left(\overline { e } _ { L } \left[\bar{\mu}_{L}\right.\right. \\
\bar{\tau}_{L}
\end{array}\right) U_{\mathrm{PMNS}} \gamma^{\mu} W_{\mu}^{-}\left(\begin{array}{l}
\nu_{1 L} \\
\nu_{2 L} \\
\nu_{3 L}
\end{array}\right) \quad \begin{aligned}
& U_{\mathrm{PMNS}}=U_{e_{\mathrm{L}}} U_{\nu_{\mathrm{L}}}^{\dagger} \\
& 3 \text { phases removed }
\end{aligned}
$$

Parametrising the mixing matrix

Standard Model Lectures

$$
\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}
\end{array}\right)
$$

same parameterisation for CKM and PMNS matrix
PMNS matrix may have two addítional Majorana phases

[^0]3 masses +3 angles +3 phases $=$ 9 new parameters for SM

Δm_{21}^{2}	KamLAND $\left(\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}\right)^{21}$
Δm_{31}^{2}	$\operatorname{T2K}\left(\nu_{\mu} \rightarrow \nu_{\mu}\right)^{22}$
	MiNOS $\left(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}, \nu_{\mu} \rightarrow \nu_{\mu}\right)$
	solar neutrinos $\left(\nu_{e} \rightarrow \nu_{e}\right)$

$$
34.63_{-0.98^{\circ}}^{\circ+1.02^{\circ}}
$$

Super-Kamionkande I-IV ${ }^{27}$

$$
\begin{gathered}
\text { Daya Bay }\left(\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}\right)^{28} \\
\text { RENO }\left(\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}\right)^{29}
\end{gathered}
$$

atmospheric neutrinos

$$
\left(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}, \nu_{\mu} \rightarrow \nu_{\mu}\right)
$$

Super-Kamiokande I-IV ${ }^{30}$

Neutrino Oscillation Lectures

$$
\begin{array}{ll}
241^{\circ 0+68^{\circ}} \text { +1150} & (\mathrm{NH}) \\
266^{\circ}+6_{-570}{ }^{\circ} & (\mathrm{IH}) \\
\hline
\end{array}
$$

 Simple Mixing Ansatze

$$
\theta_{13}=0^{\circ} \quad \theta_{23}=45^{\circ}
$$

- Bimaximal

$$
U_{B M}=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
-\frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \\
\frac{1}{2} & -\frac{1}{2} & \frac{1}{\sqrt{2}}
\end{array}\right) P \quad \theta_{12}=45^{\circ}
$$

\square Tri-bímaxímal $\quad U_{T B}=\left(\begin{array}{ccc}\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}\end{array}\right) P_{\theta_{12}=35.26^{\circ}}{ }^{\text {c.f. Tutorial Problem 1(a) }}$
$\begin{array}{cc}\square \text { Golden ratio } & U_{G R}=\left(\begin{array}{ccc}c_{12} & s_{12} & 0 \\ -\frac{s_{12}}{\sqrt{2}} & \frac{c_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{s_{12}}{\sqrt{2}} & -\frac{c_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right) P \\ \phi=\frac{1+\sqrt{5}}{2} & \tan \theta_{12}=\frac{1}{\phi} \quad \theta_{12}=31.7^{\circ}\end{array}$ Charged Lepton Mixing Corrections $U_{P M N S}=U_{e} U_{\nu}^{\dagger}$
hep-ph/0506297 hep-ph/0508031 hep-ph/0702286 cabibbo-líke charged lepton

$$
\begin{array}{rlr}
c_{23} c_{13}=\frac{1}{\sqrt{2}} \quad s_{13} & =\frac{s_{12}^{e}}{\sqrt{2}}, & \theta_{13} \approx 9.2^{\circ} \text { if } \theta_{e} \approx \theta_{C} \approx 13^{\circ} \\
\left|s_{23} s_{12}-s_{13} c_{23} c_{12} e^{i \delta}\right| & =\frac{1}{\sqrt{6}} . & \theta_{12}-35^{\circ} \approx \theta_{13} \cos \delta \\
\text { solar sum rule }
\end{array}
$$

Tri-Bimaximal Deviations

c.f. Tutorial Problem 1(b)
0710.0530

$$
U \approx\left(\begin{array}{ccc}
\sqrt{\frac{2}{3}}\left(1-\frac{1}{2} s\right) & \frac{1}{\sqrt{3}}(1+s) & \frac{1}{\sqrt{2}} r e^{-i \delta} \\
-\frac{1}{\sqrt{6}}(1+s-a+r \cos \delta) & \frac{1}{\sqrt{3}}\left(1-\frac{1}{2} s-a-\frac{1}{2} r \cos \delta\right) & \frac{1}{\sqrt{2}}(1+a) \\
\frac{1}{\sqrt{6}}(1+s+a-r \cos \delta) & -\frac{1}{\sqrt{3}}\left(1-\frac{1}{2} s+a+\frac{1}{2} \eta \cos \delta\right) & \frac{1}{\sqrt{2}}(1-a)
\end{array}\right)
$$

$$
\sin \theta_{12}=\frac{1}{\sqrt{3}}(1+s), \quad \sin \theta_{23}=\frac{1}{\sqrt{2}}(1+a), \quad \sin \theta_{13}=\frac{r}{\sqrt{2}}
$$

$$
s=s o l a r
$$

$$
a=\text { atmospheric } \quad r=\text { reactor }
$$ Tri-maximal Mixing

$$
U \approx\left(\begin{array}{ccc}
\sqrt{\frac{2}{3}}\left(1-\frac{1}{2} s\right) & \frac{1}{\sqrt{3}}(1+s) & \frac{1}{\sqrt{2}} r e^{-i \delta} \\
-\frac{1}{\sqrt{6}}(1+s-a-r \cos \delta) & \frac{1}{\sqrt{3}}\left(1-\frac{1}{2} s-a-\frac{1}{2} r \cos \delta\right) & \frac{1}{\sqrt{2}}(1+a) \\
\frac{1}{\sqrt{6}}(1+s+a-r \cos \delta) & -\frac{1}{\sqrt{3}}\left(1-\frac{1}{2} s+a+\frac{1}{2} \eta \cos \delta\right) & \frac{1}{\sqrt{2}}(1-a)
\end{array}\right)
$$

$$
U_{\mathrm{TM} 1} \approx\left(\begin{array}{ccc}
\sqrt{\frac{2}{3}} & - & - \\
-\frac{1}{\sqrt{6}} & - & - \\
\frac{1}{\sqrt{6}} & - & -
\end{array}\right) \quad U_{\mathrm{TM} 2} \approx\left(\begin{array}{ccc}
- & \frac{1}{\sqrt{3}} & - \\
- & \frac{1}{\sqrt{3}} & - \\
- & -\frac{1}{\sqrt{3}} & -
\end{array}\right)
$$

D Tri-maximal $1 s \approx 0, a \approx r \cos \delta$
\square Tri-maximal $2 s \approx 0, a \approx-\frac{1}{2} r \cos \delta$

Tri-Bimaximal-Cabibbo Mixing

1205.0506, 1304.6264
$U \approx\left(\begin{array}{ccc}\sqrt{\frac{2}{3}}\left(1-\frac{1}{2} s\right) & \frac{1}{\sqrt{3}}(1+s) & \frac{1}{\sqrt{2}} r e^{-i \delta} \\ -\frac{1}{\sqrt{6}}(1+s-a-r \cos \delta) & \frac{1}{\sqrt{3}}\left(1-\frac{1}{2} s-a-\frac{1}{2} r \cos \delta\right) & \frac{1}{\sqrt{2}}(1+a) \\ \frac{1}{\sqrt{6}}(1+s+a-r \cos \delta) & -\frac{1}{\sqrt{3}}\left(1-\frac{1}{2} s+a+\frac{1}{2} \eta \cos \delta\right) & \frac{1}{\sqrt{2}}(1-a)\end{array}\right)$
TBC corresponds to

$$
\theta_{12}=35^{\circ} \quad \theta_{23}=45^{\circ}
$$

$$
s=a=0, r=\theta_{C}
$$

$$
\theta_{13}=\frac{\theta_{C}}{\sqrt{2}}=9.2^{\circ}
$$

$U_{T B C} \approx\left(\begin{array}{ccc}\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \theta_{C} e^{-i \delta} \\ -\frac{1}{\sqrt{6}}\left(1+\theta_{C} \cos \delta\right) & \frac{1}{\sqrt{3}}\left(1-\frac{1}{2} \theta_{C} \cos \delta\right) & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}}(1-\theta c \cos \delta) & -\frac{1}{\sqrt{3}}\left(1+\frac{1}{2} \theta_{C} \cos \delta\right) & \frac{1}{\sqrt{2}}\end{array}\right)$.

Lepton Mixing Sum Rules

- Solar sum rules (from ch lepton corr) Exact relations

Bimaximal $\theta_{12} \approx 45^{\circ}+\theta_{13} \cos \delta$

$$
\left|U_{\tau 1}\right| /\left|U_{\tau 2}\right|=1
$$

Tri-bimaximal $\theta_{12} \approx 35^{\circ}+\theta_{13} \cos \delta$

$$
\left|U_{\tau 1}\right| /\left|U_{\tau 2}\right|=1 / \sqrt{2}
$$

Golden Ratio $\theta_{12} \approx 32^{\circ}+\theta_{13} \cos \delta$

$$
\left|U_{\tau 1}\right| /\left|U_{\tau 2}\right|=1 / \varphi
$$

- Atm. sum rules (TM1 or TM2)

$$
\text { Golden Ratio } \varphi=\frac{1+\sqrt{5}}{2}
$$

Trimaximaly $\theta_{23} \approx 45^{\circ}+\sqrt{2} \theta_{13} \cos \delta$

$$
\begin{aligned}
& \left|U_{e 1}\right|=\sqrt{2 / 3} \\
& \left|U_{\mu 1}\right|=\left|U_{\tau 1}\right|=\frac{1}{\sqrt{6}}
\end{aligned}
$$

Trimaximal2 $\theta_{23} \approx 45^{\circ}-\frac{\theta_{13}}{\sqrt{2}} \cos \delta$
c.f. Tutorial Problem 1(c) Testing Solar Sum Rules

hep-ph/0702286
Tri-bimaximal $\theta_{12} \approx 35^{\circ}+\theta_{13} \cos \delta$

Predicts

$$
\delta \approx 90^{\circ} \text { or } 270^{\circ}
$$

Testing Atmospheric Sum Rules

$$
s \approx 0, a \approx r \cos \delta
$$

1308.4314

Lepton Mixing Open Questions

Is the atmospheric angle maximal 450?

- If not then which octant?
- Is the solar angle trimaximal 350?
- If not then less or greater?

I Is the CP phase special $0, p i, \pm p i / 2, \ldots$?

- If not then what is it?

D The Neutrino Revolution post 1998 has led to a new flavour puzzle, that of large lepton mixing
\square
simple patterns of lepton mixing such as Bimaximal, Tri-bimaximal, Golden Ratio are ruled out by Daya Bay/RENO

- However they may be rescued by invoking large charged lepton corrections leading to solar sum rules involving the CP phase delta

Other patterns consistent with Daya Bay and RENO have been proposed such as Tri-bimaximal-cabibbo mixing and two versions of Trimaximal mixing, leading to atmospheric sum rules also involving the CP phase

- It is vital to measure the mixing angles and the CP phase delta to good precision to distinguish these possibilities

Tutorial Questions

1. The PMNS matrix for Dirac neutrinos is [1],

$$
U=\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \tag{1}\\
-s_{12} c_{23}-c_{12} s_{13} s_{23} e^{i \delta} & c_{12} c_{23}-s_{12} s_{13} s_{23} e^{i \delta} & c_{13} s_{23} \\
s_{12} s_{23}-c_{12} s_{13} c_{23} e^{i \delta} & -c_{12} s_{23}-s_{12} s_{13} c_{23} e^{i \delta} & c_{13} c_{23}
\end{array}\right)
$$

where $s_{13}=\sin \theta_{13}$, etc.
(a) Show that tri-bimaximal mixing defined by

$$
\begin{equation*}
s_{13}=0, s_{12}=\frac{1}{\sqrt{3}}, s_{23}=\frac{1}{\sqrt{2}}, \tag{2}
\end{equation*}
$$

implies the tri-bimaximal (TB) mixing matrix,

$$
U_{\mathrm{TB}}=\left(\begin{array}{ccc}
\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \tag{3}\\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right) .
$$

(b) Consider the reactor, solar and atmospheric parameters r,s,a which parameterise the deviations from tri-bimaximal mixing [2],

$$
\begin{equation*}
s_{13}=\frac{r}{\sqrt{2}}, s_{12}=\frac{(1+s)}{\sqrt{3}}, s_{23}=\frac{(1+a)}{\sqrt{2}} . \tag{4}
\end{equation*}
$$

By expanding the PMNS mixing matrix to first order in the small parameters r, s, a, it is possible to show (although you do not need to do this) that,

$$
U \approx\left(\begin{array}{ccc}
\sqrt{\frac{2}{3}}\left(1-\frac{1}{2} s\right) & \frac{1}{\sqrt{3}}(1+s) & \frac{1}{\sqrt{2}} r e^{-i \delta} \tag{5}\\
-\frac{1}{\sqrt{6}}(1+s-a+r \cos \delta) & \frac{1}{\sqrt{3}}\left(1-\frac{1}{2} s-a-\frac{1}{2} r \cos \delta\right) & \frac{1}{\sqrt{2}}(1+a) \\
\frac{1}{\sqrt{6}}(1+s+a-r \cos \delta) & -\frac{1}{\sqrt{3}}\left(1-\frac{1}{2} s+a+\frac{1}{2} r \cos \delta\right) & \frac{1}{\sqrt{2}}(1-a)
\end{array}\right)
$$

Verify that for TB mixing $r=s=a=0$, the mixing matrix reduces to U_{TB}.
Show that, for $s \approx 0, a \approx r \cos \delta$, the first column of the mixing matrix approximately corresponds to that of TB mixing (TM1 mixing).
Similarly show that for $s \approx 0, a \approx-(r / 2) \cos \delta$, the second column of the mixing matrix approximately corresponds to that of TB mixing (TM2 mixing).
(c) Show that the relations $a \approx r \cos \delta$ and $a \approx-(r / 2) \cos \delta$ imply the approximate "atmospheric sum rules" of the form,

$$
\begin{equation*}
\theta_{23}-45^{\circ} \approx C \times \theta_{13} \cos \delta \tag{6}
\end{equation*}
$$

and find the constant C in each case. [Hint: take the sine of both sides of the Eq.6, assuming $\sin \theta_{13} \approx \theta_{13}$, then expand $\sin \left(\theta_{23}-45^{\circ}\right)$ and use definitions of r, a.] Then discuss how well these so called "atmospheric sum rules" are satisfied by current data on the atmospheric and reactor mixing angles and how future precision measurements of these angles will fix the CP violating phase δ [3].

[^0]: oscillation phase δ^{l}
 majorana phases α_{21}, α_{31}

