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The problem of flavour - the problem of the undetermined fermion masses and 
mixing angles (including neutrino masses and lepton mixing angles) together with 
the CP violating phases, in conjunction with the observed smallness of flavour 
changing neutral currents and very small strong CP violation.

The origin of mass - the origin of the weak scale, its stability under radiative 
corrections, and the solution to the hierarchy problem (most urgent problem of 
LHC)

The quest for unification  - the question of whether the three known forces of the 
standard model may be related into a grand unified theory, and whether such a 
theory could also include a unification with gravity.
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What is the origin of Quark 
and Lepton Mixing?

New physics from flavour Sheldon Stone

1. Introduction: Reasons for physics beyond the Standard Model

Although the Standard Model (SM) of particle physics provides an excellent description of
electroweak and strong interactions, there are many reasons that we expect to observe new forces
giving rise to new particles at larger masses than the known fermions or bosons. One oft noted
source of this belief is the observation of dark matter in the cosmos as evidenced by galactic angular
velocity distributions [1], gravitational lensing [2], and galactic collisions [3]. The existence of dark
energy, believed to cause the accelerating expansion of the Universe, is another source of mystery
[4]. The fine tuning of quantum corrections needed to keep, for example, the Higgs boson mass at
the electroweak scale rather than near the Planck scale is another reason habitually mentioned for
new physics (NP) and is usually called “the hierarchy problem” [5].

It is interesting to note that the above cited reasons are all tied in one way or another to
gravity. Dark matter may or may not have purely gravitational interactions, dark energy may be
explained by a cosmological constant or at least be a purely general relativistic phenomena, and the
Planck scale is defined by gravity; other scales may exist at much lower energies, so the quantum
corrections could be much smaller. There are, however, many observations that are not explained
by the SM, and have nothing to do with gravity, as far as we know. Consider the size of the quark
mixing matrix (CKM) elements [6] and also the neutrino mixing matrix (PMNS) elements [7].
These are shown pictorially in Fig. 1. We do not understand the relative sizes of these values or nor
the relationship between quarks and neutrinos.
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Figure 1: (left) Sizes of the the CKM matrix elements for quark mixing, and (right) the PMNS matrix
elements for neutrino mixing. The area of the squares represents the square of the matrix elements.

We also do not understand the masses of the fundamental matter constituents, the quarks and
leptons. Not only are they not predicted, but also the relationships among them are not understood.
These masses, shown in Fig. 2, span 12 orders of magnitude [7]. There may be a connections
between the mass values and the values of the mixing matrix elements, but thus far no connection
besides simple numerology exists.

What we are seeking is a new theoretical explanation of the above mentioned facts. Of course,
any new model must explain all the data, so that any one measurement could confound a model.
It is not a good plan, however, to try and find only one discrepancy; experiment must determine a
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   Neutrinos have tiny masses (much less than electron)

   Neutrinos mix a lot (unlike the quarks)

   At least 7 new params: 3 masses, 3 angles, 1 phase                 

Neutrino 
Mass and

   First (and so far only) new physics BSM

   Lepton Flavor is not conserved:                  broken

   Neutrino mass may be Dirac or Majorana

   The Origin of neutrino mass is unknown

vector. The fact that the neutrino is left-handed, written as νL, implies that it must be

massless. If the neutrino has mass then, according to special relativity, it can never travel

at the speed of light. In principle, a fast moving observer could therefore overtake the spin-

ning massive neutrino and would see it moving in the opposite direction. To the observer,

the massive neutrino would therefore appear right-handed. Since the Standard Model pre-

dicts that neutrinos must be strictly left-handed, it follows that neutrinos are massless

in the Standard Model. It also follows that the discovery of neutrino mass implies new

physics Beyond the Standard Model, with profound implications for particle physics and

cosmology.

To summarise, neutrino mass is zero in the SM for three independent reasons:

• There are no right-handed neutrinos NR

• There are only Higgs doublets of SU(2)L

• There are only renormalizable terms.

In the SM these conditions all apply and so neutrinos are massless with νe, νµ, ντ dis-

tinguished by separate lepton numbers Le, Lµ, Lτ . Neutrinos and antineutrinos are dis-

tinguished by total conserved lepton number L = Le + Lµ + Lτ . To generate neutrino

mass we must relax one or more of these conditions. For example, by adding right-handed

neutrinos the Higgs mechanism of the Standard Model can give neutrinos the same type of

mass as the Dirac electron mass or other charged lepton and quark masses, which would

break the separate lepton numbers Le, Lµ, Lτ , but preserve the total lepton number L.

However it is also possible for neutrinos to have a new type of mass of a type first proposed

by Majorana, which would also break L.

From the SM perspective, the main implications of neutrino mass and mixing are then:

• Lepton flavour is not conserved, so Le, Lµ, Lτ are separately broken

• Neutrinos have tiny masses which are not very hierarchical

• Neutrinos mix strongly unlike quarks

• The SM parameter count is increased by at least 7 new parameters (3 neutrino masses,

3 mixing angles and at least one complex phase)

• It is the first (and so far only) new physics beyond the SM

Despite the above observations, neutrinos remain the least understood particles. From

the experimental perspective, the main known unknowns of neutrino mass and mixing are:

• The neutrino mass squared ordering (normal or inverted)

• The neutrino mass scale (i.e. the mass of the lightest neutrino, presumably between

zero and 0.3 eV)

• The nature of neutrino mass (Dirac or Majorana)
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Atmospheric νµ  disappear, large θ23 (SK) (98)

Solar νe disappear, large θ12  (H/S,Ga,SK) (02)

Solar νe are converted to νµ+ντ (SNO) (02)

Reactor anti-νe disappear/reappear (KamLAND) (04)

Accelerator νµ disappear (K2K 04 , MINOS 06)

Accelerator νµ converted to ντ  (OPERA 10)

Accelerator νµ converted to νe , θ13  hint(T2K, MINOS,DC) (11)

Reactor anti-νe disappear, θ13 meas.(Daya Bay, RENO) (12)

A Brief History (98-)
Neutrino Oscillation Lectures



   Origin of tiny neutrino mass
     See-saw mechanism, loop models, RPV SUSY, Extra dimensions

   Unification of matter, forces and flavour
     GUTs, Family Symmetry,… 

   Did neutrinos play a role in our existence? 

      Leptogenesis

    Did neutrinos play a role in forming galaxies?
     Hot/Warm Dark matter component

   Did neutrinos play a role in birth of the universe?
          Sneutrino inflation 

  Can neutrinos shed light on dark energy? Λ » mν
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Constructing the mixing matrix 
4 Quark Masses and Mixing

4.1 Convention

We shall use the convention for the quark Yukawa matrices,

L = �vuY u
iju

i
L

uj
R

� vdY d
ijd

i

L

dj
R

+ h.c. (45)

which are diagonalised by,

UuL Y
u U †

uR
=

0

@
yu 0 0
0 yc 0
0 0 yt

1

A , UdL Y
d U †

dR
=

0

@
yd 0 0
0 ys 0
0 0 yb

1

A. (46)

The CKM matrix is then given by,

U
CKM

= UuLU
†
dL
. (47)

In the PDG parameterization [36], in the standard notation, U
CKM

= Rq
23

U q
13

Rq
12

in
terms of sqij = sin(✓qij) and cqij = cos(✓qij) and the CP violating phase �q.

4.2 Analytic estimates for quark mixing

In the above convention, the quark Yukawa matrices di↵er from those given in Eqs.27,33
by a complex conjugation, 1

Y u =

0

@
0 b 0
a 4b 0
a 2b c

1

A , Y d =

0

@
y0d 0 Ay0d
By0d y0s Cy0d
By0d 0 y0b + Cy0d

1

A , (48)

where the parameters defined in Eqs.31,34,35 are given below,

a ⇠ ✏ue
�im⇡/5 V u

1

h⌃ui
⇠ 2.10�5, b ⇠ ✏ue

�im⇡/5 V u
2

h⌃ui
⇠ 10�3, c ⇠ 1, (49)

y0d ⇠ ✏de
�in⇡/5 V d

1

h⌃d
15

i
⇠ 5.10�5, y0s ⇠ e�in⇡/5 V d

2

h⌃di
⇠ 10�3, y0b ⇠ 5.10�2, (50)

Ay0d ⇠ e�in⇡/5 V d
1

h⌃d
15

i
, By0d ⇠ ✏de

�im⇡/5 V u
1

h⌃di
, Cy0d ⇠ e�im⇡/5 V u

1

h⌃di
, (51)

1The complex conjugation of the Yukawa matrices arises from the fact that the Yukawa matrices
given in Eqs.27,33 correspond to the Lagrangian L = �vuY u

iju
i
Luc

j � vdY d
ijd

i
Ldc

j + h.c. involving the
unbarred left-handed and CP conjugated right-handed fields. Note that our LR convention for the
quark Yukawa matrices in Eq.45 di↵ers by an Hermitian conjugation compared to that used in the
Mixing Parameter Tools package [37] due to the RL convention used there.
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5.1 Convention

The neutrino Yukawa matrix Y ⌫ is defined in a LR convention by 2

L = �vuY ⌫
↵i⌫

↵
L

⌫i
R

+ h.c.

where ↵ = e, µ, ⌧ labels the three left-handed neutrinos and i = 1, 2, 3 labels the three
right-handed neutrinos.

The physical e↵ective neutrino Majorana mass matrix m⌫ is determined from the
columns of Y ⌫ via the see-saw mechanism,

m⌫ = �v2u Y
⌫M�1

R

Y ⌫T , (76)

where the light Majorana neutrino mass matrix m⌫ is defined by 3 L⌫ = �1

2

m⌫⌫
L

⌫c
L

+
h.c., while the heavy right-handed Majorana neutrino mass matrix MR is defined by
LR

⌫ = �1

2

MR⌫c
R

⌫
R

+ h.c. and m⌫ is diagonalised by

U⌫L m
⌫ UT

⌫L
=

0

@
m

1

0 0
0 m

2

0
0 0 m

3

1

A. (77)

The PMNS matrix is then given by

U
PMNS

= UeLU
†
⌫L

. (78)

We use a standard parameterization U
PMNS

= Rl
23

U l
13

Rl
12

P l in terms of slij = sin(✓lij),
clij = cos(✓lij), the Dirac CP violating phase �l and further Majorana phases contained

in P l = diag(ei
�l1
2 , ei

�l2
2 , 1). The standard PDG parameterization [36] di↵ers slightly due

to the definition of Majorana phases which are by given by P l
PDG

= diag(1, ei
↵21
2 , ei

↵31
2 ).

Evidently the PDG Majorana phases are related to those in our convention by ↵
21

=
�l
2

� �l
1

and ↵
31

= ��l
1

, after an overall unphysical phase is absorbed by UeL .

5.2 See-saw mechanism

The neutrino Yukawa and Majorana matrices are as in Eq.27, with Y ⌫ = Y u in Eq.69,

Y ⌫ =

0

@
0 be�i3⇡/5 0

ae�i3⇡/5 4be�i3⇡/5 0
ae�i3⇡/5 2be�i3⇡/5 c

1

A , MR ⇡

0

@
M

1

e8i⇡/5 0 0
0 M

2

e4i⇡/5 0
0 0 M

3

1

A , (79)

2This LR convention for the Yukawa matrix di↵ers by an Hermitian conjugation compared to that
used in the Mixing Parameter Tools package [37] due to the RL convention used there.

3Note that this convention for the light e↵ective Majorana neutrino mass matrix m⌫ di↵ers by an
overall complex conjugation compared to that used in the Mixing Parameter Tools package [37].
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Quark sector

Lepton sector
5 phases removed

3 phases removed

LCC = � gp
2

�
ūL c̄L t̄L

�
UCKM�µW+

µ

0

@
dL
sL
bL

1

A

LCC = � gp
2

�
ēL µ̄L ⌧̄L

�
UPMNS�

µW�
µ

0

@
⌫1L
⌫2L
⌫3L

1

A
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11. CKM quark-mixing matrix 1

11. THE CKM QUARK-MIXING MATRIX

Revised March 2012 by A. Ceccucci (CERN), Z. Ligeti (LBNL), and Y. Sakai (KEK).

11.1. Introduction

The masses and mixings of quarks have a common origin in the Standard Model (SM).
They arise from the Yukawa interactions with the Higgs condensate,

LY = −Y d
ij QI

Li φ dI
Rj − Y u

ij QI
Li ε φ∗uI

Rj + h.c., (11.1)

where Y u,d are 3× 3 complex matrices, φ is the Higgs field, i, j are generation labels, and
ε is the 2 × 2 antisymmetric tensor. QI

L are left-handed quark doublets, and dI
R and uI

R
are right-handed down- and up-type quark singlets, respectively, in the weak-eigenstate
basis. When φ acquires a vacuum expectation value, 〈φ〉 = (0, v/

√
2), Eq. (11.1) yields

mass terms for the quarks. The physical states are obtained by diagonalizing Y u,d

by four unitary matrices, V u,d
L,R, as Mf

diag = V f
L Y f V f†

R (v/
√

2), f = u, d. As a result,

the charged-current W± interactions couple to the physical uLj and dLk quarks with
couplings given by

−g√
2
(uL, cL, tL)γµ W+

µ VCKM




dL
sL
bL



 + h.c., VCKM ≡ V u
L V d

L
† =




Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb



.

(11.2)

This Cabibbo-Kobayashi-Maskawa (CKM) matrix [1,2] is a 3 × 3 unitary matrix. It
can be parameterized by three mixing angles and the CP -violating KM phase [2]. Of
the many possible conventions, a standard choice has become [3]

VCKM =




c12c13 s12c13 s13e−iδ

−s12c23−c12s23s13eiδ c12c23−s12s23s13eiδ s23c13

s12s23−c12c23s13eiδ −c12s23−s12c23s13eiδ c23c13



 , (11.3)

where sij = sin θij , cij = cos θij , and δ is the phase responsible for all CP -violating
phenomena in flavor-changing processes in the SM. The angles θij can be chosen to lie in
the first quadrant, so sij , cij ≥ 0.

It is known experimentally that s13 ( s23 ( s12 ( 1, and it is convenient to exhibit
this hierarchy using the Wolfenstein parameterization. We define [4–6]

s12 = λ =
|Vus|√

|Vud|2 + |Vus|2
, s23 = Aλ2 = λ

∣∣∣∣
Vcb

Vus

∣∣∣∣ ,

s13e
iδ = V ∗

ub = Aλ3(ρ + iη) =
Aλ3(ρ̄ + iη̄)

√
1 − A2λ4

√
1 − λ2[1 − A2λ4(ρ̄ + iη̄)]

. (11.4)

These relations ensure that ρ̄+ iη̄ = −(VudV ∗
ub)/(VcdV

∗
cb) is phase-convention-independent,

and the CKM matrix written in terms of λ, A, ρ̄, and η̄ is unitary to all orders in λ.
The definitions of ρ̄, η̄ reproduce all approximate results in the literature. For example,
ρ̄ = ρ(1 − λ2/2 + . . .) and we can write VCKM to O(λ4) either in terms of ρ̄, η̄ or,
traditionally,

VCKM =




1 − λ2/2 λ Aλ3(ρ − iη)

−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1



 + O(λ4) . (11.5)

J. Beringer et al.(PDG), PR D86, 010001 (2012) (http://pdg.lbl.gov)
June 18, 2012 16:19

PMNS matrix may have two additional Majorana phases

Parametrising the mixing matrix 

Same parameterisation for CKM and PMNS matrix  
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Standard Model states
Neutrino mass states

Oscillation phase 3 masses + 3 angles + 3 phases =              
9 new parameters for SM

Atmospheric  Reactor Solar 
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Majorana  phases

Pontecorvo
Maki
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Sakata
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Normal Inverted 

Absolute neutrino mass scale? 

PMNS matrix

UPMNS =

0

@
1 0 0
0 cl23 sl23
0 �sl23 cl23

1

A

0

@
cl13 0 sl13e

�i⇥l

0 1 0

�sl13e
i⇥l 0 cl13

1

A

0

@
cl12 sl12 0
�sl12 cl12 0
0 0 1

1

A

0

@
1 0 0
0 �21

2 0
0 0 �31

2

1

A
The PMNS matrix is then given by

UPMNS = UeLU
†
⇥L

. (31)

We use a standard parameterization UPMNS = Rl
23U

l
13R

l
12P

l in terms of slij = sin(⌃lij),
clij = cos(⌃lij), the Dirac CP violating phase ⇤l and further Majorana phases contained

in P l = diag(ei
⇥l1
2 , ei

⇥l2
2 , 1). The standard PDG parameterization [24] di�ers slightly due

to the definition of Majorana phases which are by given by P l
PDG = diag(1, ei

�21
2 , ei

�31
2 ).

Evidently the PDG Majorana phases are related to those in our convention by �21 =
⇥l
2 � ⇥l

1 and �31 = �⇥l
1, after an overall unphysical phase is absorbed by UeL .

Using the see-saw formula in Eq.29, with the neutrino Yukawa matrix Y ⇥ in Eq.15
and the right-handed Majorana mass matrix MR in Eq.22, we find the neutrino mass
matrix m⇥ , up to an overall irrelevant phase which may be taken to be real, can be
written as

m⇥ = ma

�

⇤
0 0 0
0 1 1
0 1 1

⇥

⌅+mbe
2i�

�

⇤
1 4 2
4 16 8
2 8 1

⇥

⌅+mc

�

⇤
0 0 0
0 0 0
0 0 1

⇥

⌅ (32)

where ma = |a|2v2u/|M̃1|, mb = |b|2v2u/|M̃2|, mc = |c|2v2u/(9|M̃3|) are real parameter com-
binations which determine the three physical neutrino masses m3,m2,m1, respectively.
Note that m1 is suppressed by a factor of 9 compared to the other neutrino masses due
to the Clebsch-Gordan factor of 1/3 in the third family Dirac neutrino mass. We written
the relative phase di�erence between the first two two terms as 2⇧. As shown recently
[7], fixing ⇧ = �2�/5, using the phases of the singlet flavon VEVs ⇤⌥i⌅, then determines
all the lepton mixing angles and phases in terms of the ratio ⌅⇥ = mb/ma. Since this
phase is crucial to the predictions in the lepton sector, it is worthwhile discussing the
origin of this phase in more detail.

In order to understand the origin of phases which enter the neutrino mass matrixm⇥ ,
it is worth recalling that the operators responsible for the neutrino Yukawa and Majorana
masses are those given in Eqs.14 and 21. Implementing the see-saw mechanism, the
e�ective neutrino mass matrix m⇥ in Eq. 32 emerges from the flavon combinations,

m⇥ ⇥ ⇤ atm⌅⇤ atm⌅T

⇤⌥atm⌅
+

⇤ sol⌅⇤ sol⌅T

⇤⌥sol⌅
+

⇤ dec⌅⇤ dec⌅T

⇤⌥dec⌅
. (33)

Notice that the powers of ⌅ cancel in the see-saw mechanism, leading to a rather mild
hierarchy in the neutrino sector. Since we are assuming that the original theory respects
CP, the only source of phases can be the VEVs of flavons. The phase ⇧ = �2�/5 then
must arise from the di�erence between flavon VEVs. The phases of flavon VEVs arise
in the context of spontaneous CP violation from discrete symmetries as discussed in
[26], and we shall follow the strategy outlined there. The basic idea is to impose CP
conservation on the theory so that all couplings and masses are real. Note that the
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where ma = |a|2v2u/|M̃1|, mb = |b|2v2u/|M̃2|, mc = |c|2v2u/(9|M̃3|) are real parameter com-
binations which determine the three physical neutrino masses m3,m2,m1, respectively.
Note that m1 is suppressed by a factor of 9 compared to the other neutrino masses due
to the Clebsch-Gordan factor of 1/3 in the third family Dirac neutrino mass. We written
the relative phase di�erence between the first two two terms as 2⇧. As shown recently
[7], fixing ⇧ = �2�/5, using the phases of the singlet flavon VEVs ⇤⌥i⌅, then determines
all the lepton mixing angles and phases in terms of the ratio ⌅⇥ = mb/ma. Since this
phase is crucial to the predictions in the lepton sector, it is worthwhile discussing the
origin of this phase in more detail.

In order to understand the origin of phases which enter the neutrino mass matrixm⇥ ,
it is worth recalling that the operators responsible for the neutrino Yukawa and Majorana
masses are those given in Eqs.14 and 21. Implementing the see-saw mechanism, the
e�ective neutrino mass matrix m⇥ in Eq. 32 emerges from the flavon combinations,
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+
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Notice that the powers of ⌅ cancel in the see-saw mechanism, leading to a rather mild
hierarchy in the neutrino sector. Since we are assuming that the original theory respects
CP, the only source of phases can be the VEVs of flavons. The phase ⇧ = �2�/5 then
must arise from the di�erence between flavon VEVs. The phases of flavon VEVs arise
in the context of spontaneous CP violation from discrete symmetries as discussed in
[26], and we shall follow the strategy outlined there. The basic idea is to impose CP
conservation on the theory so that all couplings and masses are real. Note that the
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TABLE I: Latest measurements and global-fit results of neutrino parameters.

Parameters Neutrino Oscillation Experiments a Global-fit Results b

∆m2
21 KamLAND (νe → νe)

21 [7.60+0.19
−0.18] · 10

−5 eV2

∆m2
31

T2K (νµ → νµ)
22 +[2.48+0.05

−0.07] · 10
−3 eV2 (NH)

MINOS (νµ → νµ, νµ → νµ)
23 −[2.38+0.05

−0.06] · 10
−3 eV2 (IH)

θ12

solar neutrinos (νe → νe)

34.63◦+1.02◦

−0.98◦Borexino24, SNO25,26,

Super-Kamionkande I-IV27

θ13
Daya Bay (νe → νe)

28 8.80◦+0.37◦

−0.39◦ (NH)

RENO (νe → νe)
29 8.91◦+0.35◦

−0.36◦ (IH)

θ23

atmospheric neutrinos
48.9◦+1.6◦

−7.4◦ (NH)
(νµ → νµ, νµ → νµ) 49.2◦+1.5◦

−2.5◦ (IH)
Super-Kamiokande I-IV30

δ –
241◦+115◦

−68◦ (NH)

266◦+62◦

−57◦ (IH)

aThe experiment that dominate the accuracy of neutrino parameter determination are shown.
bThe best-fit values and 1σ uncertainties are taken from Ref. 31.

{θ12, θ13, θ23} are vanishing. Note that we will use ∆m2
31 instead of ∆m2

32.

Thanks to a number of elegant experiments in the past two decades3, the phenomenon

of neutrino flavor oscillations has now been firmly established. The latest global analysis of

data from all existing past and present neutrino oscillation experiments provides our best

knowledge on neutrino mixing parameters, as shown in Table I. Note that ∆m2
31 has been

used in Ref. 31 to fit the oscillation data in both cases of normal neutrino mass hierarchy

(NH, i.e., m1 < m2 < m3) and inverted neutrino mass hierarchy (IH, i.e., m3 < m1 < m2),

only the results from Ref. 31 are listed in this table in order to get a ballpark feeling of the

values of the neutrino parameters. Two other independent global-fit analyses in Refs. 32 and

33 yield different best-fit values. However, the 3σ confidence intervals of neutrino parameters

from all three groups are indeed consistent.
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Neutrino Mixing Angles
✓13 = 8.8o ± 0.4o

✓12 = 34.6o ± 1o

✓23 = 45o ± 5o
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Charged Lepton Mixing Corrections
UPMNS = UeU

†
�

and the heaviest neutrino identified as the atmospheric neutrino with mass m
3

=
2a2

M
atm

. Note that each of the right-handed neutrinos contributes uniquely to a
particular physical neutrino mass. This general feature is known as sequential
dominance and the particular example with constrained couplings is known as
constrained sequential dominance [5].

(f) If the charged lepton mixing matrix involves a Cabibbo-like mixing, then the
PMNS matrix is given by,

U
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@
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Comparing to the PMNS parametrisation we identify,
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12

ei�| =
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6
. (31)

The first equation a reactor angle ✓
13

⇡ 9.2� if ✓e ⇡ ✓C ⇡ 13� [7]. The second
equation gives a new relation between the PMNS parameters, called a solar sum
rule, and may be expanded to first order to give the approximate relation,

✓
12

� 35� ⇡ ✓
13

cos �, (32)

or,

cos � ⇡ ✓
12

� 35�

✓
13

. (33)

This highlights the importance of an accurate measurement of the solar angle in
order to predict the CP phase. Current data on the solar and reactor angles seems
to predict cos � ⇡ 0 or � ⇡ ±90�, consistent with the experimental hint for the CP
phase � ⇡ �90�.

10

Cabibbo-like 
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TB neutrino mixing
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The first equation a reactor angle ✓
13

⇡ 9.2� if ✓e ⇡ ✓C ⇡ 13� [7]. The second
equation gives a new relation between the PMNS parameters, called a solar sum
rule, and may be expanded to first order to give the approximate relation,
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or,
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12
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. (33)

This highlights the importance of an accurate measurement of the solar angle in
order to predict the CP phase. Current data on the solar and reactor angles seems
to predict cos � ⇡ 0 or � ⇡ ±90�, consistent with the experimental hint for the CP
phase � ⇡ �90�.
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This highlights the importance of an accurate measurement of the solar angle in
order to predict the CP phase. Current data on the solar and reactor angles seems
to predict cos � ⇡ 0 or � ⇡ ±90�, consistent with the experimental hint for the CP
phase � ⇡ �90�.
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This highlights the importance of an accurate measurement of the solar angle in
order to predict the CP phase. Current data on the solar and reactor angles seems
to predict cos � ⇡ 0 or � ⇡ ±90�, consistent with the experimental hint for the CP
phase � ⇡ �90�.

10

Solar sum rule

(VeL)23, (VeL)31 and (VeL)32 are very small compared to (VeL)12 and (VeL)21, where in

practice we take them to be zero. In this case we are led to a solar sum rule [69–71] derived

from UPMNS = VeLU0, which takes the form,

UPMNS =




ce12 −se12e

−iδe12 0

se12e
iδe12 ce12 0

0 0 1









cν12 sν12 0

− sν12√
2

cν12√
2

1√
2

sν12√
2

− cν12√
2

1√
2



 =





· · · · · · − se12√
2
e−iδe12

· · · · · · ce12√
2

sν12√
2

− cν12√
2

1√
2



. (3.19)

The important point to notice is that the 3-1, 3-2 and 3-3 elements of UPMNS in Eq. (3.19)

are uncorrected by charged lepton corrections and are the same as those of U0, and also the

1-3 element of UPMNS has a simple form. By comparing Eq. (3.19) to the PDG parametri-

sation of UPMNS in Eq. (2.15) we find the relations,

s13 =
se12√
2
, (3.20)

s23c13 =
ce12√
2
, (3.21)

c23c13 =
1√
2
, (3.22)

|s23s12 − s13c23c12e
iδ| =

sν12√
2
, (3.23)

|s23c12 + s13c23s12e
iδ| =

cν12√
2
. (3.24)

Using Eq. (3.22) we see that, to leading order in θ13, the atmospheric angle is unchanged

from its maximal value by the assumed form of the charged lepton corrections. To this

approximation, it is then straightforward to expand these results to obtain the more useful

approximate form of the sum rule [69–71],

θ12 ≈ θν12 + θ13 cos δ. (3.25)

Given the accurate determination of the reactor angle in Eq. (2.28) (θ13 ≈ 9◦ ± 0.5◦) and

the solar angle Eq. (2.26) (θ12 ≈ 34◦ ± 1◦) the sum rule in Eq. (3.25) yields a favoured

range of cos δ for each of the cases θν12 = 35.26◦, 45◦, 31.7◦, 36◦ for the cases of TB, BM,

GR, GR′, namely cos δ ≈ −0.2,−1, 0.2,−0.2, or cos δ ≈ −λ,−1,λ,−λ, respectively. For

example, for TB neutrino mixing, the sum rule in Eq. (3.25) may be written compactly as,

s ≈ r cos δ. (3.26)

In order to obtain the values in Eq. (3.7), namely s ≈ −λ2 from r ≈ λ, we need to have

cos δ ≈ −λ.
This approach relies on a Cabibbo-sized charged lepton mixing angle as is clear from

Eq. (3.20) which, together with Eq. (3.8), shows that we need se12 ≈ λ in order to account

for the observed reactor angle, starting from one of the simple classic patterns of neutrino

mixing. This is not straightforward to achieve in realistic models [67, 72], which would

typically prefer smaller charged lepton mixing angles such as se12 ≈ λ/3. This suggests

that the neutrino mixing angle θν13 is not zero, but has some non-zero value closer to the

observed reactor angle. In the next subsection we consider this possibility.
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Tri-Bimaximal Deviations
0710.0530

r = reactors = solar a = atmospheric

where ΦTB
i are just the columns of the TB mixing matrix. As shown in Appendix B, due

to the unitarity of UR and the special form of the mass matrix MR in Eq. (4.1), the only
non-zero parameter is α13 = −α∗

31 whose dependence on the input parameters α, β, γ,∆
is given in Eqs. (B.15,B.16). The fact that only α13 = −α∗

31 is non-zero implies that UR

is of TM form as expected. Furthermore, since,

UT
RMRUR = Mdiag

R , (4.8)

it is then straightforward to derive the lepton mixing matrix UPMNS, as in Eq. (2.9),

UPMNS =
mD

yvu
UR . (4.9)

Due to the trivial structure of mD as well as a diagonal charged lepton sector, the PMNS
mixing matrix can thus be directly obtained from UR by permuting the second and the
third row as well as multiplying the Majorana phase matrix P on the right and another
phase matrix P ′ on the left, leading to UPMNS = UTM where,

UTM ≈ P ′


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




P . (4.10)

The matrix P ′ has to be chosen such that the PMNS matrix without Majorana phases
is brought to the standard PDG form where the 2-3 and 3-3 elements are real and the
mixing angles are all between 0◦ and 90◦. In linear approximation, the required form of
P ′ becomes

P ′ ≈ diag(1, a+,−a−) , a± = 1± i ·
Im(α13)√

3
. (4.11)

Multiplying this explicit form of the phase matrix P ′ we obtain a mixing matrix that is
consistent with the standard PDG phase conventions.

It is useful to compare the TM mixing matrix in Eq. (4.10) to a general parametrisation
of the PMNS mixing matrix in terms of deviations from TB mixing [25],

UPMNS ≈


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




P , (4.12)

where the deviation parameters s, a, r are defined as [25],

sin θ12 =
1√
3
(1 + s) , sin θ23 =

1√
2
(1 + a) , sin θ13 =

r√
2
. (4.13)

This comparison yields

s ≈ 0 , a ≈
Re (α13)√

3
, r cos δ ≈ −

2√
3
Re (α13) , δ ≈ arg (α13) + π , (4.14)
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Tutorial Questions

1. The PMNS matrix for Dirac neutrinos is [1],

U =

0

@
c
12

c
13

s
12

c
13

s
13

e�i�

�s
12

c
23

� c
12

s
13

s
23

ei� c
12

c
23

� s
12

s
13

s
23

ei� c
13

s
23

s
12

s
23

� c
12

s
13

c
23

ei� �c
12

s
23

� s
12

s
13

c
23

ei� c
13

c
23

1

A , (1)

where s
13

= sin ✓
13

, etc.

(a) Show that tri-bimaximal mixing defined by

s
13

= 0, s
12

=
1p
3
, s

23

=
1p
2
, (2)

implies the tri-bimaximal (TB) mixing matrix,

U
TB

=

0

B@

q
2

3

1p
3

0

� 1p
6

1p
3

1p
2

1p
6

� 1p
3

1p
2

1

CA . (3)

(b ) Consider the reactor, solar and atmospheric parameters r,s,a which parame-
terise the deviations from tri-bimaximal mixing [2],
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By expanding the PMNS mixing matrix to first order in the small parameters
r, s, a, it is possible to show (although you do not need to do this) that,
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Verify that for TB mixing r = s = a = 0, the mixing matrix reduces to U
TB

.

Show that, for s ⇡ 0, a ⇡ r cos �, the first column of the mixing matrix approxi-
mately corresponds to that of TB mixing (TM1 mixing).
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Solutions

1. (a ) This is simply a matter of substituting the expressions into the PMNS matrix,
using c

13

= (1� s2
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(b ) For r = s = a = 0 the mixing matrix reduces to the TB matrix,
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Assuming s ⇡ 0, a ⇡ r cos �, we find the TM1 matrix,
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With s ⇡ 0, a ⇡ �(r/2) cos �, we find the TM2 matrix,
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(c ) Following the hint, one finds,
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p
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a ⇡ �(r/2) cos �  ! ✓
23

� 45� ⇡ � ✓
13p
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cos � (17)

i.e. C =
p
2 and C = �1/

p
2.

Current data may involve for example ✓
23

= 40� � 50� and ✓
13

= 8� � 9�, leading
to |✓

23

�45�| <⇠ 5� and hence constraints on the two sum rules, which can be solved
for cos � in terms of the measured angles. (This is a rather open ended question
which the students can discuss in various ways in detail).
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c.f. Tutorial Problem 1(b)
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(b ) Consider the reactor, solar and atmospheric parameters r,s,a which parame-
terise the deviations from tri-bimaximal mixing [2],
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By expanding the PMNS mixing matrix to first order in the small parameters
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U ⇡

0

B@

q
2

3

(1� 1

2

s) 1p
3

(1 + s) 1p
2

re�i�

� 1p
6

(1 + s� a+ r cos �) 1p
3

(1� 1

2

s� a� 1

2

r cos �) 1p
2

(1 + a)
1p
6

(1 + s+ a� r cos �) � 1p
3

(1� 1

2

s+ a+ 1

2

r cos �) 1p
2

(1� a)

1

CA . (5)

Verify that for TB mixing r = s = a = 0, the mixing matrix reduces to U
TB

.

Show that, for s ⇡ 0, a ⇡ r cos �, the first column of the mixing matrix approxi-
mately corresponds to that of TB mixing (TM1 mixing).
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(b ) Consider the reactor, solar and atmospheric parameters r,s,a which parame-
terise the deviations from tri-bimaximal mixing [2],
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By expanding the PMNS mixing matrix to first order in the small parameters
r, s, a, it is possible to show (although you do not need to do this) that,
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Verify that for TB mixing r = s = a = 0, the mixing matrix reduces to U
TB

.

Show that, for s ⇡ 0, a ⇡ r cos �, the first column of the mixing matrix approxi-
mately corresponds to that of TB mixing (TM1 mixing).

3

TBC corresponds to 
 s = a = 0, r = ✓C

UTBC ⇡

0

B@

q
2
3

1p
3

1p
2
✓Ce�i�

� 1p
6
(1 + ✓C cos �) 1p

3
(1� 1

2✓C cos �) 1p
2

1p
6
(1� ✓C cos �) � 1p

3
(1 +

1
2✓C cos �) 1p

2

1

CA .



Global Fits 2014 vs TBC Mixing
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Figure 4: The mixing angles obtained from the three global fits [56–58]. The upper three panels
correspond to the results for normal neutrino mass ordering (NO), while the lower three panels are
for an inverted mass ordering (IO). Shown are the best fit values (green) as well as the 1σ (red)
and 3σ (blue) intervals. Note that the solar angle is insensitive to the mass ordering.

A few comments are relevant about these angles. Firstly the errors are not linear, since,

for one thing, the global fits are made in terms of the squares of the sines of the angles.

Having said this, in the case of normal neutrino mass ordering, there is a preference for

the atmospheric angle to be in the first octant (i.e. less than 45◦) and hence not maximal

mixing. Secondly, as already noted, the solar angle is still consistent with trimaximal

mixing (i.e. 35.26◦) but there is a preference for it to be slightly smaller.

3. Patterns of lepton mixing and sum rules

3.1 Simple forms of neutrino mixing

Below we give three examples of simple patterns of mixing in the neutrino sector which all

have s13 = 0 and s23 = c23 = 1/
√
2. Inserting these values in Eq. (2.1) we obtain a PMNS

matrix of the form,

U0 =




c12 s12 0

− s12√
2

c12√
2

1√
2

s12√
2

− c12√
2

1√
2



 , (3.1)

where the zero subscript reminds us that this form has θ13 = 0 (and θ23 = 45◦).

For golden ratio (GR) mixing [59], the solar angle is given by tan θ12 = 1/φ, where

φ = (1 +
√
5)/2 is the golden ratio which implies θ12 = 31.7◦. There is an alternative

version where cos θ12 = φ/2 and θ12 = 36◦ [60], which we refer to as GR′ mixing.
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Lepton Mixing Sum Rules 
Solar sum rules (from ch lepton corr)

Atm. sum rules (TM1 or TM2)

Bimaximal

Golden Ratio

Tri-bimaximal

Trimaximal1

Trimaximal2

Exact relations

1 Introduction

Following the measurement of the third lepton mixing angle, the so called reactor angle
✓13 ⇡ 9� [1] neutrino physics has now entered the precision era. Indeed all three lepton
mixing angles are expected to be measured with increasing precision over the coming years,
with forthcoming accurate measurements expected for both the atmospheric angle ✓23 and
the solar angle ✓12. Given the sizeable value of the reactor angle, rapid progress can also
be expected concerning the so far unmeasured CP violating oscillation phase �.
The measurement of the reactor angle has had a major impact on models of neutrino
mass and mixing, ruling out at a stroke models based on tri-bimaximal (TB) mixing
[2]. Such models include “direct” models [3], in which the full Klein symmetry (S, U
generators) of the neutrino mass matrix, as well as the T symmetry of the charged lepton
mass matrix, is a subgroup of a family symmetry. Alternatively, TB mixing can arise
from “indirect” models based on constrained sequential dominance (CSD) [4] with special
family-symmetry-breaking vacuum alignments (0, 1, 1) and (1, 1,�1).
Many di↵erent model building directions capable of accounting for the reactor have angle
emerged, as recently reviewed [5, 6]. A promising approach to test large classes of models
is to consider lepton mixing angle sum rules, which relate all three lepton angles to the
CP violating oscillation phase �, or more precisely cos �. Indeed, they can be regarded as
predicting cos �, since this is the least well determined parameter. Lepton mixing sum rules
arise from two distinct types of theory and lead to two di↵erent types of lepton mixing
sum rule, referred to as atmospheric and solar sum rules [5, 6], as we now discuss.
Atmospheric sum rules [7] arise from a variety of “semi-direct” models in which only half
of the Klein symmetry emerges from the discrete family symmetry, classified in terms of
finite von Dyck groups, with charged lepton mixing controlled by the T generator [8–10].
For example, such models can lead to TM1 or TM2 mixing, in which the first or second
column of the TB mixing matrix is preserved, and the atmospheric sum rules can be derived
from the respective conditions,

|Ue1| =
r

2

3
|Uµ1| = |U⌧1| = 1p

6
. (1)

|Ue2| = |Uµ2| = |U⌧2| = 1p
3
. (2)

For example, it was first shown in [22,23] that A4 generally leads to a “semi-direct model”
which predicts TM2 mixing with the second atmospheric sum rule, while the indirect CSD2
model with special family-symmetry-breaking vacuum alignments (0, 1, 1) and (1, 2, 0) in
[11] predicts TM1 mixing and the first atmospheric sum rule. In fact the TM1 atmospheric
sum rule arises from all generalised versions of CSD(n), based on the vacuum alignments
(0, 1, 1) and (1, n, n� 2) for integer n � 1 [12], since such alignments are orthogonal to the
first column of the TB matrix, and hence predict TM1 mixing.
Solar sum rules [4,13,14] arise from models in which the neutrino mixing is of a relatively
simple nature, such as TB mixing, but the charged lepton mixing is Cabibbo-like in nature

1

1 Introduction

Following the measurement of the third lepton mixing angle, the so called reactor angle
✓13 ⇡ 9� [1] neutrino physics has now entered the precision era. Indeed all three lepton
mixing angles are expected to be measured with increasing precision over the coming years,
with forthcoming accurate measurements expected for both the atmospheric angle ✓23 and
the solar angle ✓12. Given the sizeable value of the reactor angle, rapid progress can also
be expected concerning the so far unmeasured CP violating oscillation phase �.
The measurement of the reactor angle has had a major impact on models of neutrino
mass and mixing, ruling out at a stroke models based on tri-bimaximal (TB) mixing
[2]. Such models include “direct” models [3], in which the full Klein symmetry (S, U
generators) of the neutrino mass matrix, as well as the T symmetry of the charged lepton
mass matrix, is a subgroup of a family symmetry. Alternatively, TB mixing can arise
from “indirect” models based on constrained sequential dominance (CSD) [4] with special
family-symmetry-breaking vacuum alignments (0, 1, 1) and (1, 1,�1).
Many di↵erent model building directions capable of accounting for the reactor have angle
emerged, as recently reviewed [5, 6]. A promising approach to test large classes of models
is to consider lepton mixing angle sum rules, which relate all three lepton angles to the
CP violating oscillation phase �, or more precisely cos �. Indeed, they can be regarded as
predicting cos �, since this is the least well determined parameter. Lepton mixing sum rules
arise from two distinct types of theory and lead to two di↵erent types of lepton mixing
sum rule, referred to as atmospheric and solar sum rules [5, 6], as we now discuss.
Atmospheric sum rules [7] arise from a variety of “semi-direct” models in which only half
of the Klein symmetry emerges from the discrete family symmetry, classified in terms of
finite von Dyck groups, with charged lepton mixing controlled by the T generator [8–10].
For example, such models can lead to TM1 or TM2 mixing, in which the first or second
column of the TB mixing matrix is preserved, and the atmospheric sum rules can be derived
from the respective conditions,

|Ue1| =
r

2

3
|Uµ1| = |U⌧1| = 1p

6
. (1)

|Ue2| = |Uµ2| = |U⌧2| = 1p
3
. (2)

For example, it was first shown in [22,23] that A4 generally leads to a “semi-direct model”
which predicts TM2 mixing with the second atmospheric sum rule, while the indirect CSD2
model with special family-symmetry-breaking vacuum alignments (0, 1, 1) and (1, 2, 0) in
[11] predicts TM1 mixing and the first atmospheric sum rule. In fact the TM1 atmospheric
sum rule arises from all generalised versions of CSD(n), based on the vacuum alignments
(0, 1, 1) and (1, n, n� 2) for integer n � 1 [12], since such alignments are orthogonal to the
first column of the TB matrix, and hence predict TM1 mixing.
Solar sum rules [4,13,14] arise from models in which the neutrino mixing is of a relatively
simple nature, such as TB mixing, but the charged lepton mixing is Cabibbo-like in nature

1

|U⌧1|/|U⌧2| = 1

|U⌧1|/|U⌧2| = 1/
p
2

|U⌧1|/|U⌧2| = 1/'(BM) mixing [16] where s⌫12 = 1/
p
2 and for various versions of golden ratio (GR) mixing

including GR1 with t⌫12 = 1/' [17], GR2 with c⌫12 = '/
p
3 [18], where ' = 1+

p
5

2 is the
golden ratio. We also present a further possibility called GR3 with ✓⌫12 = ⇡/5, and discuss
hexagonal (HEX) mixing with ✓⌫12 = ⇡/6 [19]. We describe a Klein symmetry argument
which exclusively leads to patterns with ✓⌫13 = 0 (TB, BM, GR1 and GR3). We also dis-
cuss dihedral-associated predictions ✓⌫12 = ⇡d/N and how these are related to symmetry.
Although not fully specified by symmetry, additional patterns mentioned in the literature
can be found by, in addition, fixing ✓⌫13 = 0 and ✓⌫23 = ⇡/4 by hand. We include the simplest
two cases, GR3 and HEX, for completeness. Finally we discuss the case of bi-trimaximal
(BT) mixing [20] in which ✓⌫13 6= 0. In general, the ✓⌫13 = 0 assumption made previously
is actually unnecessary and can be replaced by the constraints from the global data. For
each case we perform a study of the scope to test the sum rule in Eq.6 within the current
experimental program, highlighting the complementarity between long-baseline superbeam
and middle-distance reactor proposals. We describe our simulations, including assumed pa-
rameters for next generation reactor and superbeam experiments, and their independent
and combined sensitivity to ✓12 and �, computing exclusion contours for each of the sum
rules.
We remark that a sum rule equivalent to that in Eq.6 has also been derived using a rather
lengthy procedure, in a study which also focuses on Majorana phases and neutrinoless
double beta decay [21]. The simple and new derivation o↵ered here, which is su�cient for
the oscillation phase, is more transparent and makes the connection with the earlier solar
sum rules clearer. For example the simple condition in Eq.5 was not apparent from the
formalism of [21]. In addition the phenomenological analyses of the sum rules in this paper
goes well beyond that in [21].
The layout of the remainder of the paper is as follows...

Peter’s comment

I have been assuming that the general argument of the paper follows:
1. We derive a sum rule (and its linear version) fixing ✓⌫13 = ✓e13 = 0 by assumption.

2. We consider the viable leading order neutrino mixing patterns defined by symmetry.
Klein argument exclusively leads us to patterns with ✓⌫13 = 0 (TBM, BM, GR1 and
GR3); we mention that, within a certain framework, the ✓⌫13 = 0 assumption made
previously is actually unnecessary and can be replaced by the constraints from the
global data.

3. We also discuss dihedral-associated predictions ✓⌫12 = ⇡d/N and how these are re-
lated to symmetry. Although not fully specified by symmetry, additional patterns
mentioned in the literature can be found by, in addition, fixing ✓⌫13 = 0 and ✓⌫23 = ⇡/4
by hand. We include the simplest two cases, GR2 and HEX, for completeness.

3

|Ue1| =
p

2/3

Golden Ratio
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+ ✓13 cos �
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c.f. Tutorial Problem 1(c)
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Figure 5: The prediction for θ12 from the sum rule with tri-bimaximal neutrino mixing, as given in

Eq.(15). The different curves show the predicted 3 σ interval for θ12 following from a NFO measurement

of θ13 cos(δ) as a function of the true values of δ and θ13.

5 Summary and Conclusions

In this work we have considered the sum rule in Eq. (1), and in particular how well
the combination of parameters θ12 − θ13 cos(δ), which appears on the left-hand side, can
be measured in oscillation experiments. This is important, since the sum rule follows
from quite general assumptions which are satisfied in a wide class of flavour models.
Moreover, particular such flavour models make definite predictions for θν

12, and the sum
rule then enables these models to be tested.

We have derived the sum rule, starting from a parameterization independent set
of sum rules, which follow from certain well defined assumptions about the nature of
charged lepton and neutrino mixings. We then expressed the sum rule in terms of
the standard PMNS mixing parameters (see e.g. [2]) commonly used in presenting the
results of neutrino oscillation experiments. One way to view the sum rule is to consider
the charged lepton corrections to the neutrino mixing angle θν

12 predicted from theory,
leading to the physical solar neutrino mixing angle θ12. Then, under certain assumptions,
the charged lepton correction turns out to only depend on the physical combination
θ13 cos(δ). To be precise, the sum rule in Eq. (1) holds up to first order in θ13 under the
following assumptions:

(a) The charged lepton mixing matrix is CKM-like, i.e., dominated by the 1-2 mixing
angle, see Eq. (6).

(b) The 1-3 element of the neutrino mixing matrix is negligible, θν
13 ≈ 0.

13

NFO

✓12 ⇡ 35

o

+ ✓13 cos �

Tri-bimaximal
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Figure 1: The predictions for cos � generated by the solar sum rules for BM (top row),
TBM (second row), GR1 (third row) and GR3 (bottom row). In each plot, the true value
of ✓13 is given by the abscissa, the value of ✓12 is denoted by the colour of the band, and the
width of the band is generated by varying ✓23 over its allowed interval at the significance
given at the top-left corner of each panel. In the top row, values of ✓12 smaller than those
shown lead to unphysical predictions.
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TBM (second row), GR1 (third row) and GR3 (bottom row). In each plot, the true value
of ✓13 is given by the abscissa, the value of ✓12 is denoted by the colour of the band, and the
width of the band is generated by varying ✓23 over its allowed interval at the significance
given at the top-left corner of each panel. In the top row, values of ✓12 smaller than those
shown lead to unphysical predictions.
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FIG. 4. The joint determination of a and cos δ for seven sets
of true values which obey the relation a = r cos δ, assuming
the LENF with MIND and including τ contamination effects.
The dashed line shows the sum rule, and the concentric solid
lines indicate the boundary of the 1, 3 and 5σ allowed intervals
for the true values of a and cos δ at their center.

can be jointly determined for true values which obey a
given sum rule. The correlations between the two param-
eters will show how strongly the true value of one param-
eter influences the determination of the other. In Fig. 4,
we have computed the joint determination of the parame-
ters cos δF and aF for a selection of sets of true parameters
which obey the sum rule aT = rT cos δT, with rT fixed at
its best fit value derived from global fits of neutrino oscil-
lation data. This simulation uses the LENF with MIND
experiment, and incorporates the τ -background which is
known to impact the attainable precision on a. This plot
gives us an indication of the severity of correlations be-
tween these two parameters. We see that there is some
correlation: the allowed intervals for cos δ depend on the
true values of a. The width of the allowed regions in both
parameters decreases for large absolute values of |a| and
| cos δ|, and this behaviour can be understood by compar-
ing it with the results of Section VA, where the precision
to both a and cos δ becomes worse near the origin.
The joint parameter determination plot can give us

an indication of how well we can measure the parame-
ters a and cos δ if the sum rule is true. In this plot we
have assumed that the true parameters obey the sum
rule a = r cos δ, indicated by the dashed line with r set
to the best fit value obtained in the global analysis of
neutrino oscillation data, and we have marginalized over
all parameters other than aF and cos δF. The solutions
found in the allowed regions are not required to obey
the sum rule. For example, although there are plenty of
solutions around the origin for aT = cos δT = 0, the pa-
rameter rF is allowed to vary in the marginalization and
can take any reasonable value, meaning that the final so-
lution rarely satisfies a = r cos δ. If we are interested in
excluding the sum rule without assuming its validity, we
must ask a slightly different question: for a general set
of true parameter values, which sets of parameters obey-

ing a hypothesised sum rule can be excluded. We will
address this question in the next section.

C. Excluding sum rules

The computation of the attainable sensitivity to com-
binations of oscillation parameters differs from the dis-
cussion of the previous section, due to the introduction
of non-trivial parameter correlations. In this section, we
compute the ability of the LENF and WBB experiments
to directly constrain and exclude the sum rules discussed
in Section IV, whilst fully incorporating these correla-
tions.
We have scanned over a parameter space spanned by

the true value of cos δ and the true value of a. At each
point in this parameter space, we have found the best
fitting set of oscillation parameters which obey a given
sum rule, and plotted the corresponding value of ∆χ2.
Once this value exceeds a chosen significance threshold
(for example, 2σ and 3σ in Fig. 5), we can consider that
sum rule excluded: there are no sets of parameters which
obey that sum rule and provide a reasonable fit to the
data. When the true parameter set approximately obeys
the sum rule in question, we get a good fit, and the width
of the surrounding allowed region gives an indication of
how sensitive the experiment is to deviations from the
sum rule. Technically, this search has been implemented
by using a modified form of the ∆χ2 statistic. We have
extended the ∆χ2 to include an additional prior which
enforces the sum rule on the set of fitted parameters,

∆χ2 ⊃
(

aF − a0 − λrF cos δF
σ

)2

,

where σ is a parameter chosen to be small, ensuring that
the sum rule is held to high precision. This term forces
the minimal parameter set to obey the sum rule, whilst
not dictating any of the values of the parameters them-
selves.
We have focused our analysis on the two simplest sum

rules λ = 1 and λ = − 1
2
both with a0 = 0. This is to

illustrate the type of constraints that can be placed on
parameter correlations in the PMNS matrix, but our ap-
proach can be easily generalised to include other types
of correlations, beyond the atmospheric sum rules dis-
cussed so far. The plots of the left-hand (right-hand)
panel on the bottom row of Fig. 5 show the allowed re-
gions for λ = 1 (λ = −0.5) for the LENF with magne-
tized LAr detector (shaded regions) and MIND (contour
lines). We see that the largest allowed region, and there-
fore the hardest point to exclude the sum rule, is when
cos δT ≈ aT ≈ 0. Whilst the best sensitivity is generally
found at large values of |cos δT|. As expected, this be-
haviour is largely inherited from the sensitivity to cos δ;
however, around the origin we see a novel feature asso-
ciated with solutions of the type a = 0 and cos δ = 0.
For any hypothetical sum rule of the type a = λr cos δ,

Testing Atmospheric Sum Rules  
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Lepton Mixing Open Questions

Is the atmospheric angle maximal 450?

If not then which octant?

Is the solar angle trimaximal 35o?

If not then less or greater? 

Is the CP phase special 0, pi, ±pi/2, ...?

If not then what is it?



Conclusions
The Neutrino Revolution post 1998 has led to a new flavour 
puzzle, that of large lepton mixing

Simple patterns of lepton mixing such as Bimaximal,                   
Tri-bimaximal, Golden Ratio are ruled out by Daya Bay/RENO

However they may be rescued by invoking large charged lepton 
corrections leading to solar sum rules involving the CP phase delta

Other patterns consistent with Daya Bay and RENO have been 
proposed such as Tri-bimaximal-Cabibbo mixing and  two versions 
of Trimaximal mixing, leading to atmospheric sum rules also 
involving the CP phase

It is vital to measure the mixing angles and the CP phase delta to 
good precision to distinguish these possibilities



Tutorial QuestionsTutorial Questions

1. The PMNS matrix for Dirac neutrinos is [1],

U =

0

@
c
12

c
13

s
12

c
13

s
13

e�i�

�s
12

c
23

� c
12

s
13

s
23

ei� c
12

c
23

� s
12

s
13

s
23

ei� c
13

s
23

s
12

s
23

� c
12

s
13

c
23

ei� �c
12

s
23

� s
12

s
13

c
23

ei� c
13

c
23

1

A , (1)

where s
13

= sin ✓
13

, etc.
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(b ) Consider the reactor, solar and atmospheric parameters r,s,a which parame-
terise the deviations from tri-bimaximal mixing [2],

s
13

=
rp
2
, s

12

=
(1 + s)p

3
, s

23

=
(1 + a)p

2
. (4)

By expanding the PMNS mixing matrix to first order in the small parameters
r, s, a, it is possible to show (although you do not need to do this) that,
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Verify that for TB mixing r = s = a = 0, the mixing matrix reduces to U
TB

.

Show that, for s ⇡ 0, a ⇡ r cos �, the first column of the mixing matrix approxi-
mately corresponds to that of TB mixing (TM1 mixing).
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TB

.

Show that, for s ⇡ 0, a ⇡ r cos �, the first column of the mixing matrix approxi-
mately corresponds to that of TB mixing (TM1 mixing).
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Similarly show that for s ⇡ 0, a ⇡ �(r/2) cos �, the second column of the mixing
matrix approximately corresponds to that of TB mixing (TM2 mixing).

(c ) Show that the relations a ⇡ r cos � and a ⇡ �(r/2) cos � imply the approximate
“atmospheric sum rules” of the form,

✓
23

� 45� ⇡ C ⇥ ✓
13

cos � (6)

and find the constant C in each case. [Hint: take the sine of both sides of the
Eq.6, assuming sin ✓

13

⇡ ✓
13

, then expand sin(✓
23

�45�) and use definitions of r, a.]

Then discuss how well these so called “atmospheric sum rules” are satisfied by cur-
rent data on the atmospheric and reactor mixing angles and how future precision
measurements of these angles will fix the CP violating phase � [3].
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