Southampton

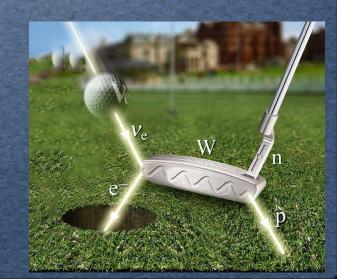
School of Physics and Astronomy

Neutrino Mass Models

Lecture 2: Neutrino Mass

Steve King, St.Andrews, Scotland, 10-22 August, 2014

International Neutrino Summer School 2014 (INSS 2014) 70th Scottish Universities Summer School in Physics (SUSSP70)



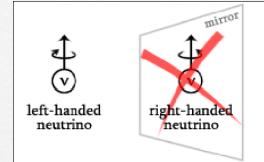
Why neutrino masses are zero in the Standard Model

- 1. There are no right-handed neutrinos
- 2. There are no Higgs triplets of SU(2)
- 3. There are no non-renormalizable terms

 \bigcirc So neutrinos are massless, with v_e , v_μ , v_τ distinguished by separate lepton numbers L_e , L_μ , L_τ

○ Neutrinos and anti-neutrinos are distinguished by the total conserved lepton number $L = L_e + L_\mu + L_\tau$

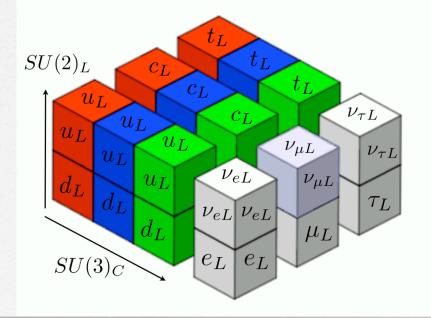
O To generate neutríno mass we must relax 1 and/or 2 and/or 3 e.g. add ríght-handed neutrínos

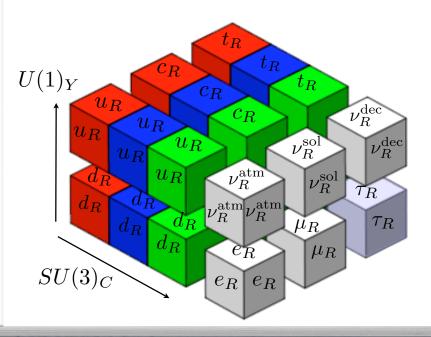


Standard Model of Quarks and Leptons with right-handed neutrinos

 $SU(3)_C \times SU(2)_L \times U(1)_Y$

Left-handed quarks and leptons Ríght-handed quarks and leptons



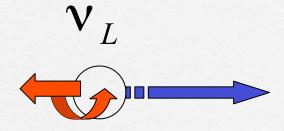


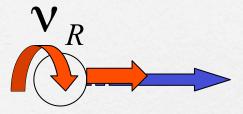
The Electron Mass

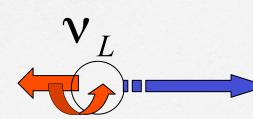
Left-handed electron Ríght-handed electron

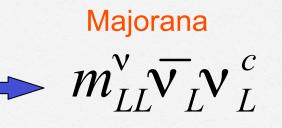
Neutrino Mass

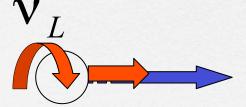
Left-handed neutríno Ríght-handed neutríno





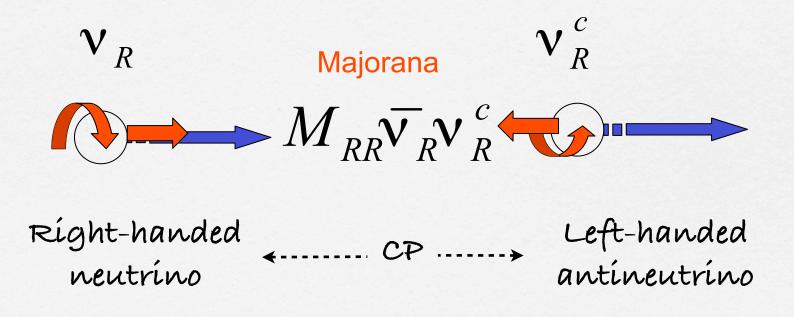






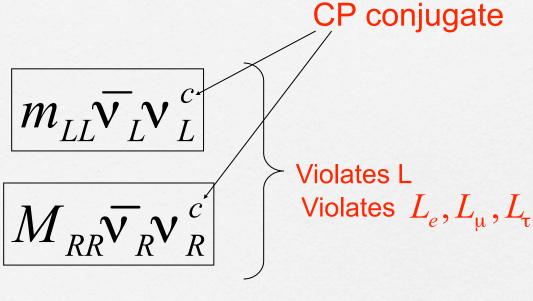
Ríght-handed antineutrino

Right-handed neutrino mass



Summary of Neutrino Masses

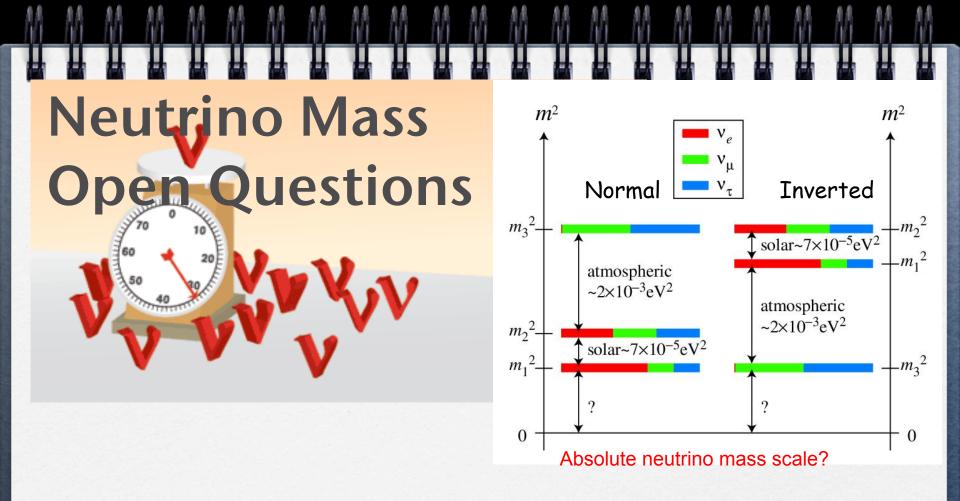
Majorana masses



Dirac mass

Majorana Mass Matrices

	Type A (zero in 11)	Type B (non-zero 11)
Normal Hierarchy	$m_{LL}^{HI} \approx \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \frac{m}{2}$	$ \begin{array}{c cccc} & \nu_{eL}^c & \nu_{\mu L}^c & \nu_{\tau L}^c \\ & \bar{\nu}_{eL} & \begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot &$
Inverted hierarchy	$m_{LL}^{IH(A)} \approx \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \frac{m}{\sqrt{2}}$	$m_{LL}^{IH(B)} \approx \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/2 & 1/2 \\ 0 & 1/2 & 1/2 \end{pmatrix} m$
Degenerate	$m_{LL}^{DEG(A)} \approx \begin{pmatrix} 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{\sqrt{2}} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{\sqrt{2}} & \frac{1}{2} & \frac{1}{2} \end{pmatrix} m$	Pseudo-Dirac $m_{LL}^{DEG(B1)} \approx \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} m$ $m_{LL}^{DEG(B2)} \approx \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} m$



What is the mass squared ordering (normal or inverted) ?
 What is the neutrino mass scale (mass of lightest neutrino)?
 What is the nature of neutrino mass (i.e. Dirac or Majorana)?

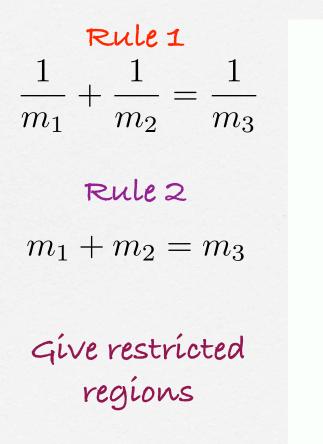
Direct Mass Measurement Lectures

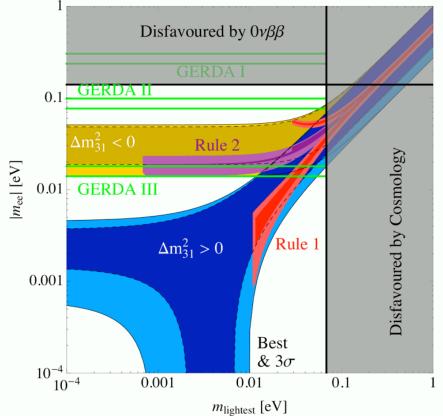
How we can learn about neutrino mass

$etaeta_{0 u}$	Δm^2_{13}	KATRIN	Conclusion
yes	> 0	yes	Degenerate, Majorana
yes	> 0	No	Degenerate, Majorana
			or normal, Majorana with heavy particle contribution
yes	< 0	no	Inverted, Majorana
yes	< 0	yes	Degenerate, Majorana
no	> 0	no	Normal, Dirac or Majorana
no	< 0	no	Dirac
no	< 0	yes	Dirac
no	> 0	yes	Dirac

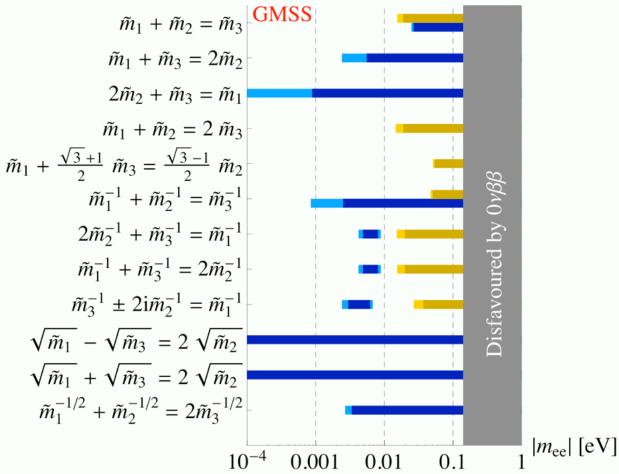
Direct Mass Measurement Lectures Tritium beta Neutrinoless double beta decay decay Majorana only (no signal if Dirac) ЗН $\left| m_{ee} \right| = \left| \sum_{i} U_{ei}^2 m_i \right|$ $\frac{v_i}{X}$ $m_i e^{i\phi_i}$ $\frac{v_e}{V_{\rm ei}} \mathcal{W}^ W^- \Gamma V_{ei}$ $|m_{\nu_e}|^2 = \sum |U_{e_i}|^2 |m_i|^2$ $|m_{ee}|_{\rm PDG} = |m_1 c_{12}^2 c_{13}^2 + m_2 s_{12}^2 c_{13}^2 e^{i\alpha_{21}} + m_3 s_{13}^2 e^{i(\alpha_{31} - 2\delta)}|$ α_{31} -2 δ $m_3 s_{13}^2 e^{i(\alpha_{31}-2\delta)}$ Present Mainz < 2.2 eV $m_2 s_{12}^2 c_{13}^2 e^{i \alpha_{21}}$ KATRIN ~0.35eV α_{21} $m_1 c_{12}^2 c_{13}^2$

Neutrino Mass Sum Rules 1307.2901

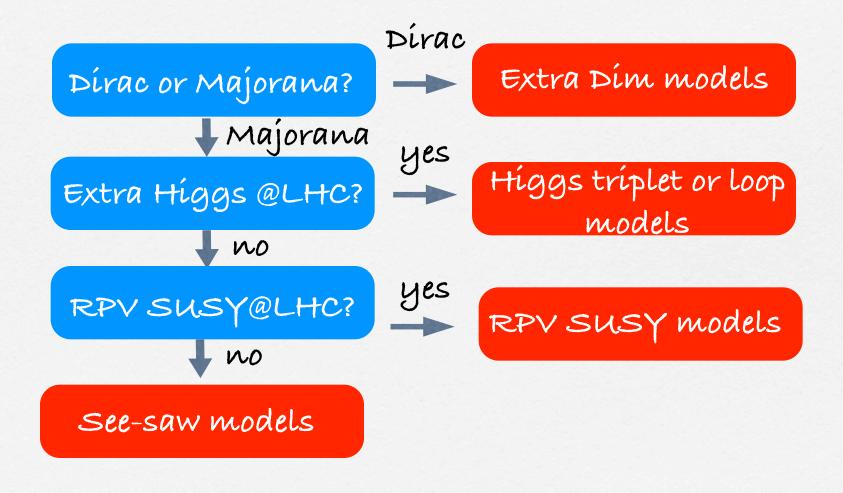




1307.2901 **Predictions of mass sum rules**



Neutrino mass model roadmap



Majorana Neutrino Mass

Renormalisable $\lambda_{V}LL\Delta$ where Δ is light Higgs triplet with VEV < 8GeV from ρ parameter

Non-renormalisable $\Delta L = 2 \text{ operator} \quad \frac{\lambda_v}{M} LLHH = \frac{\lambda_v}{M} \langle H^0 \rangle^2 \overline{v}_{eL} v_{eL}^c$ Weinberg

This is nice because it gives naturally small Majorana neutrino masses $m_{LL} \sim \langle H^0 \rangle^2 / M$ where M is some high energy scale

The high mass scale can be associated with some heavy particle of mass M being exchanged (can be singlet or triplet)

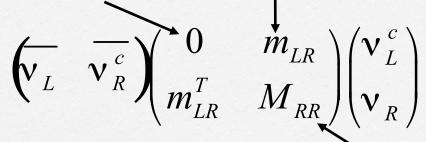
See-saw

mechanisms

See-saw mechanism P. Minkowski; T. Yanagida; M. Gell- Mann, P. Ramond and R. Slansky;

Possible type 11 contribution

Dírac matrix



 $m^{\nu} = m_{LR} \cdot \frac{1}{M_{RR}} \cdot m_{LR}^T$

Light Majorana matrix

Heavy Majorana matrix

Neutrinos are light because RH neutrinos are heavy

Allows large neutrino mixing

Example: two right-handed neutrinos

Tutorial Problem 3

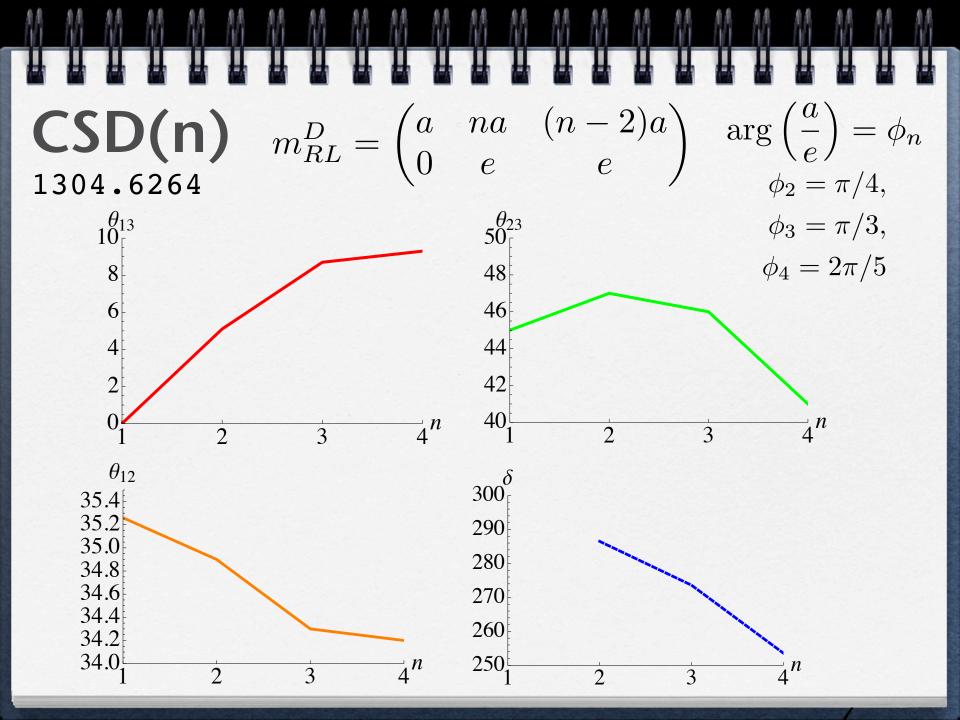
$$m_{RL}^{D} = \begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix} \qquad M_{RR} = \begin{pmatrix} M_{\rm sol} & 0 \\ 0 & M_{\rm atm} \end{pmatrix}$$
$$m^{\nu} = (m_{RL}^{D})^{T} M_{RR}^{-1} m_{RL}^{D} = \begin{pmatrix} \frac{a^{2}}{M_{\rm sol}} + \frac{d^{2}}{M_{\rm atm}} & \frac{ab}{M_{\rm sol}} + \frac{de}{M_{\rm atm}} & \frac{ac}{M_{\rm sol}} + \frac{df}{M_{\rm atm}} \\ \frac{ab}{M_{\rm sol}} + \frac{de}{M_{\rm atm}} & \frac{b^{2}}{M_{\rm sol}} + \frac{e^{2}}{M_{\rm atm}} & \frac{bc}{M_{\rm sol}} + \frac{ef}{M_{\rm atm}} \\ \frac{ac}{M_{\rm sol}} + \frac{df}{M_{\rm atm}} & \frac{bc}{M_{\rm sol}} + \frac{ef}{M_{\rm atm}} & \frac{c^{2}}{M_{\rm sol}} + \frac{f^{2}}{M_{\rm atm}} \end{pmatrix}$$

□ Determinant vanishes → massless neutrino m₁=0 and normal hierarchy Tutorial Problem 3 (e)

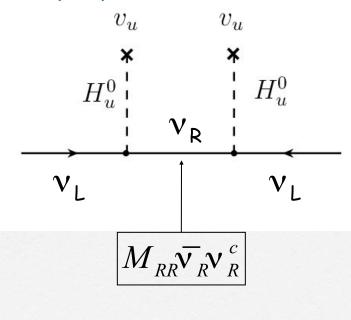
 \Box Choosing d=o, e=f, b=a, c=-a gives TB mixing

 Other forms of constrained sequential dominance (CSD) are possible 1304.6264

CSD(n) $m_{RL}^D = \begin{pmatrix} a & na & (n-2)a \\ 0 & e & e \end{pmatrix}$ 1304.6264 Justified in A4 models (see lecture 3) $m^{\nu} = (m_{RL}^{D})^{T} M_{RR}^{-1} m_{RL}^{D} = \begin{pmatrix} \frac{a^{2}}{M_{\text{sol}}} & \frac{na^{2}}{M_{\text{sol}}} & \frac{(n-2)a^{2}}{M_{\text{sol}}} \\ \frac{na^{2}}{M_{\text{sol}}} & \frac{n^{2}a^{2}}{M_{\text{sol}}} + \frac{e^{2}}{M_{\text{atm}}} & \frac{n(n-2)a^{2}}{M_{\text{sol}}} + \frac{e^{2}}{M_{\text{atm}}} \\ \frac{(n-2)a^{2}}{M_{\text{sol}}} & \frac{n(n-2)a^{2}}{M_{\text{sol}}} + \frac{e^{2}}{M_{\text{atm}}} & \frac{(n-2)^{2}a^{2}}{M_{\text{sol}}} + \frac{e^{2}}{M_{\text{atm}}} \end{pmatrix}.$ Note that $m^{\nu} \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ since $\begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \perp \begin{pmatrix} 0 \\ e \\ e \end{pmatrix}, \begin{pmatrix} a \\ na \\ (n-2)a \end{pmatrix}$ Since $\begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$ is an eigenvector with zero eigenvalue it is first column of the MNS matrix (i.e. TMI mixing)



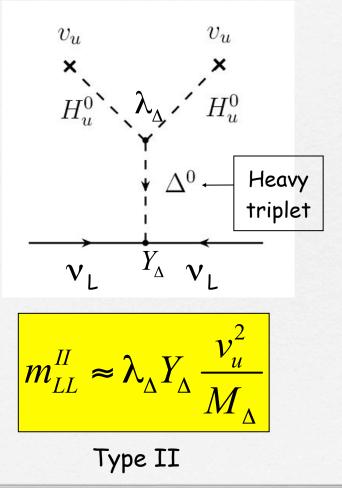
Type I see-saw mechanism P. Minkowski (1977), Gell-Mann, Glashow, Mohapatra, Ramond, Senjanovic, Slanski, Yanagida (1979/1980), Schechter and Valle (1980)...



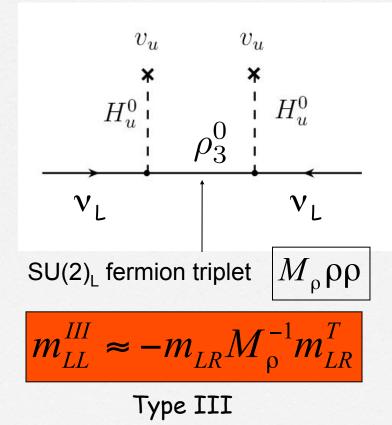
Type I

Type II see-saw mechanism (SUSY)

Lazarides, Magg, Mohapatra, Senjanovic, Shafi, Wetterich, Schechter and Valle...



Type III see-saw mechanism Foot, Lew, He, Joshi; Ma... Supersymmetric adjoint SU(5) Perez et al; Cooper, SFK, Luhn,...



See-saw mechanisms with extra singlets S Inverse see-saw

Wyler, Wolferstein; Mohapatra, Valle

$$\begin{pmatrix} 0 & M_D & 0 \\ M_D^T & 0 & M \\ 0 & M^T & \mu \end{pmatrix} \qquad M_{\nu} = M_D M^{T^{-1}} \mu M^{-1} M_D^T$$
$$\mathbf{M} \approx \mathbf{TeV} \rightarrow \mathbf{LHC}$$

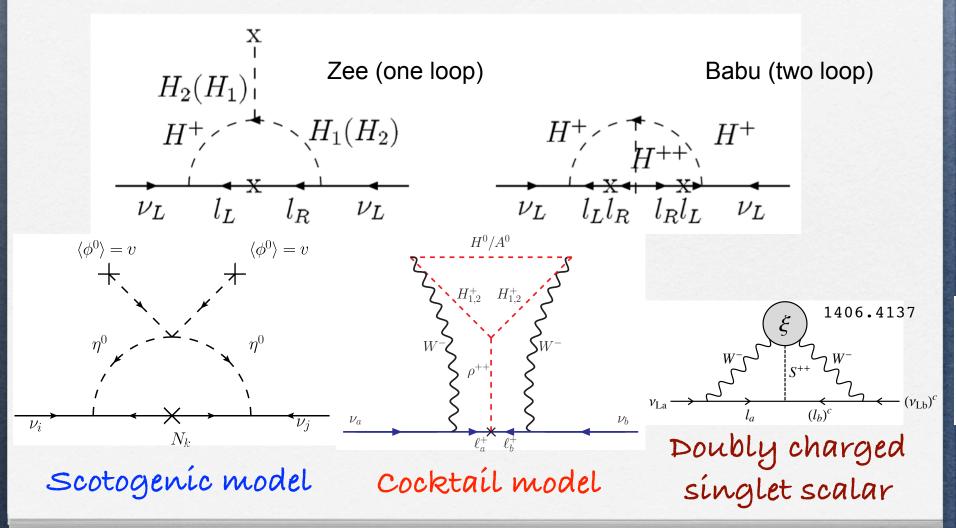
Linear see-saw

Malinsky, Romao, Valle

$$\begin{pmatrix} 0 & M_D & M_L \\ M_D^T & 0 & M \\ M_L^T & M^T & 0 \end{pmatrix}$$

 $M_{\nu} = M_D (M_L M^{-1})^T + (M_L M^{-1}) M_D^T$ LFV predictions

Loop Models of Neutrino Mass



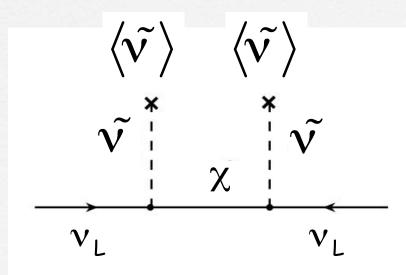
R-Parity Violating SUSY

Majorana masses can be generated via RPV SUSY

Scalar partners of lepton doublets (slepton doublets) have same quantum numbers as Higgs doublets

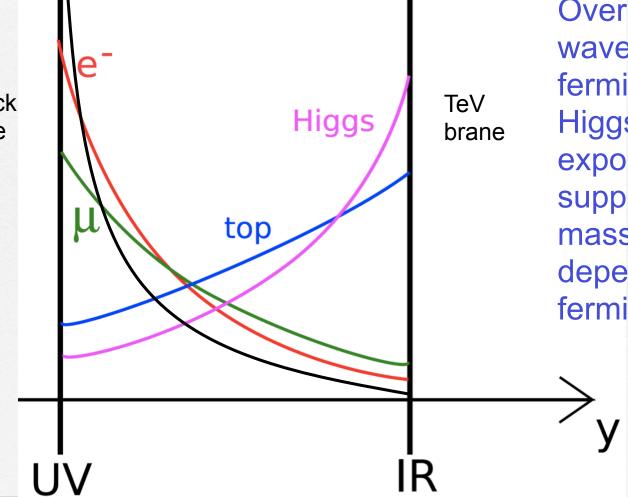
 \Box If R-parity is violated then sneutrinos may get (small) VEVs inducing a mixing between neutrinos and neutralinos χ

 $m_{LL}^{\nu} \approx \frac{\left\langle \tilde{v} \right\rangle^2}{M_{\chi}} \approx \frac{MeV^2}{TeV} \approx eV$



Extra dimensions

Planck brane е



Overlap wavefunction of fermions with Higgs gives exponentially suppressed Dirac masses, depending on the fermion profiles

- Neutríno masses may be Dírac or Majorana, híerarchical or degenerate, normal or inverted hierarchy
- Neutrínoless DBD, Katrín, LBL experiments will decide
- Type I see-saw with CSD(n) predicts normal mass hierarchy and precise mixing angles
- Other types of see-saw possible, some at low scale
- Other mass mechanisms include Loops (Majorana), RPV SUSY (Majorana), Extra dimensions (Dirac)
- The Origin of Neutrino Mass is unknown but type I see-saw most attractive if no new physics at LHC

Tutorial Questions

2. Consider a *Dirac neutrino* mass model involving *one* right-handed neutrino ν_R^{atm} with Yukawa couplings [4],

$$\overline{\nu_R^{\text{atm}}}(dL_e + eL_\mu + fL_\tau)H,\tag{7}$$

where $L_e = (\nu_e, e)_L$, etc., H is the Higgs doublet and d, e, f are real Yukawa couplings.

(a) When the Higgs gets a VEV in its first component, explain why this model leads to one massive Dirac neutrino, together with two massless neutrinos.

(b) If we interpret the massive neutrino as the *atmospheric neutrino*, show that left-handed component can be parametrized in terms of two angles θ_{13} and θ_{23} as

$$\nu_L^{\text{atm}} = s_{13}\nu_{eL} + s_{23}c_{13}\nu_{\mu L} + c_{23}c_{13}\nu_{\tau L}.$$
(8)

where ν_L^{atm} is correctly normalised ($s_{13} = \sin \theta_{13}$, etc.). Then, by comparing the above parametrisation of ν_L^{atm} to the third column of the PMNS matrix (with zero CP phase), explain why θ_{13} is the reactor angle and θ_{23} is the atmospheric angle.

(7)

(8)

$$\overline{\nu_R^{\text{atm}}}(dL_e + eL_\mu + fL_\tau)H,$$

 $\nu_L^{\text{atm}} = s_{13}\nu_{eL} + s_{23}c_{13}\nu_{\mu L} + c_{23}c_{13}\nu_{\tau L}.$

(c) Using Eqs.7 and 8, find expressions for the sine of the reactor angle $\sin \theta_{13}$ and the tangent of the atmospheric angle $\tan \theta_{23}$ in terms of the Yukawa couplings d, e, f.

(d) If the solar neutrino is identified as one of the massless neutrinos, explain why the solar angle θ_{12} is not well defined in this model.

3. Consider a *see-saw* neutrino model involving *two* right-handed neutrinos ν_R^{sol} and ν_R^{atm} with Yukawa couplings [5],

$$\overline{\nu_R^{\text{sol}}}(aL_e + bL_\mu + cL_\tau)H + \overline{\nu_R^{\text{atm}}}(dL_e + eL_\mu + fL_\tau)H,$$
(9)

and heavy right-handed Majorana masses,

$$M_{\rm sol}\overline{\nu_R^{\rm sol}}(\nu_R^{\rm sol})^c + M_{\rm atm}\overline{\nu_R^{\rm atm}}(\nu_R^{\rm atm})^c.$$
(10)

(a) After the Higgs gets a VEV in its first component, write down the Dirac mass matrix m_{RL}^D .

(b) Write down the (diagonal) right-handed neutrino heavy Majorana mass matrix $M_{RR}.$

(c) Using the see-saw formula, $m^{\nu} = (m_{RL}^D)^T M_{RR}^{-1} m_{RL}^D$, calculate the light effective left-handed Majorana neutrino mass matrix m^{ν} (i.e. the physical neutrino mass matrix).

(d) Assuming that the determinant of m^{ν} vanishes (which you may if you wish check by explicit calculation) what is the physical implication of this?

(e) Imposing the constraints d = 0 and e = f, with a = b = -c known as "constrained sequential dominance" [6], show that the resulting physical neutrino mass matrix m^{ν} is diagonalised by the tri-bimaximal mixing matrix, $U_{\text{TB}}^T m^{\nu} U_{\text{TB}}$. What is the physical interpretation of this result if the charged lepton mass matrix is diagonal?

(f) If the charged lepton mixing matrix has a Cabibbo-like mixing angle [1],

$$U_e = \begin{pmatrix} c_{12}^e & s_{12}^e e^{-i\delta_{12}^e} & 0\\ -s_{12}^e e^{i\delta_{12}^e} & c_{12}^e & 0\\ 0 & 0 & 1 \end{pmatrix}$$

(11)

calculate the (1,3), (3,1) and (3,3) elements of PMNS matrix $U = U_e U_{\text{TB}}$ (you don't need to calculate the whole matrix). Comparing the absolute value of the (1,3) element to that of the standard parameterisation of the PMS matrix, find s_{13} in terms of s_{12}^e and show that choosing $\theta_{12}^e = \theta_C \approx 13^\circ$ (the Cabibbo angle) gives a reasonable value for the reactor angle [7]. Comparing the absolute value of the (3,1) and (3,3) elements to that of the standard parameterisation of the PMS matrix, find relations between PMNS parameters. By combining and expanding these relations show that they lead to the approximate "solar sum rule",

$$\theta_{12} - 35^{\circ} \approx \theta_{13} \cos \delta, \tag{12}$$

[**Hint**: take the sine of both sides of the Eq.12, assuming $\sin \theta_{13} \approx \theta_{13}$ as well as $\sin 35^{\circ} \approx 1/\sqrt{3}$.] Discuss the resulting prediction for the CP phase δ [7].