Neutrino

Phenomenology

NASA Hubble Photo

Boris Kayser INSS August, 2014 Part 3

•Do neutrino interactions violate CP? Is $P(\bar{v}_{\alpha} \rightarrow \bar{v}_{\beta}) \neq P(v_{\alpha} \rightarrow v_{\beta})$?

•Is CP violation involving neutrinos the key to understanding the matter – antimatter asymmetry of the universe?

•What can neutrinos and the universe tell us about one another?

Are there *more* than 3 mass eigenstates?
Are there non-weakly-interacting "sterile" neutrinos?

- Do neutrinos break the rules?
 - Non-Standard-Model interactions?
 - Violation of Lorentz invariance?
 - Violation of CPT invariance?
 - Departures from quantum mechanics?

The Heavy Neutrinos N, CP Violation, and the Origin of the Matter-Antimatter Asymmetry of the Universe

The Cosmic Puzzle

Today: $B \equiv #(Baryons) - #(Antibaryons) \neq 0$.

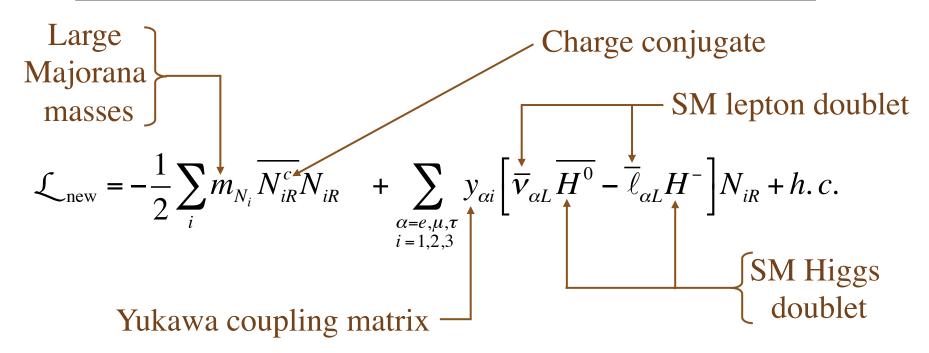
Standard cosmology: Right after the Big Bang, B = 0.

Also, L = #(Leptons) - #(Antileptons) = 0.

How did
$$B = 0 \implies B \neq 0$$
?

Sakharov: $B = 0 \implies B \neq 0$ requires \mathscr{L} and $\mathscr{L}P$.

¢ is easy to achieve, but the required degree and kind of P is harder.


The \mathcal{LP} in the quark mixing matrix, seen in B and K decays, leads to much too small a $B - \overline{B}$ asymmetry.

If *quark* $\bigcirc P$ cannot generate the observed $B - \overline{B}$ asymmetry, can some scenario involving *leptons* do it?

The candidate scenario: *Leptogenesis*, a very natural consequence of the See-Saw picture.

(Fukugita, Yanagida)

The straightforward (type-I) See-Saw model adds to the SM 3 heavy neutrinos N_i , with —

The Yukawa interaction causes the decays —

$$N \rightarrow \ell^{-} + H^{+}, N \rightarrow \ell^{+} + H^{-}, \left(\overline{N} = N, \text{ so the decays in each line} \right)$$

 $N \rightarrow \nu + H^{0}, N \rightarrow \overline{\nu} + \overline{H}^{0}. \left(\overline{N} = C \text{ and } CP \text{ mirror images.}\right)$

The N_i are heavy, but they would have been made during the *hot* Big Bang.

> They would then have quickly decayed via the decay modes we just identified.

Phases in the Yukawa coupling matrix y would have led to \mathscr{L} and \mathscr{L} effects.

In particular, such phases would have led to -

nd

$$\Gamma\left(N \to \ell^{-} + H^{+}\right) \neq \Gamma\left(N \to \ell^{+} + H^{-}\right)$$

$$\Gamma\left(N \to \nu + H^{0}\right) \neq \Gamma\left(N \to \overline{\nu} + \overline{H^{0}}\right)$$
and CP

a

How Phases Lead To CP Non-Invariance

CP always comes from *phases*.

Therefore, *CP* always requires an *interference* between (at least) two amplitudes.

For example, an interference between two Feynman diagrams.

Let us consider how a CP-violating rate difference between two CP-mirror-image processes, such as $B^+ \rightarrow D^0 K^+$ and $B^- \rightarrow \overline{D}^0 K^-$, arises. Suppose some process P has the amplitude —

$$A = M_{1}e^{i\theta_{1}}e^{i\delta_{1}} + M_{2}e^{i\theta_{2}}e^{i\delta_{2}}$$
CP-invariant
magnitude
CP-odd "weak" phase
from constants
CP-even
"strong" phase

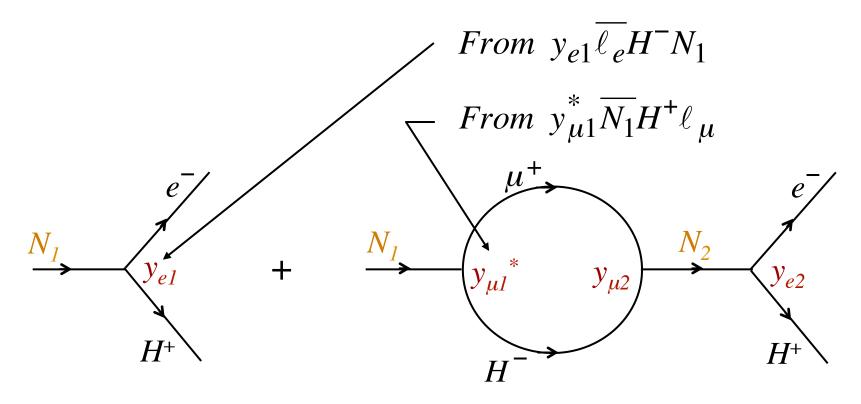
Then the CP-mirror-image process \overline{P} has the amplitude —

$$\overline{A} = M_1 e^{i\theta_1} e^{-i\delta_1} + M_2 e^{i\theta_2} e^{-i\delta_2}$$

Then the rates for \overline{P} and P differ by -

$$\overline{\Gamma} - \Gamma = |\overline{A}|^2 - |A|^2 = 4M_1M_2\sin(\theta_1 - \theta_2)\sin(\delta_1 - \delta_2)$$

$$\overline{\Gamma} - \Gamma = |\overline{A}|^2 - |A|^2 = 4M_1M_2\sin(\theta_1 - \theta_2)\sin(\delta_1 - \delta_2)$$


A CP-violating rate difference requires 3 ingredients:

- •Two interfering amplitudes
- •These two amplitudes must have different CP-even phases
- •These two amplitudes must have different CP-odd phases

How Do GP Inequalities Between N Decay Rates Come About?

Let us look at an example.

This example illustrates that *P* in *any decay* always involves amplitudes *beyond* those of lowest order in the Hamiltonian.

Tree

Loop

$$\Gamma\left(N_{1} \rightarrow e^{-} + H^{+}\right) = \left|y_{e1}K_{\text{Tree}} + y_{\mu 1}^{*}y_{\mu 2}y_{e2}K_{\text{Loop}}\right|^{2}$$

Kinematical factors

$$\Gamma\left(N_1 \rightarrow e^- + H^+\right) = \left|y_{e1}K_{\text{Tree}} + y_{\mu 1}^* y_{\mu 2} y_{e2}K_{\text{Loop}}\right|^2$$

When we go to the CP-mirror-image decay, $N_1 \rightarrow e^+ + H^-$, all the coupling constants get complex conjugated, but the kinematical factors do not change.

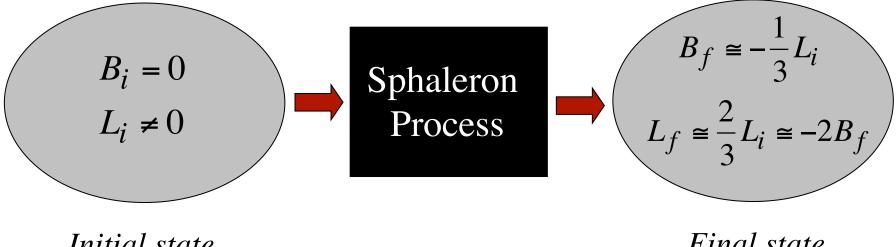
$$\Gamma(N_1 \to e^+ + H^-) = \left| y_{e1}^* K_{\text{Tree}} + y_{\mu 1} y_{\mu 2}^* y_{e2}^* K_{\text{Loop}} \right|^2$$

All three ingredients needed for *CP* are present.

$$\Gamma\left(N_{1} \rightarrow e^{-} + H^{+}\right) - \Gamma\left(N_{1} \rightarrow e^{+} + H^{-}\right)$$
$$= 4 \operatorname{Im}\left(y_{e1}^{*} y_{\mu 1}^{*} y_{e 2} y_{\mu 2}\right) \operatorname{Im}\left(K_{\mathrm{Tree}} K_{\mathrm{Loop}}^{*}\right)$$

The inequalities —

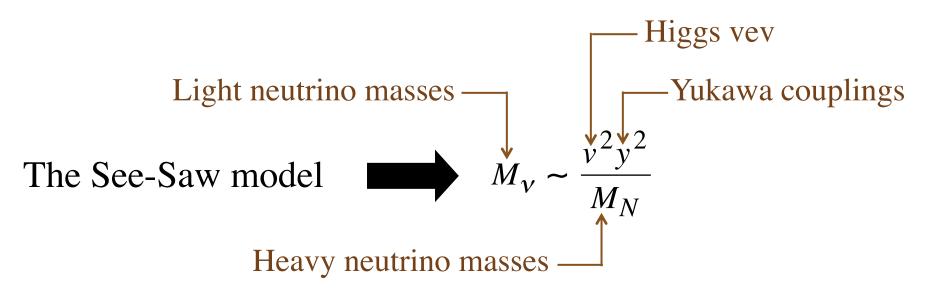
$$\Gamma\left(N \to \ell^{-} + H^{+}\right) \neq \Gamma\left(N \to \ell^{+} + H^{-}\right)$$
and
$$\Gamma\left(N \to \ell^{+} + H^{0}\right) \neq \Gamma\left(N \to \overline{L} + \overline{H^{0}}\right)$$


$$\Gamma\left(N \to \nu + H^0\right) \neq \Gamma\left(N \to \overline{\nu} + H^0\right)$$

violate CP in the leptonic sector, and violate lepton number L.

Starting with a universe with L = 0, these decays would have produced one with $L \neq 0$.

Next —


The Standard-Model *Sphaleron* process, which does not conserve Baryon Number *B*, or Lepton Number L, but does conserve B - L, acts.

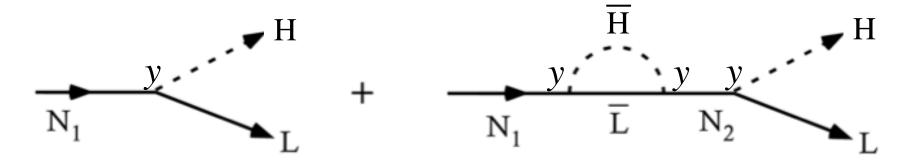
Initial state from N decays Final state

There is now a nonzero Baryon Number B. *There are baryons, but ~ no antibaryons.* **Reasonable couplings y give the observed value of** \mathcal{B} .

What *N* masses are required?

The light neutrino masses $M_{\nu} \sim 0.1$ eV.

v = 174 GeV.

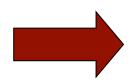

 y^2 is constrained by the observed Baryon Number per unit volume. The CP-violating asymmetry between the N decay rates,

$$v \text{ or } \ell^{-} \longrightarrow H^{0} \text{ or } H^{+}$$

$$\varepsilon_{CP} = \frac{\Gamma(N \to LH) - \Gamma(N \to \overline{L}\overline{H})}{\Gamma(N \to LH) + \Gamma(N \to \overline{L}\overline{H})} ,$$

which produces a nonzero Lepton Number,

arises from interference between diagrams such as —


Note ε_{CP} is $\propto (y^4/y^2) = y^2$.

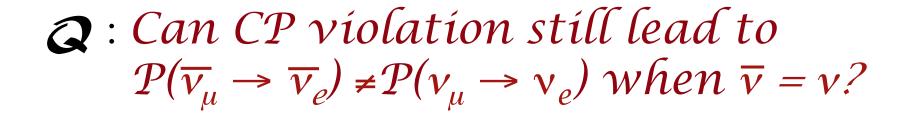
Getting the observed Baryon Number requires $y^2 \sim 10^{-5}$.

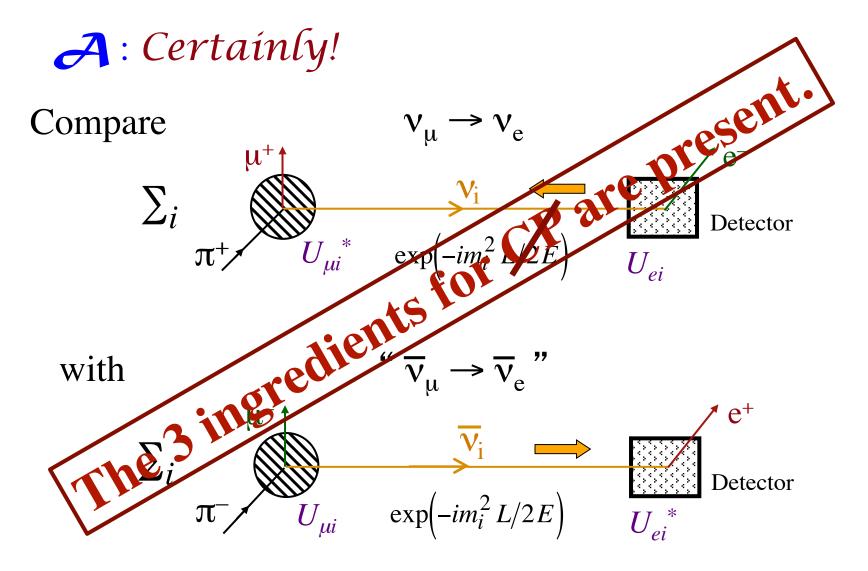
Then the see-saw relation —

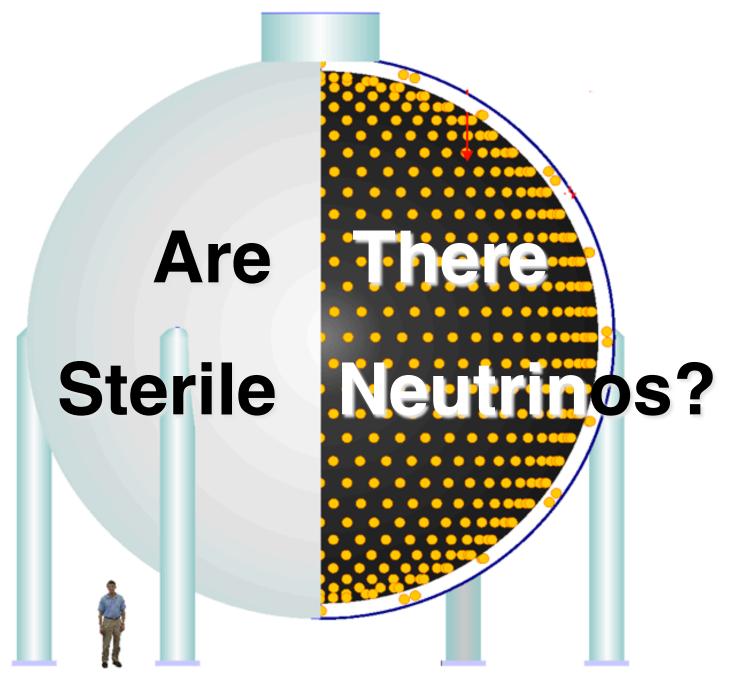
$$M_{\nu} \sim \frac{v^2 y^2}{M_N}$$

 $M_N \sim 10^{(9-10)} \text{ GeV.}$

The heavy neutrinos N cannot be produced at the LHC.



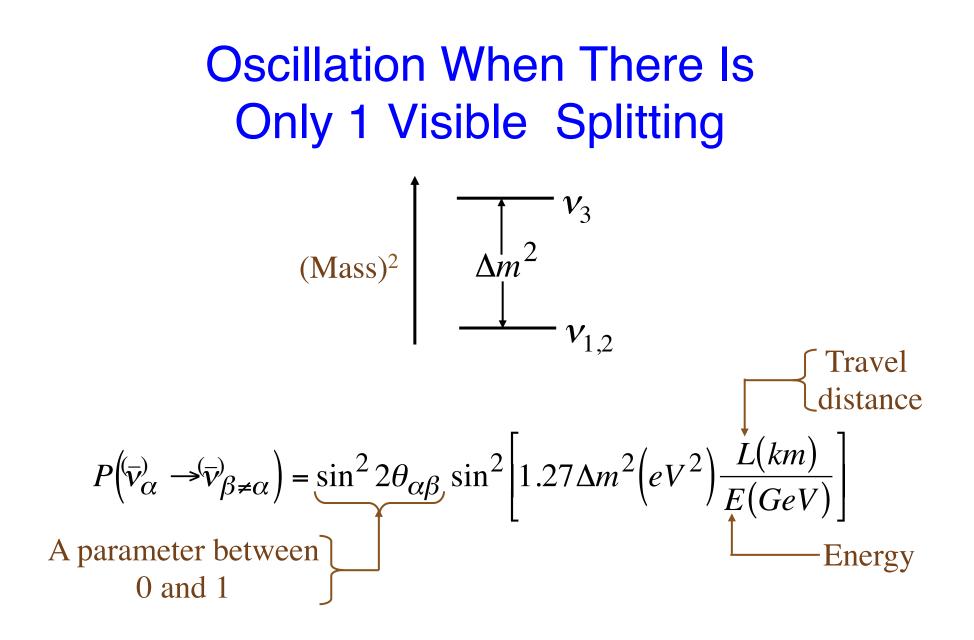

The possibility of Leptogenesis must be explored through experiments with the light neutrinos v.

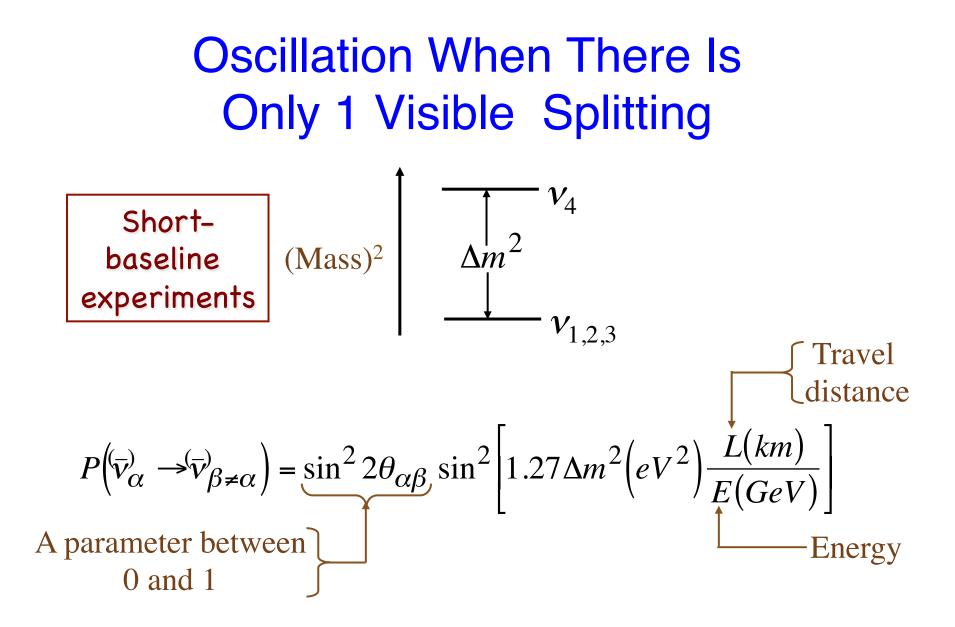

Generically, leptogenesis and light-neutrino *CP* imply each other.

They both come from phases in the Yukawa coupling matrix y.

Looking the other way: If the oscillation CP phase δ proves to be large, it could explain almost the entire Baryon – Antibaryon asymmetry by itself. (Pascoli, Petcov, Riotto) Experiments to look for CF in light-neutrino oscillation are being contemplated in Europe, Japan, and the US.

Sterile Neutrino One that does not couple to the SM W or Z boson

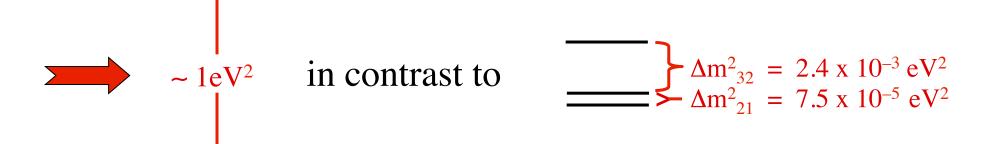

A "sterile" neutrino may well couple to some non-SM particles. These particles could perhaps be found at LHC or elsewhere. The heavy See-Saw partner neutrinos N_i interact with the rest of the world only through the Yukawa coupling —


$$\mathcal{L}_{\text{Yukawa}} = \sum_{\substack{\alpha = e, \mu, \tau \\ i = 1, 2, 3}} y_{\alpha i} \begin{bmatrix} \overline{v}_{\alpha L} \overline{H^0} - \overline{\ell}_{\alpha L} H^- \end{bmatrix} N_{iR} + h.c.$$
SM lepton doublet
SM lepton doublet

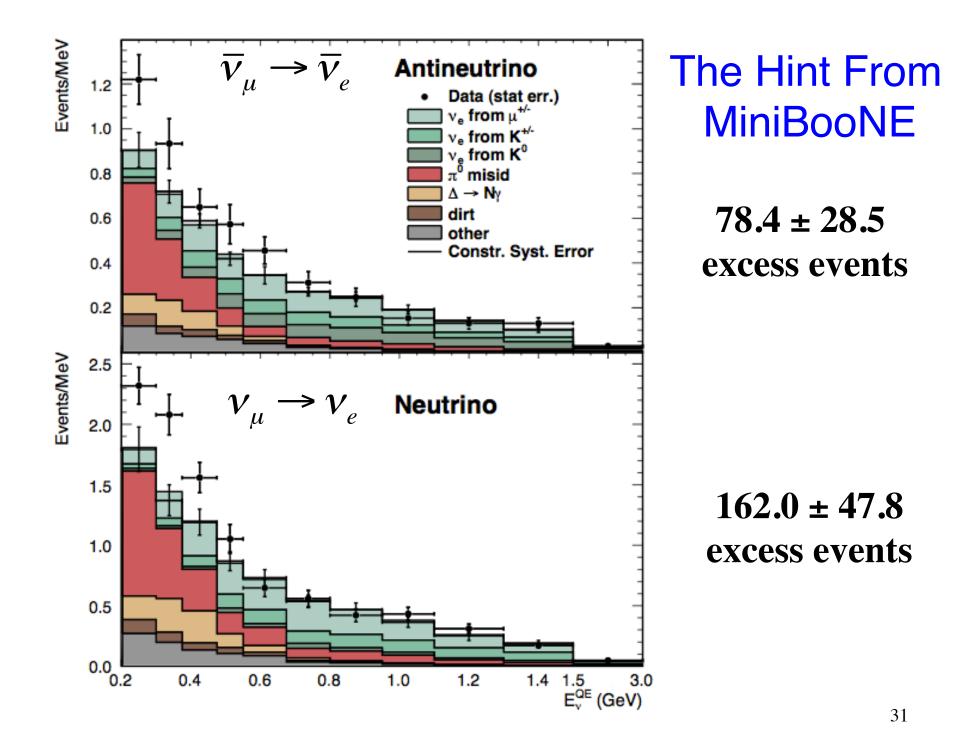
The N_i do not couple to the SM *W* or *Z* boson.

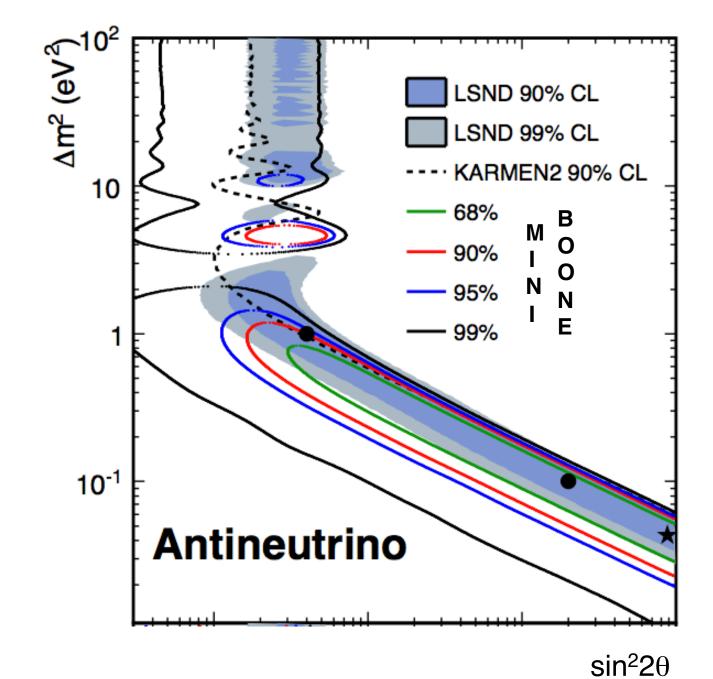
 \therefore The N_i are sterile neutrinos.

Are there also *light* sterile neutrinos with masses ~ 1 eV?



The Hint From LSND

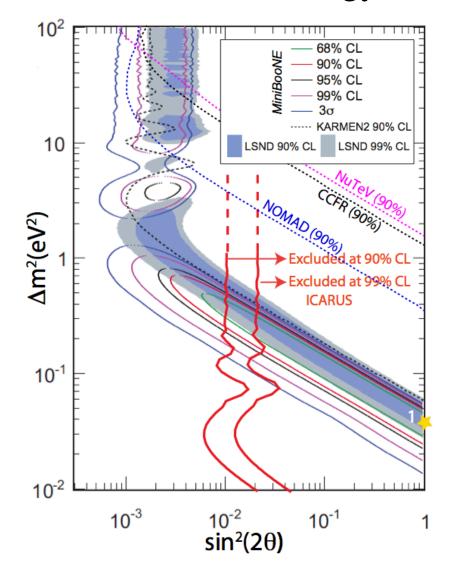

The LSND experiment at Los Alamos reported a *rapid* $\bar{v}_{\mu} \rightarrow \bar{v}_{e}$ oscillation at $L(km)/E(GeV) \sim 1$.


$$P(\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}) = \sin^{2} 2\theta \sin^{2} \left[1.27 \Delta m^{2} \left(eV^{2} \right) \frac{L(km)}{E(GeV)} \right] \sim 0.26\%$$

From μ^{+} decay at rest; E ~ 30 MeV

At least 4 mass eigenstates

from measured $\Gamma(Z \rightarrow v\bar{v})$ At least 1 sterile neutrino



MiniBooNE and LSND allowed regions overlap.

> Two-level mass spectrum assumed.

From 1303.2588

ICARUS and OPERA, at $L/E \approx 35$ km/GeV, have not seen $v_{\mu} \rightarrow v_{e}$. This disfavors somewhat a $v_{\mu} \rightarrow v_{e}$ interpretation of the low-energy MiniBooNE v_{e} excess.

A Hint From Reactors

The measured \overline{v}_e flux at (10 – 100)m from reactor cores is ~ 6% below the theoretically expected value.

Are the \overline{v}_e disappearing by oscillating into another flavor?

The \overline{v}_e energy is ~ 3 MeV, so at, say, 15m, $L(m)/E(MeV) = L(km)/E(GeV) \sim 5.$

If the \overline{v}_e are oscillating away,

$$\sin^2 \left[1.27 \Delta m^2 \left(eV^2 \right) \frac{L(km)}{E(GeV)} \right] \sim 1 \quad \Longrightarrow \quad \Delta m^2 \left(eV^2 \right) \sim 1 \cdot$$

But the uncertainty in the initial flux is as big as the effect. (Hayes, et al.) 34

The Hint From ⁵¹Cr and ³⁷Ar Sources

These radioactive sources were used to test gallium solar v_e detectors.

 $\frac{\text{Measured event rate}}{\text{Expected event rate}} = 0.86 \pm 0.05$

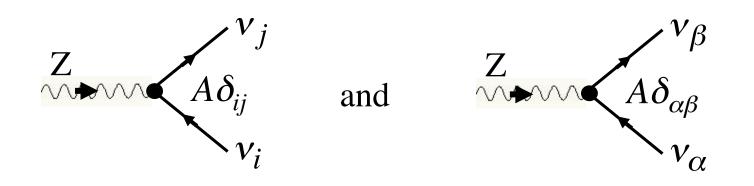
(Giunti, Laveder)

Rapid disappearance of v_e flux due to oscillation with a large Δm^2 ??

The Mixing Matrix When There Are Extra Neutrinos It's bigger.

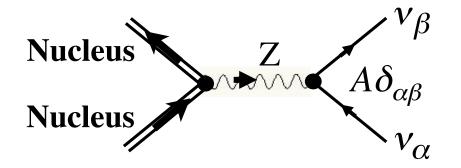
With 3 + N neutrino mass eigenstates, there can be 3 + N lepton flavors, N of them sterile. For example, for N = 3:

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \\ \nu_{s_1} \\ \nu_{s_2} \\ \nu_{s_3} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} & U_{e5} & U_{e6} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} & U_{\mu 5} & U_{\mu 6} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} & U_{\tau 5} & U_{\tau 6} \\ U_{s_1 1} & U_{s_1 2} & U_{s_1 3} & U_{s_1 4} & U_{s_1 5} & U_{s_1 6} \\ U_{s_2 1} & U_{s_2 2} & U_{s_2 3} & U_{s_2 4} & U_{s_2 5} & U_{s_3 6} \\ U_{s_3 1} & U_{s_3 2} & U_{s_3 3} & U_{s_3 4} & U_{s_3 5} & U_{s_3 6} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \\ \nu_4 \\ \nu_5 \\ \nu_6 \end{pmatrix}$$


Information From Cosmology

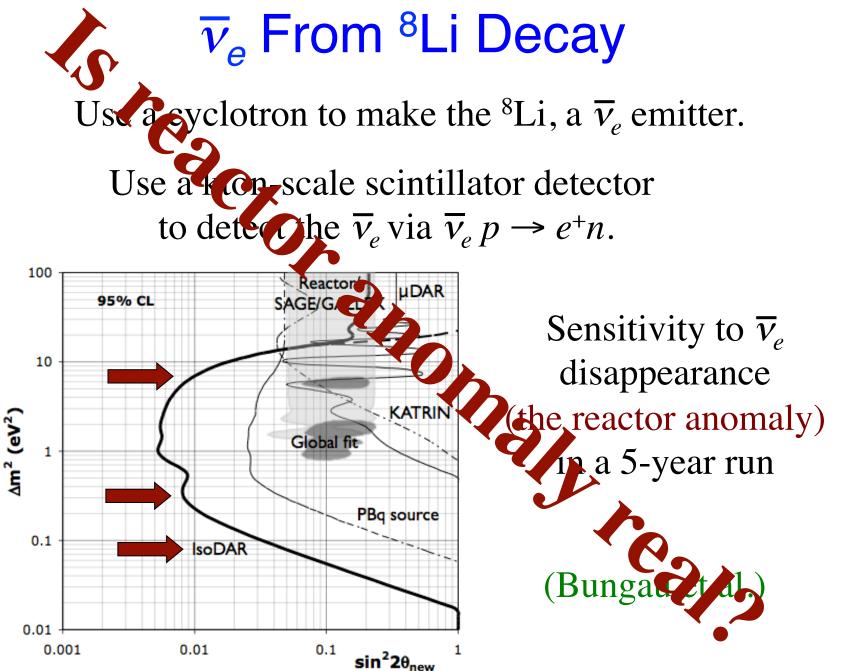
See lectures by Jenni Adams.

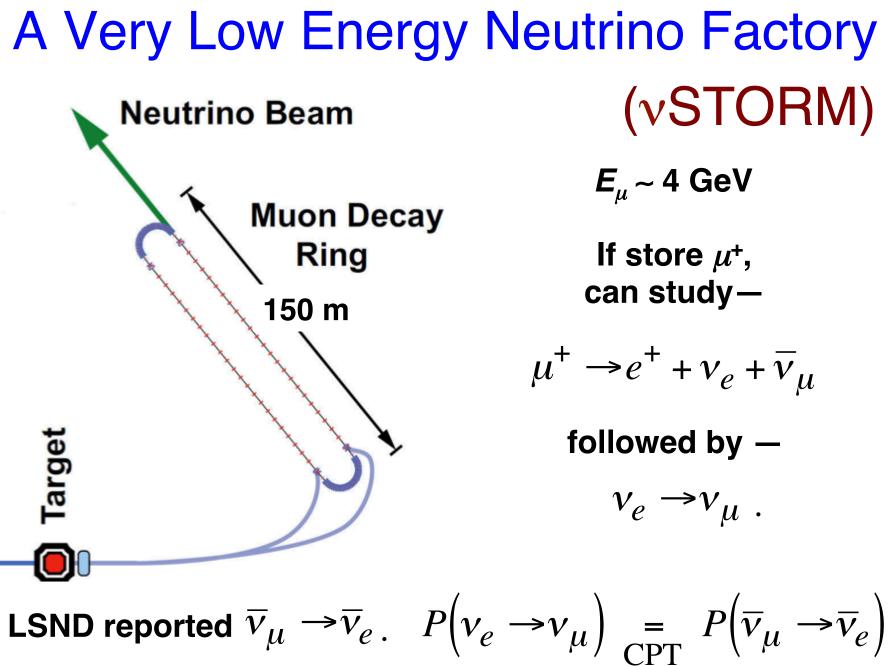
NASA Hubble Photo

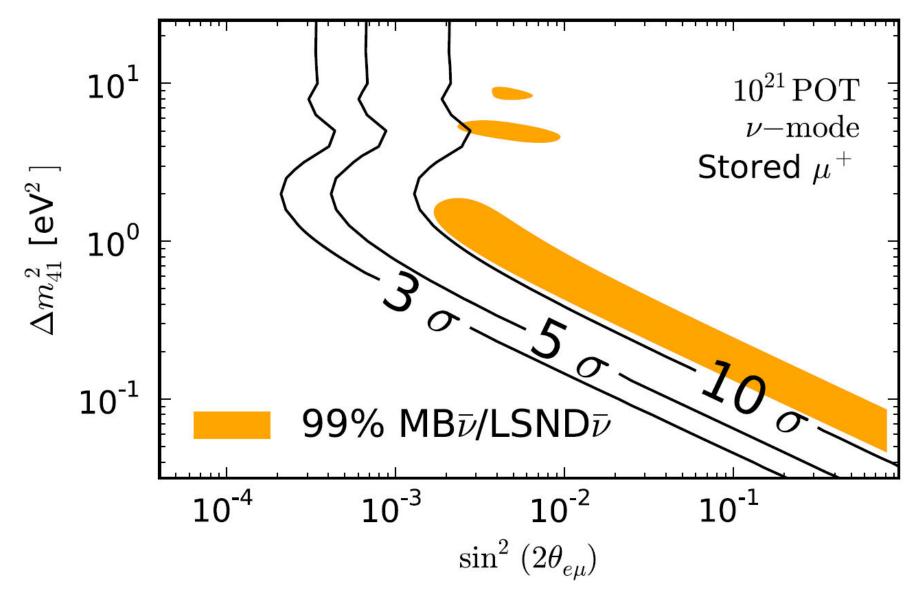

Illustrative Ideas For Future Experiments

The neutrino couplings to the Z:

Oscillation among ν_e, ν_{μ} , and ν_{τ} does not change the Neutral Current event rate.


Coherent Neutral-Current Scattering




This process has the same rate for any incoming *active* neutrino, v_e , v_μ , or v_τ .

But the Z does not couple to $v_{sterile}$.

If $v_{active} \rightarrow v_{sterile}$, the coherent scattering event rate will oscillate with it.

(Bross et al.)

References

Books

The Physics of Massive Neutrinos, B. K., with F. Gibrat-Debu and F. Perrier (World Scientific, Singapore, 1989).

Physics of Neutrinos, M. Fukugita and T. Yanagida (Springer, Berlin/Heidelberg, 2003).

Fundamentals of Neutrino Physics and Astrophysics, C. Giunti and C. Kim (Oxford University Press, Oxford, 2007).

The Physics of Neutrinos, V. Barger, D. Marfatia, and K. Whisnant (Princeton University Press, Princeton, 2012).

"Neutrino Mass, Mixing, and Oscillations," K. Nakamura and S. Petcov, in J. Beringer et al. (The Particle Data Group), Phys. Rev. D **86**, 010001 (2012). Also at <u>http://pdg.lbl.gov/2013/reviews/rpp2012-rev-neutrinomixing.pdf</u>

"Neutrino Mass, Mixing, and Flavor Change," B. K., in **Neutrino Mass**, eds. G. Altarelli and K. Winter (Springer, Berlin/Heidelberg, 2003). Also eprint hep-ph/ 0211134. This paper discusses quite a few of the topics covered in the lectures. "Neutrino Oscillation Physics," B. K., in **Proceedings of the International School on AstroParticle Physics**, eds. G. Bellini and L. Ludhova (IOS Press, Amsterdam, 2012), and in **Proceedings of the 2011 European School of High-Energy Physics**, eds. C. Grojean and M. Mulders (CERN, Geneva, 2014). Also arXiv:1206.4325. This paper derives the probability for neutrino oscillation without assuming that all neutrino mass eigenstates in a beam have the same energy, or else the same momentum.

"Light Sterile Neutrinos: A White Paper," K. Abazajian et al., arXiv:1204.5379.

