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Open ���
Questions	


Looking to the Future 	




• Do neutrino interactions ���
violate CP? ���

Is P(να → νβ) ≠ P(να → νβ) ?	


• Is CP violation involving neutrinos ���
the key to understanding the matter – 
antimatter asymmetry of the universe?	


• What can neutrinos and the universe ���
tell us about one another?	
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• Are there non-weakly-interacting ���
“sterile” neutrinos?	


• Are there more than 3 mass eigenstates?	


• Do neutrinos break the rules?	

• Non-Standard-Model interactions?	

• Violation of Lorentz invariance?	

• Violation of CPT invariance?	

• Departures from quantum mechanics?	
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The heavy neutrinos N and the Origin of the Matter-
Antimatter Asymmetry.	
The Heavy Neutrinos N, ���

CP Violation, ���
and the Origin of the ���

Matter-Antimatter Asymmetry 
of the Universe	
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Today: B ≡ #(Baryons) – #(Antibaryons) ≠ 0.	


Standard cosmology: Right after the Big Bang, B = 0. 	


  How did B = 0             B ≠ 0 ?


The Cosmic Puzzle!

Also, L ≡ #(Leptons) – #(Antileptons) = 0. 	


Sakharov: B = 0             B ≠ 0 requires C and CP. 	
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The CP in the quark mixing matrix, seen in B and K decays, 
leads to much too small a B – B asymmetry.	


The candidate scenario: Leptogenesis, a very 
natural consequence of the See-Saw picture.	


(Fukugita, Yanagida)	


If quark CP cannot generate the observed ���
B – B asymmetry, can some scenario ���

involving leptons do it?	


C is easy to achieve, but the required 
degree and kind of CP is harder.	
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The straightforward (type-I) See-Saw model ���
adds to the SM 3 heavy neutrinos Ni, with —	


L new = −
1
2

mNi
NiR

c NiR +
i
∑ yαi ναL H

0 − ℓαLH
−#

$
%
&NiR

α=e,µ,τ
i =1,2,3

∑ + h. c.

SM Higgs ���
doublet	


SM lepton doublet	


Large 
Majorana 

masses	


Yukawa coupling matrix	


Charge conjugate	


The Yukawa interaction causes the decays — 	


N→ ℓ− +H +

N→ν +H 0 N→ν +H 0

N→ ℓ+ +H −,	
 ,	


,	
 .	

N = N, so the decays in each line 

are C and CP mirror images.	
(	
 (	
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Phases in the Yukawa coupling matrix y ���
would have led to C and CP effects.	


In particular, such phases would have led to —	


The Ni are heavy, but they would have been made 
during the hot Big Bang.	


They would then have quickly decayed ���
via the decay modes we just identified. 	


  

€ 

Γ N →ℓ− +H+( ) ≠ Γ N →ℓ+ +H−( )

€ 

Γ N →ν +H0( ) ≠ Γ N →ν +H0& 
' 
( ) 

* 
+ 

and	
 C and CP	
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How Phases Lead To 
CP Non-Invariance 
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For example, an interference between ���
two Feynman diagrams.	


CP always comes from phases.	


Therefore, CP always requires an interference 
between (at least) two amplitudes.	


Let us consider how a CP-violating rate difference    
between two CP-mirror-image processes, such as ���

                    and                    , arises.	


€ 

B+ →D0K+

€ 

B− →D 0K−
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Suppose some process P has the amplitude —	


€ 

A = M1e
iθ1e−iδ1 + M2e

iθ2e−iδ2

€ 

A = M1e
iθ1eiδ1 + M2e

iθ2eiδ2

CP-even ���
“strong” phase	


CP-invariant ���
magnitude	


Then the CP-mirror-image process P ���
has the amplitude —	


€ 

Γ −Γ = A 2 − A 2 = 4M1M2 sin θ1 −θ2( )sin δ1 −δ2( )

Then the rates for P and P differ by —	


CP-odd “weak” phase ���
from constants 	
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A CP-violating rate difference  
requires 3 ingredients: 

• Two interfering amplitudes	

• These two amplitudes must have different CP-even phases	

• These two amplitudes must have different CP-odd phases	


€ 

Γ −Γ = A 2 − A 2 = 4M1M2 sin θ1 −θ2( )sin δ1 −δ2( )
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How Do CP Inequalities Between 
N Decay Rates Come About?!

Let us look at an example.	


This example illustrates that CP in any decay ���
always involves amplitudes beyond those ���

of lowest order in the Hamiltonian. 	
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N1	


H+	


ye1	


e	


yµ1
*	
 yµ2	


N1	
 N2	


H+	


ye2	
+	


H	


+	
µ	
e	


  

€ 

From ye1ℓeH
−N1

  

€ 

From yµ1
* N1H

+ℓµ

Tree	
 Loop	


€ 

Γ N1→e− +H+( ) = ye1KTree + yµ1
* yµ2ye2KLoop

2

Kinematical factors	
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€ 

Γ N1→e− +H+( ) = ye1KTree + yµ1
* yµ2ye2KLoop

2

When we go to the CP-mirror-image decay,                      ,  ���
all the coupling constants get complex conjugated, but the 
kinematical factors do not change.	


€ 

N1→e+ +H−

€ 

Γ N1→e+ +H−( ) = ye1
* KTree + yµ1yµ2

* ye2
* KLoop

2

All three ingredients needed for CP are present. 	


€ 

Γ N1→e− +H+( ) −Γ N1→e+ +H−( )
= 4 Im ye1

* yµ1
* ye2yµ2( )Im KTreeKLoop

*( )
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€ 

Γ N →ℓ− +H+( ) ≠ Γ N →ℓ+ +H−( )

€ 

Γ N →ν +H0( ) ≠ Γ N →ν +H0& 
' 
( ) 

* 
+ 

and	


Starting with a universe with L = 0, ���
these decays would have produced one with L ≠ 0.	


violate CP in the leptonic sector, ���
and violate lepton number L.	


The inequalities —	
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There is now a nonzero Baryon Number B. 	


Next —	

The Standard-Model Sphaleron process, ���

which does not conserve Baryon Number B, ���
or Lepton Number L, but does conserve B – L, acts.	


€ 

Bi = 0
Li ≠ 0

€ 

Bf ≅ −
1
3
Li

L f ≅
2
3
Li ≅ −2Bf

Sphaleron ���
Process	


Initial state ���
from N decays	


Final state	


There are baryons, but ∼ no antibaryons.	

Reasonable couplings y give the observed value of B.	
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What N masses are required?	


The light neutrino masses Mν ∼ 0.1 eV. 	


y2 is constrained by the observed ���
Baryon Number per unit volume.	


v = 174 GeV.	


€ 

Mν
v2y2

MN
∼	
The See-Saw model	


Light neutrino masses	


Heavy neutrino masses	


Higgs vev	


Yukawa couplings	
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y	
y	
 y	
 y	

H HH	


The CP-violating asymmetry between the N decay rates,	


€ 

εCP ≡
Γ N →LH( ) −Γ N →L H ( )
Γ N →LH( ) +Γ N →L H ( )

ν or ℓ–	
 H0 or H+	


,	


arises from interference between diagrams such as —  	


Note εCP is ∝ (y4/y2) = y2. 	


Getting the observed Baryon Number requires y2
 ∼ 10–5. 	


which produces a nonzero Lepton Number, 	
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Then the see-saw relation —	


The heavy neutrinos N cannot ���
be produced at the LHC.  	


€ 

Mν
v2y2

MN
∼	


MN ∼ 10(9 – 10) GeV. 	


The possibility of Leptogenesis must be explored 
through experiments with the light neutrinos ν. 	
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Generically, leptogenesis and ���
light-neutrino CP imply each other. 	


They both come from phases in the 
Yukawa coupling matrix y. 	


Looking the other way: If the oscillation 
CP phase δ proves to be large, it could 

explain almost the entire Baryon – 
Antibaryon asymmetry by itself. 	


(Pascoli, Petcov, Riotto)	
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Experiments to look for CP ���
in light-neutrino oscillation ���
 are being contemplated in ���
Europe, Japan, and the US.	
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Q : Can CP violation still lead to  
P(νµ → νe) ≠P(νµ → νe) when ν = ν?   

Detector	


e+	

“ νµ → νe ”	


ν	

π–	


Detector	


e–	
µ+	

νµ → νe	


π+	


ν	


µ–	


Compare	


with	


A : Certainly!	


Uµi
*	


Uµi	
 Uei
*	


Uei	


€ 

i∑

€ 

i∑

€ 

exp −imi
2 L 2E( )

€ 

exp −imi
2 L 2E( )
i	


i	
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Are    There!

Sterile   Neutrinos?!
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Sterile Neutrino ���
One that does not couple ���
to the SM W or Z boson	


A “sterile” neutrino may well couple 
to some non-SM particles. These 

particles could perhaps be found at 
LHC or elsewhere. 
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The heavy See-Saw partner neutrinos Ni interact with the 
rest of the world only through the Yukawa coupling —	


    

€ 

LYukawa = yαi ν αLH
0 − ℓ αLH

−% 
& ' 

( 
) * NiRα=e,µ,τ

i = 1,2,3

∑ + h.c.

SM Higgs ���
doublet	


SM lepton doublet	


Yukawa coupling matrix	


The Ni do not couple to the SM W or Z boson.	


∴ The Ni are sterile neutrinos.	


Are there also light sterile neutrinos with masses ∼ 1 eV?	
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Oscillation When There Is  
Only 1 Visible  Splitting!

€ 

Δm2(Mass)2	


ν3	


€ 

P να →νβ≠α( ) = sin2 2θαβ sin
2 1.27Δm2 eV 2( ) L km( )

E GeV( )
) 

* 
+ 

, 

- 
. 

Energy	


Travel 
distance	


(–)	
 (–)	


A parameter between 
0 and 1 	


ν1,2	
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Oscillation When There Is  
Only 1 Visible  Splitting!

€ 

P να →νβ≠α( ) = sin2 2θαβ sin
2 1.27Δm2 eV 2( ) L km( )

E GeV( )
) 

* 
+ 

, 

- 
. 

Energy	
A parameter between 
0 and 1 	


Travel 
distance	


(–)	
 (–)	


€ 

Δm2(Mass)2	


ν4	
Short-
baseline 

experiments

ν1,2,3	
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The Hint From LSND!

∼ 1eV2	
 in contrast to	

>	
 Δm2

21  =  7.5 x 10–5  eV2	

Δm2

32  =  2.4 x 10–3 eV2	


At least 4 mass eigenstates   	


The LSND experiment at Los Alamos reported a ���
rapid                oscillation at L(km)/E(GeV) ∼ 1. 	


€ 

ν µ →ν e

{from measured Γ(Z → νν)} At least 1 sterile neutrino	


€ 

P νµ → νe( ) = sin2 2θ sin2 1.27Δm2 eV 2( ) L km( )
E GeV( )

& 

' 
( 

) 

* 
+ ∼ 0.26%	


From µ+ decay at rest; E ∼ 30 MeV 	
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The Hint From 
MiniBooNE!

νµ →νe

νµ →νe

78.4 ± 28.5 
excess events	


162.0 ± 47.8 
excess events 	
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M
I
N
I!

B
O
O
N
E

sin22θ!

MiniBooNE 
and LSND 

allowed 
regions 
overlap.	


Two-level 
mass 

spectrum 
assumed.	


From 1303.2588	
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ICARUS and OPERA, at L/E ≈ 35 km/GeV, have not 
seen                . This disfavors somewhat a                 ���
interpretation of the low-energy MiniBooNE νe excess.               	


νµ →νe νµ →νe

ICARUS 
exclusion	
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A Hint From Reactors!
The measured νe flux at (10 – 100)m from reactor cores ���

is ∼ 6% below the theoretically expected value.	


L(m)/E(MeV) = L(km)/E(GeV) ∼ 5.	


If the νe are oscillating away,                                               	


€ 

sin2 1.27Δm2 eV 2( ) L km( )
E GeV( )

# 

$ 
% 

& 

' 
( ∼ 1	


€ 

Δm2 eV 2( ) ∼ 1	
.	


Are the νe disappearing by oscillating into another flavor?	


The νe energy is ∼ 3 MeV, so at, say, 15m, 	


But the uncertainty in the initial flux is as big as the effect.	

(Hayes, et al.)	
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The Hint From 51Cr and 37Ar Sources!

These radioactive sources were used ���
to test gallium solar νe detectors. 	


€ 

Measured event rate
Expected event rate

= 0.86 ±  0.05

(Giunti, Laveder)	


Rapid disappearance of νe flux ���
due to oscillation with a large Δm2?? 	
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The Mixing Matrix When  
There Are Extra Neutrinos!

It’s bigger.	

With 3 + N neutrino mass eigenstates, there can be 3 + N ���
lepton flavors, N of them sterile. For example, for N = 3: 	
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NASA Hubble Photo!

See lectures by Jenni Adams.	


Information���
From Cosmology	
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Illustrative Ideas 
For Future 

Experiments	
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and	

Z	


€ 

νi
€ 

ν j
Z	


€ 

να
€ 

νβ

The neutrino couplings to the Z:	


Oscillation among νe, νµ, and ντ ���
does not change the Neutral Current event rate. 	


Aδij	
 Aδαβ	




40	


Coherent Neutral-Current Scattering!

Z	


€ 

να
€ 

νβ

Nucleus	


Nucleus	


This process has the same rate for any ���
incoming active neutrino,  νe, νµ, or ντ .	


But the Z does not couple to νsterile . 	


If νactive → νsterile , the coherent scattering ���
event rate will oscillate with it.  	


Aδαβ	
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νe From 8Li Decay!
Use a cyclotron to make the 8Li, a νe emitter.	


Use a kton-scale scintillator detector ���
to detect the νe via νe p → e+n.	


Sensitivity to νe 
disappearance ���

(the reactor anomaly) ���
in a 5-year run 	


(Bungau et al.)	
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A Very Low Energy Neutrino Factory!

Eµ ∼ 4 GeV!

If store µ+,  
can study— 	


€ 

µ+ →e+ +νe +ν µ

€ 

νe →νµ

followed by —!

€ 

P νe →νµ( ) = P ν µ →ν e( )CPT	


€ 

ν µ →ν eLSND reported ! .	


.	


(νSTORM)	


150 m!
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(Bross et al.)	
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Good luck! 


