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• rotation by 120° 
anti-clockwise               
(seen from a 
vertex)
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A4 Family Symmetry

� = (�1,�2,�3) ⇠ 3

L = (L1, L2, L3) ⇠ 3
Higgs which break family symmetry called “flavons”

Lepton  doublets of SU(2)L form triplets of A4

“Flavon” VEVs with various “vacuum alignments” 
control the Yukawa couplings 

⌫R(L.�)H = ⌫R(L1�1 + L2�2 + L3�3)H

Neutrino Yukawa couplings involve L.� ⇠ 1
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Direct Model Building 

Figure 10: Possible strategies for constructing direct models after Daya Bay and RENO. Adopting
small family symmetriesG which predict simple leading order (LO) mixing patters with θ13 = 0 (e.g.
S4, A5), requires higher order (HO) corrections. Larger family symmetries can give rise to richer
LO mixing patterns with non-zero θ13 (e.g. ∆(96)). The A4 family symmetry refers to the semi-
direct case as discussed in the text. In this diagram, we have used the acronyms BT=bi-trimaximal,
TB=tri-bimaximal, BM=bimaximal, GR=golden ratio, TM=trimaximal.

can be perturbed by higher order effects (not shown explicitly in Fig. 10). In general,

higher order corrections are guaranteed to perturb the leading order structure by only

small contributions. The breaking of the leading order structure can happen either in the

charged lepton or the neutrino sector. The former entails charged lepton corrections of the

simple leading order mixing patterns, which give rise to solar mixing sum rules as discussed

in Subsection 3.5. If the breaking occurs in the neutrino sector, it is possible to break either

one or both Z2 factors of the leading order Klein symmetry. As the U symmetry typically

enforces θ13 = 0 in these models, it is necessary to break U in either case. Demanding S

to remain a good symmetry at higher order, gives rise to atmospheric mixing sum rules,

see Subsection 3.6, while breaking also S leads to arbitrary and unpredictive higher order

corrections. In Subsection 10.2 we will present a concrete S4×SU(5) model of tri-bimaximal

mixing at leading order, augmented by higher order corrections which break U but not S.

This model yields the trimaximal neutrino mixing pattern TM2, see Eq. (3.32), which can

accommodate a sizable reactor angle.

The second strategy of constructing direct models compatible with a sizable reactor

angle makes use of larger groups such as ∆(96), see left branch of Fig. 10. Such groups are

capable of predicting richer leading order mixing patterns (e.g. bi-trimaximal mixing [31])

as they contain non-standard Klein symmetries, generated by more complicated forms

of the elements S and/or U [108, 109]. As before, higher order effects can correct these
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Indirect Models (cont’d)
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Figure 13: Some possible candidate unified gauge groups.

decompose into multiplets of the SM gauge group SU(3)C×SU(2)L×U(1)Y as F = (dc, L),

corresponding to,

5 = (3,1, 1/3) ⊕ (1,2,−1/2), (9.2)

and T = (uc, Q, ec), corresponding to,

10 = (3,1,−2/3) ⊕ (3,2, 1/6) ⊕ (1,1, 1). (9.3)

Thus a complete quark and lepton SM family (Q,uc, dc, L, ec) is accommodated in the

F = 5 and T = 10 representations, with right-handed neutrinos, whose CP conjugates are

denoted as νc, being singlets of SU(5), νc = 1. The Higgs doublets Hu and Hd which break

electroweak symmetry in a two Higgs doublet model are contained in the SU(5) multiplets

H5 and H
5
.

The Yukawa couplings for one family of quarks and leptons are given by,

yuH5iTjkTlmεijklm + yνH5iF
iνc + ydH

i
5
TijF

j , (9.4)

where εijklm is the totally antisymmetric tensor of SU(5) with i, j, j, k, l = 1, . . . , 5, which

decompose into the SM Yukawa couplings

yuHuQuc + yνHuLν
c + yd(HdQdc +Hde

cL). (9.5)
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Figure 1: A to Z of flavour with Pati-Salam, where A ⌘ A4 and Z ⌘ Z5. The left-handed families
form a triplet of A4 and are doublets of SU(2)L. The right-handed families are distinguished by Z5

and are doublets of SU(2)R. The SU(4)C unifies the quarks and leptons with leptons as the fourth
colour, depicted here as white.

2 Overview of the model

2.1 Symmetries of the model

The model is based on the Pati-Salam gauge group [26], with A
4

⇥Z
5

family symmetry,

SU(4)C ⇥ SU(2)L ⇥ SU(2)R ⇥ A
4

⇥ Z
5

. (1)

The quarks and leptons are unified in the PS representations as follows,
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! (Qi, Li),

F c
i = (4̄, 1, 2)i =

✓
uc uc uc ⌫c

dc dc dc ec

◆

i

! (uc
i , d

c
i , ⌫

c
i , e

c
i), (2)

where the SM multiplets Qi, Li, uc
i , d

c
i , ⌫

c
i , e

c
i resulting from PS breaking are also shown

and the subscript i (= 1, 2, 3) denotes the family index. The left-handed quarks and
leptons form an A

4

triplet F , while the three (CP conjugated) right-handed fields F c
i are

A
4

singlets, distinguished by Z
5

charges ↵,↵3, 1, for i = 1, 2, 3, respectively. Clearly the
Pati-Salam model cannot be embedded into an SO(10) Grand Unified Theory (GUT)
since di↵erent components of the 16-dimensional representation of SO(10) would have
to transform di↵erently under A

4

⇥Z
5

, which is impossible. On the other hand, the PS
gauge group and A

4

could emerge directly from string theory (see e.g. [28]).

2.2 Pati-Salam breaking

The Pati-Salam gauge group is broken at the GUT scale to the SM,

SU(4)C ⇥ SU(2)L ⇥ SU(2)R ! SU(3)C ⇥ SU(2)L ⇥ U(1)Y , (3)

4
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name field SU(4)C ⇥ SU(2)L ⇥ SU(2)R A
4

Z
5

R

Quarks F (4, 2, 1) 3 1 1
and leptons F c

1,2,3 (4, 1, 2) 1 ↵,↵3,1 1
PS Higgs Hc, Hc (4, 1, 2), (4, 1, 2) 1 1 0
A

4

triplet �u
1,2 (1, 1, 1) 3 ↵4,↵2 0

flavons �d
1,2 (1, 1, 1) 3 ↵3,↵ 0
h
3

(1, 2, 2) 3 1 0
Higgs hu (1, 2, 2) 100 ↵ 0

bidoublets hd,hd
15

(1, 2, 2), (15, 2, 2) 10 ↵3,↵4 0
hu
15

(15, 2, 2) 1 ↵ 0
Dynamical ⌃u (1, 1, 1) 100 ↵ 0
masses ⌃d,⌃d

15

(1, 1, 1), (15, 1, 1) 10 ↵3,↵2 0
Majoron ⇠ (1, 1, 1) 1 ↵4 0

XF 00
1,3

(4, 2, 1) 100 ↵,↵3 1
Fermion XF 0

1,3
(4, 2, 1) 10 ↵,↵3 1

Messengers XFi
(4, 2, 1) 1 ↵i 1

X⇠i (1, 1, 1) 1 ↵i 1

Table 1: The basic Higgs, matter, flavon and messenger content of the model, where ↵ = e2⇡i/5 under
Z5. R is a supersymmetric R-symmetry.

The messengers couple to each other and become heavy via the dynamical mass fields
⌃ which appear in Table 1,

XF 0
1
⌃uXF 3

+XF 0
3
⌃uXF 1

+XF 00
1
(⌃dXF 1

+ ⌃d
15

XF 2
) +XF 00

3
⌃dXF 4

. (21)

The leading order operators responsible for the Yukawa couplings involving the first
and second families to Higgs fields are obtained by integrating out the heavy messengers,
leading to e↵ective operators.

The diagrams in Fig.2 yield the following operators which will be responsible for the
up-type quark and neutrino Yukawa couplings,

W u
Y uk = F.

�u
1

⌃u

huF
c
1

+ F.
�u
2

⌃u

huF
c
2

+ F.h
3

F c
3

. (22)

The above operators are similar to those in Eq.16 and will yield a Yukawa matrix
Y u = Y ⌫ as in Eq.18.

The diagrams in Fig.3 yield the operators which will be responsible for the diagonal
down-type quark and charged lepton Yukawa couplings,

W d,diag
Y uk = F.

�d
1

⌃d
15

hdF
c
1

+ F.
�d
2

⌃d

hd
15

F c
2

+ F.h
3

F c
3

. (23)
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Z5. R is a supersymmetric R-symmetry.

The messengers couple to each other and become heavy via the dynamical mass fields
⌃ which appear in Table 1,

XF 0
1
⌃uXF 3

+XF 0
3
⌃uXF 1

+XF 00
1
(⌃dXF 1

+ ⌃d
15

XF 2
) +XF 00

3
⌃dXF 4

. (21)

The leading order operators responsible for the Yukawa couplings involving the first
and second families to Higgs fields are obtained by integrating out the heavy messengers,
leading to e↵ective operators.

The diagrams in Fig.2 yield the following operators which will be responsible for the
up-type quark and neutrino Yukawa couplings,

W u
Y uk = F.

�u
1

⌃u

huF
c
1

+ F.
�u
2

⌃u

huF
c
2

+ F.h
3

F c
3

. (22)

The above operators are similar to those in Eq.16 and will yield a Yukawa matrix
Y u = Y ⌫ as in Eq.18.

The diagrams in Fig.3 yield the operators which will be responsible for the diagonal
down-type quark and charged lepton Yukawa couplings,

W d,diag
Y uk = F.

�d
1

⌃d
15

hdF
c
1

+ F.
�d
2

⌃d

hd
15

F c
2

+ F.h
3

F c
3

. (23)
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name field SU(4)C ⇥ SU(2)L ⇥ SU(2)R A
4

Z
5

R

Quarks F (4, 2, 1) 3 1 1
and leptons F c

1,2,3 (4, 1, 2) 1 ↵,↵3,1 1
PS Higgs Hc, Hc (4, 1, 2), (4, 1, 2) 1 1 0
A

4

triplet �u
1,2 (1, 1, 1) 3 ↵4,↵2 0

flavons �d
1,2 (1, 1, 1) 3 ↵3,↵ 0
h
3

(1, 2, 2) 3 1 0
Higgs hu (1, 2, 2) 100 ↵ 0

bidoublets hd,hd
15

(1, 2, 2), (15, 2, 2) 10 ↵3,↵4 0
hu
15

(15, 2, 2) 1 ↵ 0
Dynamical ⌃u (1, 1, 1) 100 ↵ 0
masses ⌃d,⌃d

15

(1, 1, 1), (15, 1, 1) 10 ↵3,↵2 0
Majoron ⇠ (1, 1, 1) 1 ↵4 0

XF 00
1,3

(4, 2, 1) 100 ↵,↵3 1
Fermion XF 0

1,3
(4, 2, 1) 10 ↵,↵3 1

Messengers XFi
(4, 2, 1) 1 ↵i 1

X⇠i (1, 1, 1) 1 ↵i 1

Table 1: The basic Higgs, matter, flavon and messenger content of the model, where ↵ = e2⇡i/5 under
Z5. R is a supersymmetric R-symmetry.

The messengers couple to each other and become heavy via the dynamical mass fields
⌃ which appear in Table 1,

XF 0
1
⌃uXF 3

+XF 0
3
⌃uXF 1

+XF 00
1
(⌃dXF 1

+ ⌃d
15

XF 2
) +XF 00

3
⌃dXF 4

. (21)

The leading order operators responsible for the Yukawa couplings involving the first
and second families to Higgs fields are obtained by integrating out the heavy messengers,
leading to e↵ective operators.

The diagrams in Fig.2 yield the following operators which will be responsible for the
up-type quark and neutrino Yukawa couplings,

W u
Y uk = F.

�u
1

⌃u

huF
c
1

+ F.
�u
2

⌃u

huF
c
2

+ F.h
3

F c
3

. (22)

The above operators are similar to those in Eq.16 and will yield a Yukawa matrix
Y u = Y ⌫ as in Eq.18.

The diagrams in Fig.3 yield the operators which will be responsible for the diagonal
down-type quark and charged lepton Yukawa couplings,

W d,diag
Y uk = F.

�d
1

⌃d
15

hdF
c
1

+ F.
�d
2

⌃d

hd
15

F c
2

+ F.h
3

F c
3

. (23)
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name field SU(4)C ⇥ SU(2)L ⇥ SU(2)R A
4

Z
5

R

Quarks F (4, 2, 1) 3 1 1
and leptons F c

1,2,3 (4, 1, 2) 1 ↵,↵3,1 1
PS Higgs Hc, Hc (4, 1, 2), (4, 1, 2) 1 1 0
A

4

triplet �u
1,2 (1, 1, 1) 3 ↵4,↵2 0

flavons �d
1,2 (1, 1, 1) 3 ↵3,↵ 0
h
3

(1, 2, 2) 3 1 0
Higgs hu (1, 2, 2) 100 ↵ 0

bidoublets hd,hd
15

(1, 2, 2), (15, 2, 2) 10 ↵3,↵4 0
hu
15

(15, 2, 2) 1 ↵ 0
Dynamical ⌃u (1, 1, 1) 100 ↵ 0
masses ⌃d,⌃d

15

(1, 1, 1), (15, 1, 1) 10 ↵3,↵2 0
Majoron ⇠ (1, 1, 1) 1 ↵4 0

XF 00
1,3

(4, 2, 1) 100 ↵,↵3 1
Fermion XF 0

1,3
(4, 2, 1) 10 ↵,↵3 1

Messengers XFi
(4, 2, 1) 1 ↵i 1

X⇠i (1, 1, 1) 1 ↵i 1

Table 1: The basic Higgs, matter, flavon and messenger content of the model, where ↵ = e2⇡i/5 under
Z5. R is a supersymmetric R-symmetry.

The messengers couple to each other and become heavy via the dynamical mass fields
⌃ which appear in Table 1,

XF 0
1
⌃uXF 3

+XF 0
3
⌃uXF 1

+XF 00
1
(⌃dXF 1

+ ⌃d
15

XF 2
) +XF 00

3
⌃dXF 4

. (21)

The leading order operators responsible for the Yukawa couplings involving the first
and second families to Higgs fields are obtained by integrating out the heavy messengers,
leading to e↵ective operators.

The diagrams in Fig.2 yield the following operators which will be responsible for the
up-type quark and neutrino Yukawa couplings,

W u
Y uk = F.

�u
1

⌃u

huF
c
1

+ F.
�u
2

⌃u

huF
c
2

+ F.h
3

F c
3

. (22)

The above operators are similar to those in Eq.16 and will yield a Yukawa matrix
Y u = Y ⌫ as in Eq.18.

The diagrams in Fig.3 yield the operators which will be responsible for the diagonal
down-type quark and charged lepton Yukawa couplings,

W d,diag
Y uk = F.

�d
1

⌃d
15

hdF
c
1

+ F.
�d
2

⌃d

hd
15

F c
2

+ F.h
3

F c
3

. (23)
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name field SU(4)C ⇥ SU(2)L ⇥ SU(2)R A
4

Z
5

R

Quarks F (4, 2, 1) 3 1 1
and leptons F c

1,2,3 (4, 1, 2) 1 ↵,↵3,1 1
PS Higgs Hc, Hc (4, 1, 2), (4, 1, 2) 1 1 0
A

4

triplet �u
1,2 (1, 1, 1) 3 ↵4,↵2 0

flavons �d
1,2 (1, 1, 1) 3 ↵3,↵ 0
h
3

(1, 2, 2) 3 1 0
Higgs hu (1, 2, 2) 100 ↵ 0

bidoublets hd,hd
15

(1, 2, 2), (15, 2, 2) 10 ↵3,↵4 0
hu
15

(15, 2, 2) 1 ↵ 0
Dynamical ⌃u (1, 1, 1) 100 ↵ 0
masses ⌃d,⌃d

15

(1, 1, 1), (15, 1, 1) 10 ↵3,↵2 0
Majoron ⇠ (1, 1, 1) 1 ↵4 0

XF 00
1,3

(4, 2, 1) 100 ↵,↵3 1
Fermion XF 0

1,3
(4, 2, 1) 10 ↵,↵3 1

Messengers XFi
(4, 2, 1) 1 ↵i 1

X⇠i (1, 1, 1) 1 ↵i 1

Table 1: The basic Higgs, matter, flavon and messenger content of the model, where ↵ = e2⇡i/5 under
Z5. R is a supersymmetric R-symmetry.

The messengers couple to each other and become heavy via the dynamical mass fields
⌃ which appear in Table 1,

XF 0
1
⌃uXF 3

+XF 0
3
⌃uXF 1

+XF 00
1
(⌃dXF 1

+ ⌃d
15

XF 2
) +XF 00

3
⌃dXF 4

. (21)

The leading order operators responsible for the Yukawa couplings involving the first
and second families to Higgs fields are obtained by integrating out the heavy messengers,
leading to e↵ective operators.

The diagrams in Fig.2 yield the following operators which will be responsible for the
up-type quark and neutrino Yukawa couplings,

W u
Y uk = F.

�u
1

⌃u

huF
c
1

+ F.
�u
2

⌃u

huF
c
2

+ F.h
3

F c
3

. (22)

The above operators are similar to those in Eq.16 and will yield a Yukawa matrix
Y u = Y ⌫ as in Eq.18.

The diagrams in Fig.3 yield the operators which will be responsible for the diagonal
down-type quark and charged lepton Yukawa couplings,

W d,diag
Y uk = F.

�d
1

⌃d
15

hdF
c
1

+ F.
�d
2

⌃d

hd
15

F c
2

+ F.h
3

F c
3

. (23)
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name field SU(4)C ⇥ SU(2)L ⇥ SU(2)R A
4

Z
5

R

Quarks F (4, 2, 1) 3 1 1
and leptons F c

1,2,3 (4, 1, 2) 1 ↵,↵3,1 1
PS Higgs Hc, Hc (4, 1, 2), (4, 1, 2) 1 1 0
A

4

triplet �u
1,2 (1, 1, 1) 3 ↵4,↵2 0

flavons �d
1,2 (1, 1, 1) 3 ↵3,↵ 0
h
3

(1, 2, 2) 3 1 0
Higgs hu (1, 2, 2) 100 ↵ 0

bidoublets hd,hd
15

(1, 2, 2), (15, 2, 2) 10 ↵3,↵4 0
hu
15

(15, 2, 2) 1 ↵ 0
Dynamical ⌃u (1, 1, 1) 100 ↵ 0
masses ⌃d,⌃d

15

(1, 1, 1), (15, 1, 1) 10 ↵3,↵2 0
Majoron ⇠ (1, 1, 1) 1 ↵4 0

XF 00
1,3

(4, 2, 1) 100 ↵,↵3 1
Fermion XF 0

1,3
(4, 2, 1) 10 ↵,↵3 1

Messengers XFi
(4, 2, 1) 1 ↵i 1

X⇠i (1, 1, 1) 1 ↵i 1

Table 1: The basic Higgs, matter, flavon and messenger content of the model, where ↵ = e2⇡i/5 under
Z5. R is a supersymmetric R-symmetry.

The messengers couple to each other and become heavy via the dynamical mass fields
⌃ which appear in Table 1,

XF 0
1
⌃uXF 3

+XF 0
3
⌃uXF 1

+XF 00
1
(⌃dXF 1

+ ⌃d
15

XF 2
) +XF 00

3
⌃dXF 4

. (21)

The leading order operators responsible for the Yukawa couplings involving the first
and second families to Higgs fields are obtained by integrating out the heavy messengers,
leading to e↵ective operators.

The diagrams in Fig.2 yield the following operators which will be responsible for the
up-type quark and neutrino Yukawa couplings,

W u
Y uk = F.

�u
1

⌃u

huF
c
1

+ F.
�u
2

⌃u

huF
c
2

+ F.h
3

F c
3

. (22)

The above operators are similar to those in Eq.16 and will yield a Yukawa matrix
Y u = Y ⌫ as in Eq.18.

The diagrams in Fig.3 yield the operators which will be responsible for the diagonal
down-type quark and charged lepton Yukawa couplings,

W d,diag
Y uk = F.

�d
1

⌃d
15

hdF
c
1

+ F.
�d
2

⌃d

hd
15

F c
2

+ F.h
3

F c
3

. (23)
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name field SU(4)C ⇥ SU(2)L ⇥ SU(2)R A
4

Z
5

R

Quarks F (4, 2, 1) 3 1 1
and leptons F c

1,2,3 (4, 1, 2) 1 ↵,↵3,1 1
PS Higgs Hc, Hc (4, 1, 2), (4, 1, 2) 1 1 0
A

4

triplet �u
1,2 (1, 1, 1) 3 ↵4,↵2 0

flavons �d
1,2 (1, 1, 1) 3 ↵3,↵ 0
h
3

(1, 2, 2) 3 1 0
Higgs hu (1, 2, 2) 100 ↵ 0

bidoublets hd,hd
15

(1, 2, 2), (15, 2, 2) 10 ↵3,↵4 0
hu
15

(15, 2, 2) 1 ↵ 0
Dynamical ⌃u (1, 1, 1) 100 ↵ 0
masses ⌃d,⌃d

15

(1, 1, 1), (15, 1, 1) 10 ↵3,↵2 0
Majoron ⇠ (1, 1, 1) 1 ↵4 0

XF 00
1,3

(4, 2, 1) 100 ↵,↵3 1
Fermion XF 0

1,3
(4, 2, 1) 10 ↵,↵3 1

Messengers XFi
(4, 2, 1) 1 ↵i 1

X⇠i (1, 1, 1) 1 ↵i 1

Table 1: The basic Higgs, matter, flavon and messenger content of the model, where ↵ = e2⇡i/5 under
Z5. R is a supersymmetric R-symmetry.

The messengers couple to each other and become heavy via the dynamical mass fields
⌃ which appear in Table 1,

XF 0
1
⌃uXF 3

+XF 0
3
⌃uXF 1

+XF 00
1
(⌃dXF 1

+ ⌃d
15

XF 2
) +XF 00

3
⌃dXF 4

. (21)

The leading order operators responsible for the Yukawa couplings involving the first
and second families to Higgs fields are obtained by integrating out the heavy messengers,
leading to e↵ective operators.

The diagrams in Fig.2 yield the following operators which will be responsible for the
up-type quark and neutrino Yukawa couplings,

W u
Y uk = F.

�u
1

⌃u

huF
c
1

+ F.
�u
2

⌃u

huF
c
2

+ F.h
3

F c
3

. (22)

The above operators are similar to those in Eq.16 and will yield a Yukawa matrix
Y u = Y ⌫ as in Eq.18.

The diagrams in Fig.3 yield the operators which will be responsible for the diagonal
down-type quark and charged lepton Yukawa couplings,

W d,diag
Y uk = F.

�d
1

⌃d
15

hdF
c
1

+ F.
�d
2

⌃d

hd
15

F c
2

+ F.h
3

F c
3

. (23)
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          Yukawa operators
Down type 

quarks and 
charged 
leptons

F F c
1

hu�u
1

XF1

⌃u

XF �
3

F

hu⌃u

F c
2XF3

�u
2

XF �
1

F F c
3

h3

Figure 2: The fermion messenger diagrams responsible for the operators leading to the up type quark
and Dirac neutrino masses. The fermions depicted by the solid line have even R-parity.

F F c
1

hd⌃d
15�d

1

XF2
XF ��

1
F

⌃d

F c
2

hd
15�d

2

XF4
XF ��

3
F F c

3

h3

Figure 3: The fermion messenger diagrams responsible for the operators which lead to the diagonal
charged lepton and down type quark masses. The fermions depicted by the solid line have even R-parity.

These operators are similar to those in Eq.17 and will yield Yukawa matrices similar to
those in Eq.18 but with Y d 6= Y e due to the Clebsch-Gordan coe�cients from the Higgs
in the 15 dimensional representation of SU(4)C . In addition, the above messenger sector
generates further e↵ective operators which give rise to o↵-diagonal down-type quark and
charged lepton Yukawa couplings,

W d,o↵�diag

Y uk = F.
�d
1

⌃d
15

hd
15

F c
3

+ F.
�u
1

⌃d

(hdF
c
1

+ hd
15

F c
3

). (24)

The operators responsible for the heavy Majorana neutrino masses are given by,

WMaj =
⇠2

⇤2

HcHc

⇤
F c
1

F c
1

+
⇠

⇤

HcHc

⇤
F c
2

F c
2

+
⇠

⇤

HcHc

⇤
F c
1

F c
3

+
HcHc

⇤
F c
3

F c
3

, (25)

corresponding to the diagrams in Fig.4. These operators are mediated by the singlet
messengers X⇠i and involve the explicit messenger mass scale ⇤ which may take values
higher than the A

4

⇥Z
5

and Pati-Salam breaking scales. The first three of these operators
are controlled by the Majoron fields ⇠i in Table 1, which carries a non-trivial phase due
to the Z

5

symmetry, as discussed later.
Note that the dynamical mass ⌃ fields do not enter the Majorana sector since they

transform under A
4

as 10, 100 and hence do not couple to pairs of X⇠i . Also note that
the Majoron ⇠ fields which transform under A

4

⇥ Z
5

as ⇠ ⇠ (1,↵4) do not enter the
charged fermion sector since they do not couple XF i

to the messengers XF 0 and XF 00

which transform under A
4

as 10 and 100.

10

name field SU(4)C ⇥ SU(2)L ⇥ SU(2)R A
4

Z
5

R

Quarks F (4, 2, 1) 3 1 1
and leptons F c

1,2,3 (4, 1, 2) 1 ↵,↵3,1 1
PS Higgs Hc, Hc (4, 1, 2), (4, 1, 2) 1 1 0
A

4

triplet �u
1,2 (1, 1, 1) 3 ↵4,↵2 0

flavons �d
1,2 (1, 1, 1) 3 ↵3,↵ 0
h
3

(1, 2, 2) 3 1 0
Higgs hu (1, 2, 2) 100 ↵ 0

bidoublets hd,hd
15

(1, 2, 2), (15, 2, 2) 10 ↵3,↵4 0
hu
15

(15, 2, 2) 1 ↵ 0
Dynamical ⌃u (1, 1, 1) 100 ↵ 0
masses ⌃d,⌃d

15

(1, 1, 1), (15, 1, 1) 10 ↵3,↵2 0
Majoron ⇠ (1, 1, 1) 1 ↵4 0

XF 00
1,3

(4, 2, 1) 100 ↵,↵3 1
Fermion XF 0

1,3
(4, 2, 1) 10 ↵,↵3 1

Messengers XFi
(4, 2, 1) 1 ↵i 1

X⇠i (1, 1, 1) 1 ↵i 1

Table 1: The basic Higgs, matter, flavon and messenger content of the model, where ↵ = e2⇡i/5 under
Z5. R is a supersymmetric R-symmetry.

The messengers couple to each other and become heavy via the dynamical mass fields
⌃ which appear in Table 1,

XF 0
1
⌃uXF 3

+XF 0
3
⌃uXF 1

+XF 00
1
(⌃dXF 1

+ ⌃d
15

XF 2
) +XF 00

3
⌃dXF 4

. (21)

The leading order operators responsible for the Yukawa couplings involving the first
and second families to Higgs fields are obtained by integrating out the heavy messengers,
leading to e↵ective operators.

The diagrams in Fig.2 yield the following operators which will be responsible for the
up-type quark and neutrino Yukawa couplings,

W u
Y uk = F.

�u
1

⌃u

huF
c
1

+ F.
�u
2

⌃u

huF
c
2

+ F.h
3

F c
3

. (22)

The above operators are similar to those in Eq.16 and will yield a Yukawa matrix
Y u = Y ⌫ as in Eq.18.

The diagrams in Fig.3 yield the operators which will be responsible for the diagonal
down-type quark and charged lepton Yukawa couplings,

W d,diag
Y uk = F.

�d
1

⌃d
15

hdF
c
1

+ F.
�d
2

⌃d

hd
15

F c
2

+ F.h
3

F c
3

. (23)
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          Yukawa operators

Up type 
quarks and 
neutrinos

Down type 
quarks and 

charged 
leptons

F F c
1

hu�u
1

XF1

⌃u

XF �
3

F

hu⌃u

F c
2XF3

�u
2
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1

F F c
3

h3

Figure 2: The fermion messenger diagrams responsible for the operators leading to the up type quark
and Dirac neutrino masses. The fermions depicted by the solid line have even R-parity.
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Figure 3: The fermion messenger diagrams responsible for the operators which lead to the diagonal
charged lepton and down type quark masses. The fermions depicted by the solid line have even R-parity.

These operators are similar to those in Eq.17 and will yield Yukawa matrices similar to
those in Eq.18 but with Y d 6= Y e due to the Clebsch-Gordan coe�cients from the Higgs
in the 15 dimensional representation of SU(4)C . In addition, the above messenger sector
generates further e↵ective operators which give rise to o↵-diagonal down-type quark and
charged lepton Yukawa couplings,

W d,o↵�diag

Y uk = F.
�d
1

⌃d
15

hd
15

F c
3

+ F.
�u
1

⌃d

(hdF
c
1

+ hd
15

F c
3

). (24)

The operators responsible for the heavy Majorana neutrino masses are given by,

WMaj =
⇠2

⇤2

HcHc

⇤
F c
1

F c
1

+
⇠

⇤

HcHc

⇤
F c
2

F c
2

+
⇠

⇤

HcHc

⇤
F c
1

F c
3

+
HcHc

⇤
F c
3

F c
3

, (25)

corresponding to the diagrams in Fig.4. These operators are mediated by the singlet
messengers X⇠i and involve the explicit messenger mass scale ⇤ which may take values
higher than the A

4

⇥Z
5

and Pati-Salam breaking scales. The first three of these operators
are controlled by the Majoron fields ⇠i in Table 1, which carries a non-trivial phase due
to the Z

5

symmetry, as discussed later.
Note that the dynamical mass ⌃ fields do not enter the Majorana sector since they

transform under A
4

as 10, 100 and hence do not couple to pairs of X⇠i . Also note that
the Majoron ⇠ fields which transform under A

4

⇥ Z
5

as ⇠ ⇠ (1,↵4) do not enter the
charged fermion sector since they do not couple XF i

to the messengers XF 0 and XF 00

which transform under A
4

as 10 and 100.
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Figure 2: The fermion messenger diagrams responsible for the operators leading to the up type quark
and Dirac neutrino masses. The fermions depicted by the solid line have even R-parity.
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Figure 3: The fermion messenger diagrams responsible for the operators which lead to the diagonal
charged lepton and down type quark masses. The fermions depicted by the solid line have even R-parity.

These operators are similar to those in Eq.17 and will yield Yukawa matrices similar to
those in Eq.18 but with Y d 6= Y e due to the Clebsch-Gordan coe�cients from the Higgs
in the 15 dimensional representation of SU(4)C . In addition, the above messenger sector
generates further e↵ective operators which give rise to o↵-diagonal down-type quark and
charged lepton Yukawa couplings,
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). (24)

The operators responsible for the heavy Majorana neutrino masses are given by,

WMaj =
⇠2

⇤2

HcHc

⇤
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1

F c
1

+
⇠

⇤
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⇤
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2

+
⇠

⇤
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⇤
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1
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3

+
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⇤
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3
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3

, (25)

corresponding to the diagrams in Fig.4. These operators are mediated by the singlet
messengers X⇠i and involve the explicit messenger mass scale ⇤ which may take values
higher than the A

4

⇥Z
5

and Pati-Salam breaking scales. The first three of these operators
are controlled by the Majoron fields ⇠i in Table 1, which carries a non-trivial phase due
to the Z

5

symmetry, as discussed later.
Note that the dynamical mass ⌃ fields do not enter the Majorana sector since they

transform under A
4

as 10, 100 and hence do not couple to pairs of X⇠i . Also note that
the Majoron ⇠ fields which transform under A

4

⇥ Z
5

as ⇠ ⇠ (1,↵4) do not enter the
charged fermion sector since they do not couple XF i

to the messengers XF 0 and XF 00

which transform under A
4

as 10 and 100.

10

name field SU(4)C ⇥ SU(2)L ⇥ SU(2)R A
4

Z
5

R

Quarks F (4, 2, 1) 3 1 1
and leptons F c

1,2,3 (4, 1, 2) 1 ↵,↵3,1 1
PS Higgs Hc, Hc (4, 1, 2), (4, 1, 2) 1 1 0
A

4

triplet �u
1,2 (1, 1, 1) 3 ↵4,↵2 0

flavons �d
1,2 (1, 1, 1) 3 ↵3,↵ 0
h
3

(1, 2, 2) 3 1 0
Higgs hu (1, 2, 2) 100 ↵ 0

bidoublets hd,hd
15

(1, 2, 2), (15, 2, 2) 10 ↵3,↵4 0
hu
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Dynamical ⌃u (1, 1, 1) 100 ↵ 0
masses ⌃d,⌃d

15

(1, 1, 1), (15, 1, 1) 10 ↵3,↵2 0
Majoron ⇠ (1, 1, 1) 1 ↵4 0

XF 00
1,3

(4, 2, 1) 100 ↵,↵3 1
Fermion XF 0

1,3
(4, 2, 1) 10 ↵,↵3 1

Messengers XFi
(4, 2, 1) 1 ↵i 1

X⇠i (1, 1, 1) 1 ↵i 1

Table 1: The basic Higgs, matter, flavon and messenger content of the model, where ↵ = e2⇡i/5 under
Z5. R is a supersymmetric R-symmetry.

The messengers couple to each other and become heavy via the dynamical mass fields
⌃ which appear in Table 1,

XF 0
1
⌃uXF 3

+XF 0
3
⌃uXF 1

+XF 00
1
(⌃dXF 1

+ ⌃d
15

XF 2
) +XF 00

3
⌃dXF 4

. (21)

The leading order operators responsible for the Yukawa couplings involving the first
and second families to Higgs fields are obtained by integrating out the heavy messengers,
leading to e↵ective operators.

The diagrams in Fig.2 yield the following operators which will be responsible for the
up-type quark and neutrino Yukawa couplings,

W u
Y uk = F.

�u
1

⌃u

huF
c
1

+ F.
�u
2

⌃u

huF
c
2

+ F.h
3

F c
3

. (22)

The above operators are similar to those in Eq.16 and will yield a Yukawa matrix
Y u = Y ⌫ as in Eq.18.

The diagrams in Fig.3 yield the operators which will be responsible for the diagonal
down-type quark and charged lepton Yukawa couplings,

W d,diag
Y uk = F.
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1

⌃d
15

hdF
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1

+ F.
�d
2
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15
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3

. (23)
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2.5 Two light Higgs doublets

The model will involve Higgs bi-doublets of two kinds, hu which lead to up-type quark
and neutrino Yukawa couplings and hd which lead to down-type quark and charged
lepton Yukawa couplings. In addition a Higgs bidoublet h

3

, which is also an A
4

triplet,
is used to give the third family Yukawa couplings.

After the PS and A
4

breaking, most of these Higgs bi-doublets will get high scale
masses and will not appear in the low energy spectrum. In fact only two light Higgs
doublets will survive down to the TeV scale, namely Hu and Hd. The precise mechanism
responsible for this is quite intricate and is discussed in Appendix B. Analogous Higgs
mixing mechanisms are implicitly assumed in many models, but are rarely discussed
explicitly (however for an example within SO(10) see [33]).

The basic idea is that the light Higgs doublet Hu with hypercharge Y = +1/2,
which couples to up-type quarks and neutrinos, is a linear combination of components
of the Higgs bi-doublets of the kind hu and h

3

, while the light Higgs doublet Hd with
hypercharge Y = �1/2, which couples to down-type quarks and charged leptons, is a
linear combination of components of Higgs bi-doublets of the kind hd and h

3

,

hu, h3

! Hu, hd, h3

! Hd. (14)

2.6 Yukawa operators

The renormalisable Yukawa operators, which respect PS and A
4

symmetries, have the
following form, leading to the third family Yukawa couplings shown, using Eqs.2,14,

F.h
3

F c
3

! Q
3

Huu
c
3

+Q
3

Hdd
c
3

+ L
3

Hu⌫
c
3

+ L
3

Hde
c
3

, (15)

where we have used Eqs.2,14. The non-renormalisable operators, which respect PS and
A

4

symmetries, have the following form,

F.�u
i huF

c
i ! Q.h�u

i iHuu
c
i + L.h�u

i iHu⌫
c
i , (16)

F.�d
ihdF

c
i ! Q.h�d

i iHdd
c
i + L.h�d

i iHde
c
i , (17)

where i = 1 gives the first column of each Yukawa matrix, while i = 2 gives the second
column and we have used Eqs.2,14. Thus the third family masses are naturally larger
since they correspond to renormalisable operators, while the hierarchy between first and
second families arises from a hierarchy of flavon VEVs.

2.7 Yukawa matrices

Inserting the vacuum alignments in Eqs.12 and 13 into Eqs.16 and 17, together with the
renormalisable third family couplings in Eq.15, gives the Yukawa matrices of the form,

Y u = Y ⌫ =

0

@
0 b 0
a 4b 0
a 2b c

1

A , Y d ⇠ Y e ⇠

0

@
y0d 0 0
0 y0s 0
0 0 y0b

1

A . (18)

7

Yukawa operators (cont’d)
Third family renormalisable
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CSD4 Vacuum alignment
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Yukawa operators (cont’d)
Third family renormalisable

First and second family involve flavons

where, as in [30], P denotes a singlet and the coupling g and mass m are real due to CP
conservation. The F-term condition from Eq.8 is,

����
h⇠i5

⇤3

�m2

����
2

= 0. (9)

This is satisfied, for example, by h⇠i = |(⇤3m2)1/5|e�4i⇡/5, where we arbitrarily select
the phase to be �4⇡/5 from amongst a discrete set of five possible choices, which are
not distinguished by the F-term condition, as in [24]. We emphasise that CP breaking
is controlled by the Abelian Z

5

symmetry rather than the non-Abelian A
4

symmetry.

2.4 Vacuum alignment

Let us now consider the A
4

triplet fields � which also carry Z
5

charges. In the full model
there are four such triplet fields, or “flavons”, denoted as �u

1

, �u
2

, �d
1

, �d
2

. The idea is
that �u

i are responsible for up-type quark flavour, while �d
i are responsible for down-type

quark flavour. These VEVs are driven by the superpotential terms,

g
21

P
21

(�u
2

�d
1

±M2

21

) + g
12

P
12

(�u
1

�d
2

±M2

12

) + Pii

✓
guii

(�u
i )

5

⇤3

+ gdii
(�d

i )
5

⇤3

±M2

ii

◆
, (10)

where Pij are linear combinations of singlets as in [24]. The coupling constants gij, mass
parameters Mij and cut-o↵ scale ⇤ are enforced to be real by CP while the fields �u

i and
�d
i will develop VEVs with quantised phases. If we assume that �u

i both have the same
phase, eim⇡/5, then Eq.10 implies that �d

i should have phases ein⇡/5 such that

arg(�u
i ) =

m⇡

5
, arg(�d

i ) =
n⇡

5
, n+m = 0 (mod 5), (11)

where n,m are positive or negative integers.
The structure of the Yukawa matrices depends on the so-called CSD4 vacuum align-

ments of these flavons which were first derived in [24], and we assume a similar set of
alignments here, although here the overall phases are quantised due to Z

5

,

h�u
1

i = V u
1p
2
eim⇡/5

0

@
0
1
1

1

A , h�u
2

i = V u
2p
21

eim⇡/5

0

@
1
4
2

1

A , (12)

and

h�d
1

i = V d
1

ein⇡/5

0

@
1
0
0

1

A , h�d
2

i = V d
2

ein⇡/5

0

@
0
1
0

1

A . (13)

We note here that the vacuum alignments in Eq.13 and the first alignment in Eq.12 are
fairly “standard” alignments that are encountered in tri-bimaximal mixing models, while
the second alignment in Eq.12 is obtained using orthogonality arguments, as discussed
in [24], to which we refer the interested reader for more details.
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We note here that the vacuum alignments in Eq.13 and the first alignment in Eq.12 are
fairly “standard” alignments that are encountered in tri-bimaximal mixing models, while
the second alignment in Eq.12 is obtained using orthogonality arguments, as discussed
in [24], to which we refer the interested reader for more details.
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2.5 Two light Higgs doublets

The model will involve Higgs bi-doublets of two kinds, hu which lead to up-type quark
and neutrino Yukawa couplings and hd which lead to down-type quark and charged
lepton Yukawa couplings. In addition a Higgs bidoublet h

3

, which is also an A
4

triplet,
is used to give the third family Yukawa couplings.

After the PS and A
4

breaking, most of these Higgs bi-doublets will get high scale
masses and will not appear in the low energy spectrum. In fact only two light Higgs
doublets will survive down to the TeV scale, namely Hu and Hd. The precise mechanism
responsible for this is quite intricate and is discussed in Appendix B. Analogous Higgs
mixing mechanisms are implicitly assumed in many models, but are rarely discussed
explicitly (however for an example within SO(10) see [33]).

The basic idea is that the light Higgs doublet Hu with hypercharge Y = +1/2,
which couples to up-type quarks and neutrinos, is a linear combination of components
of the Higgs bi-doublets of the kind hu and h

3

, while the light Higgs doublet Hd with
hypercharge Y = �1/2, which couples to down-type quarks and charged leptons, is a
linear combination of components of Higgs bi-doublets of the kind hd and h

3

,

hu, h3

! Hu, hd, h3

! Hd. (14)

2.6 Yukawa operators

The renormalisable Yukawa operators, which respect PS and A
4

symmetries, have the
following form, leading to the third family Yukawa couplings shown, using Eqs.2,14,

F.h
3

F c
3

! Q
3

Huu
c
3

+Q
3

Hdd
c
3

+ L
3

Hu⌫
c
3

+ L
3

Hde
c
3

, (15)

where we have used Eqs.2,14. The non-renormalisable operators, which respect PS and
A

4

symmetries, have the following form,

F.�u
i huF

c
i ! Q.h�u

i iHuu
c
i + L.h�u

i iHu⌫
c
i , (16)

F.�d
ihdF

c
i ! Q.h�d

i iHdd
c
i + L.h�d

i iHde
c
i , (17)

where i = 1 gives the first column of each Yukawa matrix, while i = 2 gives the second
column and we have used Eqs.2,14. Thus the third family masses are naturally larger
since they correspond to renormalisable operators, while the hierarchy between first and
second families arises from a hierarchy of flavon VEVs.

2.7 Yukawa matrices

Inserting the vacuum alignments in Eqs.12 and 13 into Eqs.16 and 17, together with the
renormalisable third family couplings in Eq.15, gives the Yukawa matrices of the form,

Y u = Y ⌫ =

0

@
0 b 0
a 4b 0
a 2b c

1

A , Y d ⇠ Y e ⇠

0

@
y0d 0 0
0 y0s 0
0 0 y0b

1

A . (18)
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Yukawa operators (cont’d)
Third family renormalisable

First and second family involve flavons

where, as in [30], P denotes a singlet and the coupling g and mass m are real due to CP
conservation. The F-term condition from Eq.8 is,

����
h⇠i5

⇤3

�m2

����
2

= 0. (9)

This is satisfied, for example, by h⇠i = |(⇤3m2)1/5|e�4i⇡/5, where we arbitrarily select
the phase to be �4⇡/5 from amongst a discrete set of five possible choices, which are
not distinguished by the F-term condition, as in [24]. We emphasise that CP breaking
is controlled by the Abelian Z

5

symmetry rather than the non-Abelian A
4

symmetry.

2.4 Vacuum alignment

Let us now consider the A
4

triplet fields � which also carry Z
5

charges. In the full model
there are four such triplet fields, or “flavons”, denoted as �u

1

, �u
2

, �d
1

, �d
2

. The idea is
that �u

i are responsible for up-type quark flavour, while �d
i are responsible for down-type

quark flavour. These VEVs are driven by the superpotential terms,

g
21

P
21

(�u
2

�d
1

±M2

21

) + g
12

P
12

(�u
1

�d
2

±M2

12

) + Pii

✓
guii

(�u
i )

5

⇤3

+ gdii
(�d

i )
5

⇤3

±M2

ii

◆
, (10)

where Pij are linear combinations of singlets as in [24]. The coupling constants gij, mass
parameters Mij and cut-o↵ scale ⇤ are enforced to be real by CP while the fields �u

i and
�d
i will develop VEVs with quantised phases. If we assume that �u

i both have the same
phase, eim⇡/5, then Eq.10 implies that �d

i should have phases ein⇡/5 such that

arg(�u
i ) =

m⇡

5
, arg(�d

i ) =
n⇡

5
, n+m = 0 (mod 5), (11)

where n,m are positive or negative integers.
The structure of the Yukawa matrices depends on the so-called CSD4 vacuum align-

ments of these flavons which were first derived in [24], and we assume a similar set of
alignments here, although here the overall phases are quantised due to Z

5

,

h�u
1

i = V u
1p
2
eim⇡/5

0

@
0
1
1

1

A , h�u
2

i = V u
2p
21

eim⇡/5

0

@
1
4
2

1

A , (12)

and

h�d
1

i = V d
1

ein⇡/5

0

@
1
0
0

1

A , h�d
2

i = V d
2

ein⇡/5

0

@
0
1
0

1

A . (13)

We note here that the vacuum alignments in Eq.13 and the first alignment in Eq.12 are
fairly “standard” alignments that are encountered in tri-bimaximal mixing models, while
the second alignment in Eq.12 is obtained using orthogonality arguments, as discussed
in [24], to which we refer the interested reader for more details.
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the second alignment in Eq.12 is obtained using orthogonality arguments, as discussed
in [24], to which we refer the interested reader for more details.
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Majorana operators
Hc Hc
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X�5 X�5

Hc

�

Figure 4: The fermion messenger diagrams responsible for the e↵ective operators in Eq.25 leading to
the diagonal heavy (right-handed) Majorana neutrino masses. The fermions depicted by the solid line
have even R-parity.

3.2 Yukawa and Majorana mass matrices

According to the mechanism discussed in Appendix B, the four Higgs multiplets in the
fourth block of Table 1, h

3

, hu, hd, hd
15

, result in two low energy light Higgs doublets
Hu,Hd,

h
3

! Hu,d, hu ! ✏uHu, hd ! ✏dHd, hd
15

! Hd, (26)

where Hu is predominantly composed of the Higgs doublet from third component of h
3

with a small admixture ✏u of the Higgs doublet from hu. Hd is predominantly composed
of the Higgs doublet from hd

15

plus the third component of h
3

, together with a small
admixture ✏d of the Higgs doublet from hd. The particular admixtures assumed in Eq.26
correspond to a particular choice of masses in Appendix B.

With the vacuum alignments in Eq. 12, the operators in Eq. 22 then result in non-
diagonal and equal up-type quark and neutrino Yukawa matrices,

Y u = Y ⌫ =

0

@
0 b 0
a 4b 0
a 2b c

1

A , (27)

where,

a ⇠ ✏u
V u
1

h⌃ui
, b ⇠ ✏u

V u
2

h⌃ui
, c ⇠ 1. (28)

Note that since Y u = Y ⌫ , the up-type quark masses are equal to the Dirac neutrino
masses,

mu = mD
⌫1, mc = mD

⌫2, mt = mD
⌫3. (29)

From Eq.27 the up-type quark masses are given to excellent approximation by,

mu = yuvu = avu/
p
17, mc = ycvu =

p
17bvu, mt = cvu. (30)
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Figure 2: The fermion messenger diagrams responsible for the operators leading to the up type quark
and Dirac neutrino masses. The fermions depicted by the solid line have even R-parity.

F F c
1

hd⌃d
15�d
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1
F
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F c
2
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15�d

2

XF4
XF ��

3
F F c

3
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Figure 3: The fermion messenger diagrams responsible for the operators which lead to the diagonal
charged lepton and down type quark masses. The fermions depicted by the solid line have even R-parity.

These operators are similar to those in Eq.17 and will yield Yukawa matrices similar to
those in Eq.18 but with Y d 6= Y e due to the Clebsch-Gordan coe�cients from the Higgs
in the 15 dimensional representation of SU(4)C . In addition, the above messenger sector
generates further e↵ective operators which give rise to o↵-diagonal down-type quark and
charged lepton Yukawa couplings,

W d,o↵�diag

Y uk = F.
�d
1

⌃d
15

hd
15

F c
3

+ F.
�u
1

⌃d

(hdF
c
1

+ hd
15

F c
3

). (24)

The operators responsible for the heavy Majorana neutrino masses are given by,

WMaj =
⇠2

⇤2

HcHc

⇤
F c
1

F c
1

+
⇠

⇤

HcHc

⇤
F c
2

F c
2

+
⇠

⇤

HcHc

⇤
F c
1

F c
3

+
HcHc

⇤
F c
3

F c
3

, (25)

corresponding to the diagrams in Fig.4. These operators are mediated by the singlet
messengers X⇠i and involve the explicit messenger mass scale ⇤ which may take values
higher than the A

4

⇥Z
5

and Pati-Salam breaking scales. The first three of these operators
are controlled by the Majoron fields ⇠i in Table 1, which carries a non-trivial phase due
to the Z

5

symmetry, as discussed later.
Note that the dynamical mass ⌃ fields do not enter the Majorana sector since they

transform under A
4

as 10, 100 and hence do not couple to pairs of X⇠i . Also note that
the Majoron ⇠ fields which transform under A

4

⇥ Z
5

as ⇠ ⇠ (1,↵4) do not enter the
charged fermion sector since they do not couple XF i

to the messengers XF 0 and XF 00

which transform under A
4

as 10 and 100.
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[3]. However here there are small o↵-diagonal entries in the Yukawa matrices which
will provide corrections to the mass eigenstates, as well as other corrections to the GJ
relations, as discussed later.

Finally, from Eq.25, we find the heavy Majorana mass matrix,

MR =

0

@
M

1

0 M
13

0 M
2

0
M

13

0 M
3

1

A . (38)

The heavy Majorana neutrino masses from Eq.25 are in the ratios,

M
1

: M
2

: M
3

⇠ ⇠̃2 : ⇠̃ : 1, (39)

where,

⇠̃ =
h⇠i
⇤

. (40)

There is a competing correction to M
1

coming from the o↵-diagonal element, namely
M2

13

/M
3

⇠ ⇠̃2 with the same phase, which may be absorbed into the definition of the
lightest right-handed neutrino mass. Since we need to have a strong hierarchy of right-
handed neutrino masses we shall require (see later),

M
1

⇠ 5.105 GeV, M
2

⇠ 5.1010 GeV, M
3

⇠ 5.1015 GeV, (41)

which may be achieved for example by,

⇠̃ ⇠ 10�5. (42)

Typically the heaviest right-handed neutrino mass is given by,

M
3

⇠ hHci2

⇤
⇠ 5.1015 GeV, (43)

which is within an order of magnitude of the Pati-Salam breaking scale in Eq.5. This
implies that ⇤ ⇠ 5.1016 GeV and hence, from Eq.42,

h⇠i ⇠ 5.1011GeV. (44)

The Majoron fields ⇠ act like a dynamical mass for M
2

, with an e↵ective coupling ⇠N c
2

N c
2

with a coupling constant of about 0.1. In principle they could play a role in leptogenesis.
For example, the e↵ect of Majorons on right-handed neutrino annihilations, leading to
possibly significantly enhanced e�ciency factors, was recently discussed in [36].
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The heavy Majorana neutrino masses from Eq.25 are in the ratios,
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⇤
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There is a competing correction to M
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coming from the o↵-diagonal element, namely
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3

⇠ ⇠̃2 with the same phase, which may be absorbed into the definition of the
lightest right-handed neutrino mass. Since we need to have a strong hierarchy of right-
handed neutrino masses we shall require (see later),

M
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⇠ 5.105 GeV, M
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⇠ 5.1010 GeV, M
3

⇠ 5.1015 GeV, (41)

which may be achieved for example by,

⇠̃ ⇠ 10�5. (42)

Typically the heaviest right-handed neutrino mass is given by,
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⇠ 5.1015 GeV, (43)

which is within an order of magnitude of the Pati-Salam breaking scale in Eq.5. This
implies that ⇤ ⇠ 5.1016 GeV and hence, from Eq.42,

h⇠i ⇠ 5.1011GeV. (44)

The Majoron fields ⇠ act like a dynamical mass for M
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, with an e↵ective coupling ⇠N c
2
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2

with a coupling constant of about 0.1. In principle they could play a role in leptogenesis.
For example, the e↵ect of Majorons on right-handed neutrino annihilations, leading to
possibly significantly enhanced e�ciency factors, was recently discussed in [36].
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Yukawa and Mass Matrices

• Y � ⇤ Y u is the only non-diagonal matrix is responsible for all quark and lepton
mixing, which is fully specified once a, b, c are fixed by up quark masses

• Lepton mixing angles and CP violation are predicted for the phenomenological
range of m2/m3, assuming a relative phase of 2⌅/5 between the first and second
columns.

• The Cabibbo angle is predicted to be ⇥C ⌅ 1/4 or ⇥C ⌅ 14⇥ at leading order

• The other quark mixing angles and CP violating phase are zero at leading order

The first set of relations (which are valid at the Pati-Salam breaking scale) are just the
usual Georgi-Jarlskog (GJ) relations from SU(5) [19]. The tetra-model also yields an
SO(10)-like pattern of Dirac and heavy Majorana neutrino masses widely studied in the
literature [22]. However the light physical Majorana neutrino masses are not so hierar-
chical since the powers of � cancel in the see-saw mechanism. It has recently been shown
that the serious di⌅culties facing thermal leptogenesis in SO(10)-like models may be
circumvented when the production from the next-to-lightest right-handed neutrinos and
flavour e�ects are properly taken into account [23], so the prospects for thermal lepto-
genesis in the tetra-model look promising. Finally, it is noteworthy that the Cabibbo
angle is successfully predicted at leading order (to within one degree) as a consequence
of the vacuum alignment and quark-lepton unification, providing the Cabibbo connec-
tion between quark and lepton mixing. This is one of the main successes of the model,
being a consequence of the (1, 4, 2) vacuum alignment which also successfully reproduces
lepton mixing, as we now discuss.

3.2 Leading order lepton mixing

In this subsection we discuss the leading order predictions for PMNS mixing which arise
from the vacuum alignment.

The physical e�ective neutrino Majorana mass matrix m� is determined from the
columns of Y � via the see-saw mechanism,

m� = �v2u Y
�M�1

R Y �T , (29)

where the Majorana neutrino mass matrix m� , defined by 1 L� = �1
2m

�⇤L⇤c
L + h.c., is

diagonalised by

U�L m
� UT

�L
=

�

⇤
m1 0 0
0 m2 0
0 0 m3

⇥

⌅. (30)

1Note that this convention for the light e�ective Majorana neutrino mass matrix m� di�ers by an
overall complex conjugation compared to that used in the Mixing Parameter Tools package [24].
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CSD(4)+ PS gives Cabibbo connection

Physical neutrino masses in a normal hierarchy (CSD)

Y u = Y ⌫ =

0

@
0 b�4 0
a�8 4b�4 0
a�8 2b�4 c

1

A , MR =

0

@
�16M̃

1

0 0
0 �8M̃

2

0
0 0 M̃

3

1

A (7)

The down-type quark and charged lepton masses are then given by,

me =
md

3
, mµ = 3ms, m⌧ = mb. (8)

These are the well-known Georgi-Jarlskog (GJ) relations [15], although here they arise
from a new mechanism, namely due to non-singlet fields which appear in the denomi-
nator of e↵ective operators and split the messenger masses [17]. The viablity of the GJ
relations is discussed in [18].

The strong hierarchy of up quark masses is given by,

mu : mc : mt ⇠ �8 : �4 : 1, (9)

where, in terms of the Wolfenstein parameter �, we have assumed,

✏ =
h✓i
⇤

⇠ �4. (10)

The main results follow directly from the simple forms of matrices above:

• me =
md
3

, mµ = 3ms, m⌧ = mb (yd, ys, yb chosen to fit the down quark masses)

• mD
⌫1 = mu = |a|vu✏2/

p
17, mD

⌫2 = mc =
p
17|b|vu✏, mD

⌫3 = mt = |c|vu

• M
1

: M
2

: M
3

⇠ m2

u : m2

c : m
2

t (RH neutrino masses are very hierarchical)

• For example, M
1

⇠ 10 TeV, M
2

⇠ 1010 GeV, M
3

⇠ 1016 GeV

• The model predicts a normal neutrino hierarchy, (mD
⌫3)

2

M3
⌧ (mD

⌫2)
2

M2
, (m

D
⌫1)

2

M1

• For example, m
1

⇠ 0.3 meV, m
2

⇠ 8.5 meV, m
3

⇠ 50 meV (normal hierarchy)

• Y ⌫ = Y u is the only non-diagonal matrix is responsible for all quark and lepton
mixing, which is fully specified once a, b, c are fixed by up quark masses

• Lepton mixing angles and CP violation are predicted for the phenomenological
range of m

2

/m
3

, assuming a relative phase of 2⇡/5 between the first and second
columns.

• The Cabibbo angle is predicted to be ✓C ⇡ 1/4 or ✓C ⇡ 14� at leading order

• The other quark mixing angles and CP violating phase are zero at leading order

4

SO(10)-like diagonal RHN masses

All CP phases are fifth roots of unity due to Z5

1406.7005

4.3 Numerical results for quark mixing

With the phases fixed by the choice of discrete choice of phases n = 2,m = 3, as
discussed in the previous subsection, the only free parameters are a, b, c in the up sector,
and A,B,C and y0d, y

0

s , y
0

b in the down sector matrices, where we have explicitly removed
the phases from these parameters, in order to make them real,

Y u =

0

@
0 be�i3⇡/5 ✏c

ae�i3⇡/5 4be�i3⇡/5 0
ae�i3⇡/5 2be�i3⇡/5 c

1

A . (69)

Y d =

0

@
y0de

�i2⇡/5 0 Ay0de
�i2⇡/5

By0de
�i3⇡/5 y0se

�i2⇡/5 Cy0de
�i3⇡/5

By0de
�i3⇡/5 0 y0b + Cy0de

�i3⇡/5

1

A (70)

Note that we have introduced a small correction term ✏ in the (1, 3) entry of Y u which
will mainly a↵ect ✓q

13

. Physically this corresponds to a small admixture of the first
component of the Higgs triplet h

3

contributing to the physical light Higgs state Hu, as
discussed in Appendix B. The previous analytic results were for ✏ = 0, but we find
numerically that the best fit to CKM parameters requires a non-zero value of ✏.

For the following results, we shall fix the parameters which approximately determine
the six quark masses at the high scale to be,

a = 1.6.10�5, b = 0.8.10�3, c = 0.75, (71)

y0d = 0.9.10�5, y0s = 1.4.10�4, y0b = �0.9.10�2, (72)

Although the quark results are insensitive to the sign of y0b , the lepton sector results lead
to a better fit with the negative sign of y0b as discussed later. Using the Mixing Parameter
Tools (MPT) package [38], in Fig.5 we show the CKM parameters for di↵erent choices
of A,B as a function of C. ✓q

23

is really only sensitive to C only, while ✓q
12

is mainly
sensitive to B. ✓q

13

and �q are both sensitive A. The e↵ect of the correction ✏ is to
shift the blue dashed curve to the red solid curve, lowering ✓q

13

while leaving ✓q
23

almost
unchanged, allowing the best fit of the CKM parameters for C = 36.

To take a concrete example, for the red solid at the value C = 36, with the above
input parameters A = 9, B = 7 (c.f. Eq.65) and ✏ = �2.4 ⇥ 10�3, we find the quark
Yukawa eigenvalues at the high scale,

yu = 3.9.10�6, yc = 3.3.10�3, yt = 0.75, (73)

yd = 0.81.10�5, ys = 1.5.10�4, yb = 0.91.10�2 (74)

and the CKM parameters at the high scale,

✓q
12

= 13.02�, ✓q
13

= 0.17�, ✓q
23

= 2.09�, �q = 70.4�. (75)
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5.4 Modified Georgi-Jarlskog relations

Since the charged lepton masses are known with much higher precision than the down
type quark masses, the down Yukawa couplings in practice will be predicted from in-
putting the charged lepton masses in order to accurately fix y0d, y

0

s , y
0

b . Comparing Y e

in Eq.90 to Y d in Eq.70, we find that we do not get exactly the GJ relations in Eq.37
due to the o↵-diagonal elements which also involve Clebsch factors. Numerically we find
that, for y0b negative and the other parameters as above, the Yukawa eigenvalues at the
GUT scale are approximately related as,

ye =
yd
2.6

, yµ = 2.8ys, y⌧ = 0.97yb, (93)

while for y0b positive we find,

ye =
yd
3.0

, yµ = 2.7ys, y⌧ = 1.05yb. (94)

These may be compared to the phenomenological relation [3],
����
yµ
ys

yd
ye

���� = 10.7+1.8
�0.8. (95)

For example for y0b negative we find the RHS to be 7.3 which di↵ers by more than 4
sigma. In order to bring this relation into better agreement with experiment we would
need to increase this ratio, for example by increasing the muon Yukawa eignenvalue
compared to the strange quark Yukawa eigenvalue. One way to do this is to introduce
a flavon �d15

2

with the same charges as �d
2

but in the adjoint 15 of SU(4)C . The middle
diagram in Fig.3 involving �d15

2

involves a Clebsch factor of +9 as compared to the factor
of -3 with �d

2

[35]. Below the PS the colour singlet component of �d15
2

mixes with �d
2

, to
yield a light flavon combination,

�d0

2

= �d15
2

cos � + sin ��d
2

. (96)

Hence middle diagram in Fig.3 involving �d0
2

implies the relation,

y0µ
y0s

= 9 cos � � 3 sin �. (97)

For example by suitable choice of the mixing angle � we can arrange y0µ = 4.5y0s ,

Y e =

0

@
�(y0d/3)e

�i2⇡/5 0 Ay0de
�i2⇡/5

By0de
�i3⇡/5 �4.5y0se

�i2⇡/5 �3Cy0de
�i3⇡/5

By0de
�i3⇡/5 0 y0b � 3Cy0de

�i3⇡/5

1

A . (98)

By comparing Y e in Eq.98 to Y d in Eq.70, we find the modified GJ relations,

ye =
yd
2.6

, yµ = 4.1ys, y⌧ = 0.97yb, (99)

23

form of e↵ective neutrino mass matrix, after the see-saw mechanism has been applied.

5.1 Convention

The neutrino Yukawa matrix Y ⌫ is defined in a LR convention by 2

L = �vuY ⌫
↵i⌫

↵
L

⌫i
R

+ h.c.

where ↵ = e, µ, ⌧ labels the three left-handed neutrinos and i = 1, 2, 3 labels the three
right-handed neutrinos.

The physical e↵ective neutrino Majorana mass matrix m⌫ is determined from the
columns of Y ⌫ via the see-saw mechanism,

m⌫ = �v2u Y
⌫M�1

R

Y ⌫T , (76)

where the light Majorana neutrino mass matrix m⌫ is defined by 3 L⌫ = �1

2

m⌫⌫
L

⌫c
L

+
h.c., while the heavy right-handed Majorana neutrino mass matrix MR is defined by
LR

⌫ = �1

2

MR⌫c
R

⌫
R

+ h.c. and m⌫ is diagonalised by

U⌫L m
⌫ UT

⌫L
=

0

@
m

1

0 0
0 m

2

0
0 0 m

3

1

A. (77)

The PMNS matrix is then given by

U
PMNS

= UeLU
†
⌫L

. (78)

We use a standard parameterization U
PMNS

= Rl
23

U l
13

Rl
12

P l in terms of slij = sin(✓lij),
clij = cos(✓lij), the Dirac CP violating phase �l and further Majorana phases contained

in P l = diag(ei
�l1
2 , ei

�l2
2 , 1). The standard PDG parameterization [37] di↵ers slightly due

to the definition of Majorana phases which are by given by P l
PDG

= diag(1, ei
↵21
2 , ei

↵31
2 ).

Evidently the PDG Majorana phases are related to those in our convention by ↵
21

=
�l
2

� �l
1

and ↵
31

= ��l
1

, after an overall unphysical phase is absorbed by UeL .

5.2 See-saw mechanism

The neutrino Yukawa and Majorana matrices are as in Eq.27, with Y ⌫ = Y u in Eq.69,

Y ⌫ =

0

@
0 be�i3⇡/5 0

ae�i3⇡/5 4be�i3⇡/5 0
ae�i3⇡/5 2be�i3⇡/5 c

1

A , MR ⇡

0

@
M

1

e8i⇡/5 0 0
0 M

2

e4i⇡/5 0
0 0 M

3

1

A , (79)

2This LR convention for the Yukawa matrix di↵ers by an Hermitian conjugation compared to that
used in the Mixing Parameter Tools package [38] due to the RL convention used there.

3Note that this convention for the light e↵ective Majorana neutrino mass matrix m⌫ di↵ers by an
overall complex conjugation compared to that used in the Mixing Parameter Tools package [38].
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2.5 Two light Higgs doublets

The model will involve Higgs bi-doublets of two kinds, hu which lead to up-type quark
and neutrino Yukawa couplings and hd which lead to down-type quark and charged
lepton Yukawa couplings. In addition a Higgs bidoublet h

3

, which is also an A
4

triplet,
is used to give the third family Yukawa couplings.

After the PS and A
4

breaking, most of these Higgs bi-doublets will get high scale
masses and will not appear in the low energy spectrum. In fact only two light Higgs
doublets will survive down to the TeV scale, namely Hu and Hd. The precise mechanism
responsible for this is quite intricate and is discussed in Appendix B. Analogous Higgs
mixing mechanisms are implicitly assumed in many models, but are rarely discussed
explicitly (however for an example within SO(10) see [33]).

The basic idea is that the light Higgs doublet Hu with hypercharge Y = +1/2,
which couples to up-type quarks and neutrinos, is a linear combination of components
of the Higgs bi-doublets of the kind hu and h

3

, while the light Higgs doublet Hd with
hypercharge Y = �1/2, which couples to down-type quarks and charged leptons, is a
linear combination of components of Higgs bi-doublets of the kind hd and h

3

,

hu, h3

! Hu, hd, h3

! Hd. (14)

2.6 Yukawa operators

The renormalisable Yukawa operators, which respect PS and A
4

symmetries, have the
following form, leading to the third family Yukawa couplings shown, using Eqs.2,14,

F.h
3

F c
3

! Q
3

Huu
c
3

+Q
3

Hdd
c
3

+ L
3

Hu⌫
c
3

+ L
3

Hde
c
3

, (15)

where we have used Eqs.2,14. The non-renormalisable operators, which respect PS and
A

4

symmetries, have the following form,

F.�u
i huF

c
i ! Q.h�u

i iHuu
c
i + L.h�u

i iHu⌫
c
i , (16)

F.�d
ihdF

c
i ! Q.h�d

i iHdd
c
i + L.h�d

i iHde
c
i , (17)

where i = 1 gives the first column of each Yukawa matrix, while i = 2 gives the second
column and we have used Eqs.2,14. Thus the third family masses are naturally larger
since they correspond to renormalisable operators, while the hierarchy between first and
second families arises from a hierarchy of flavon VEVs.

2.7 Yukawa matrices

Inserting the vacuum alignments in Eqs.12 and 13 into Eqs.16 and 17, together with the
renormalisable third family couplings in Eq.15, gives the Yukawa matrices of the form,

Y u = Y ⌫ =

0

@
0 b 0
a 4b 0
a 2b c

1

A , Y d ⇠ Y e ⇠

0

@
y0d 0 0
0 y0s 0
0 0 y0b

1

A . (18)
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4.3 Numerical results for quark mixing

With the phases fixed by the choice of discrete choice of phases n = 2,m = 3, as
discussed in the previous subsection, the only free parameters are a, b, c in the up sector,
and A,B,C and y0d, y

0

s , y
0
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Note that we have introduced a small correction term ✏ in the (1, 3) entry of Y u which
will mainly a↵ect ✓q

13

. Physically this corresponds to a small admixture of the first
component of the Higgs triplet h

3

contributing to the physical light Higgs state Hu, as
discussed in Appendix B. The previous analytic results were for ✏ = 0, but we find
numerically that the best fit to CKM parameters requires a non-zero value of ✏.

For the following results, we shall fix the parameters which approximately determine
the six quark masses at the high scale to be,

a = 1.6.10�5, b = 0.8.10�3, c = 0.75, (71)

y0d = 0.9.10�5, y0s = 1.4.10�4, y0b = �0.9.10�2, (72)

Although the quark results are insensitive to the sign of y0b , the lepton sector results lead
to a better fit with the negative sign of y0b as discussed later. Using the Mixing Parameter
Tools (MPT) package [38], in Fig.5 we show the CKM parameters for di↵erent choices
of A,B as a function of C. ✓q

23

is really only sensitive to C only, while ✓q
12

is mainly
sensitive to B. ✓q

13

and �q are both sensitive A. The e↵ect of the correction ✏ is to
shift the blue dashed curve to the red solid curve, lowering ✓q

13

while leaving ✓q
23

almost
unchanged, allowing the best fit of the CKM parameters for C = 36.

To take a concrete example, for the red solid at the value C = 36, with the above
input parameters A = 9, B = 7 (c.f. Eq.65) and ✏ = �2.4 ⇥ 10�3, we find the quark
Yukawa eigenvalues at the high scale,

yu = 3.9.10�6, yc = 3.3.10�3, yt = 0.75, (73)

yd = 0.81.10�5, ys = 1.5.10�4, yb = 0.91.10�2 (74)

and the CKM parameters at the high scale,
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These parameters are consistent with those given, for example, in [3], after including
RG corrections, in particular due to the large top Yukawa coupling. Notice that there
are as many input parameters as there are physical observables in the quark sector, so
no prediction is claimed. However we emphasise two interesting features, firstly that the
Cabibbo angle is understood to arise from Y u leading to ✓C ⇡ 1/4 or ✓C ⇡ 140, with a
small (one degree) correction mainly controlled by B. Secondly the phases which appear
are quantised according to Z
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, which also controls the leptonic phases as discussed in
the following subsection. Indeed, with Y ⌫ = Y u fixed by the quark sector, the entire
neutrino sector only depends on three additional right-handed neutrino masses, which
determine the three physical neutrino masses, with the entire neutrino mixing matrix
then being fully determined, with only very small charged lepton mixing corrections
appearing in the PMNS mixing matrix.
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The See-Saw mechanism

• Y � ⇤ Y u is the only non-diagonal matrix is responsible for all quark and lepton
mixing, which is fully specified once a, b, c are fixed by up quark masses

• Lepton mixing angles and CP violation are predicted for the phenomenological
range of m2/m3, assuming a relative phase of 2⌅/5 between the first and second
columns.

• The Cabibbo angle is predicted to be ⇥C ⌅ 1/4 or ⇥C ⌅ 14⇥ at leading order

• The other quark mixing angles and CP violating phase are zero at leading order

The first set of relations (which are valid at the Pati-Salam breaking scale) are just the
usual Georgi-Jarlskog (GJ) relations from SU(5) [19]. The tetra-model also yields an
SO(10)-like pattern of Dirac and heavy Majorana neutrino masses widely studied in the
literature [22]. However the light physical Majorana neutrino masses are not so hierar-
chical since the powers of � cancel in the see-saw mechanism. It has recently been shown
that the serious di⌅culties facing thermal leptogenesis in SO(10)-like models may be
circumvented when the production from the next-to-lightest right-handed neutrinos and
flavour e�ects are properly taken into account [23], so the prospects for thermal lepto-
genesis in the tetra-model look promising. Finally, it is noteworthy that the Cabibbo
angle is successfully predicted at leading order (to within one degree) as a consequence
of the vacuum alignment and quark-lepton unification, providing the Cabibbo connec-
tion between quark and lepton mixing. This is one of the main successes of the model,
being a consequence of the (1, 4, 2) vacuum alignment which also successfully reproduces
lepton mixing, as we now discuss.

3.2 Leading order lepton mixing

In this subsection we discuss the leading order predictions for PMNS mixing which arise
from the vacuum alignment.

The physical e�ective neutrino Majorana mass matrix m� is determined from the
columns of Y � via the see-saw mechanism,

m� = �v2u Y
�M�1

R Y �T , (29)

where the Majorana neutrino mass matrix m� , defined by 1 L� = �1
2m

�⇤L⇤c
L + h.c., is

diagonalised by

U�L m
� UT

�L
=

�

⇤
m1 0 0
0 m2 0
0 0 m3

⇥

⌅. (30)

1Note that this convention for the light e�ective Majorana neutrino mass matrix m� di�ers by an
overall complex conjugation compared to that used in the Mixing Parameter Tools package [24].
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Z5  invariant 
potential

where we have ignored the small o↵-diagonal Majorana mass M
13

which gives a tiny
mixing correction of order 10�5 from Eq.42, and dropped the correction ✏ which is
completely negligible in the lepton sector due to sequential dominance (see below). We
have also assumed a phase in the Majoron VEV h⇠i ⇠ e4i⇡/5 in the operators in Eq.25
responsible for the right-handed neutrino masses, as discussed below.

Using Eq.79, the see-saw formula in Eq.76 leads to the neutrino mass matrix m⌫ ,

m⌫ = ma

0

@
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where,

ma =
a2v2u
M

1

, mb =
b2v2u
M

2

, mc =
c2v2u
M

3

, (81)

are three real parameter combinations which determine the three physical neutrino
masses m

1

,m
2

,m
3

, respectively. According to sequential dominance mc will determine
the lightest neutrino mass m

1

where we will have m
1

⌧ m
2

< m
3

, so that the third term
arising from the heaviest right-handed neutrino of mass M

3

is approximately decoupled
from the see-saw mechanism. (This is why the correction ✏ is completely negligible in
the lepton sector.)

In order to understand the origin of the relative phases ⌘ = 2⇡/5 which enter the
neutrino mass matrix m⌫ , it is worth recalling that the see-saw operators responsible
for the dominant first two terms of the neutrino mass matrix in Eq.80 have the form

m⌫ ⇠ h�
atm

ih�
atm

iT

h⇠i2 +
h�

sol

ih�
sol

iT

h⇠i , (82)

where we have written �
atm

= �u
1

, �
sol

= �u
2

to highlight the fact that the first term
gives the dominant contribution to the atmospheric neutrino mass m

3

, while the second
term controls the solar neutrino mass m

2

. The mild neutrino hierarchy between m
3

and m
2

emerges due to the choice of Majoron VEV h⇠i in Eq.42 which partly cancels
the hierarchy in the square of the flavon VEVs in Eq.32. The lightest neutrino mass
m

1

arises from smaller terms (not shown), leading to a normal neutrino mass hierarchy,
where the heaviest atmospheric neutrino mass m

3

is associated with the lightest right-
handed neutrino mass M

1

as in light sequential dominance [14].
Since h�

atm

i and h�
sol

i have the same phase, e�i3⇡/5, and h⇠i has a phase 4 e4i⇡/5,
Eq.82 shows that the atmospheric term has a phase (e�i3⇡/5)2/(e4i⇡/5)2 = e�14i⇡/5, while
the solar term is real. After multiplying m⌫ by an overall phase e4i⇡/5, which we are
allowed to do since overall phases are irrelevant, the atmospheric term becomes real,
while the other two terms pick up phases of e4i⇡/5. This is equivalent to having a phase

4This phase is the complex conjugate of the phase given in the previous convention in Eq.25.
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where, as in [30], P denotes a singlet and the coupling g and mass m are real due to CP
conservation. The F-term condition from Eq.8 is,

����
h⇠i5

⇤3

�m2

����
2

= 0. (9)

This is satisfied, for example, by h⇠i = |(⇤3m2)1/5|e�4i⇡/5, where we arbitrarily select
the phase to be �4⇡/5 from amongst a discrete set of five possible choices, which are
not distinguished by the F-term condition, as in [24]. We emphasise that CP breaking
is controlled by the Abelian Z

5

symmetry rather than the non-Abelian A
4

symmetry.

2.4 Vacuum alignment

Let us now consider the A
4

triplet fields � which also carry Z
5

charges. In the full model
there are four such triplet fields, or “flavons”, denoted as �u

1

, �u
2

, �d
1

, �d
2

. The idea is
that �u

i are responsible for up-type quark flavour, while �d
i are responsible for down-type

quark flavour. These VEVs are driven by the superpotential terms,

g
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ii

◆
, (10)

where Pij are linear combinations of singlets as in [24]. The coupling constants gij, mass
parameters Mij and cut-o↵ scale ⇤ are enforced to be real by CP while the fields �u

i and
�d
i will develop VEVs with quantised phases. If we assume that �u

i both have the same
phase, eim⇡/5, then Eq.10 implies that �d

i should have phases ein⇡/5 such that

arg(�u
i ) =

m⇡

5
, arg(�d

i ) =
n⇡

5
, n+m = 0 (mod 5), (11)

where n,m are positive or negative integers.
The structure of the Yukawa matrices depends on the so-called CSD4 vacuum align-

ments of these flavons which were first derived in [24], and we assume a similar set of
alignments here, although here the overall phases are quantised due to Z

5

,
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and
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We note here that the vacuum alignments in Eq.13 and the first alignment in Eq.12 are
fairly “standard” alignments that are encountered in tri-bimaximal mixing models, while
the second alignment in Eq.12 is obtained using orthogonality arguments, as discussed
in [24], to which we refer the interested reader for more details.
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conservation. The F-term condition from Eq.8 is,

����
h⇠i5

⇤3

�m2

����
2

= 0. (9)

This is satisfied, for example, by h⇠i = |(⇤3m2)1/5|e�4i⇡/5, where we arbitrarily select
the phase to be �4⇡/5 from amongst a discrete set of five possible choices, which are
not distinguished by the F-term condition, as in [24]. We emphasise that CP breaking
is controlled by the Abelian Z

5

symmetry rather than the non-Abelian A
4

symmetry.

2.4 Vacuum alignment

Let us now consider the A
4

triplet fields � which also carry Z
5

charges. In the full model
there are four such triplet fields, or “flavons”, denoted as �u

1

, �u
2

, �d
1

, �d
2

. The idea is
that �u

i are responsible for up-type quark flavour, while �d
i are responsible for down-type

quark flavour. These VEVs are driven by the superpotential terms,

g
21

P
21

(�u
2

�d
1

±M2

21

) + g
12

P
12

(�u
1

�d
2

±M2

12

) + Pii

✓
guii

(�u
i )

5

⇤3

+ gdii
(�d

i )
5

⇤3

±M2

ii

◆
, (10)

where Pij are linear combinations of singlets as in [24]. The coupling constants gij, mass
parameters Mij and cut-o↵ scale ⇤ are enforced to be real by CP while the fields �u

i and
�d
i will develop VEVs with quantised phases. If we assume that �u

i both have the same
phase, eim⇡/5, then Eq.10 implies that �d

i should have phases ein⇡/5 such that

arg(�u
i ) =

m⇡

5
, arg(�d

i ) =
n⇡

5
, n+m = 0 (mod 5), (11)

where n,m are positive or negative integers.
The structure of the Yukawa matrices depends on the so-called CSD4 vacuum align-

ments of these flavons which were first derived in [24], and we assume a similar set of
alignments here, although here the overall phases are quantised due to Z

5

,

h�u
1

i = V u
1p
2
eim⇡/5

0

@
0
1
1

1

A , h�u
2

i = V u
2p
21

eim⇡/5

0

@
1
4
2

1

A , (12)

and

h�d
1

i = V d
1

ein⇡/5

0

@
1
0
0

1

A , h�d
2

i = V d
2

ein⇡/5

0

@
0
1
0

1

A . (13)

We note here that the vacuum alignments in Eq.13 and the first alignment in Eq.12 are
fairly “standard” alignments that are encountered in tri-bimaximal mixing models, while
the second alignment in Eq.12 is obtained using orthogonality arguments, as discussed
in [24], to which we refer the interested reader for more details.
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where we have ignored the small o↵-diagonal Majorana mass M
13

which gives a tiny
mixing correction of order 10�5 from Eq.42, and dropped the correction ✏ which is
completely negligible in the lepton sector due to sequential dominance (see below). We
have also assumed a phase in the Majoron VEV h⇠i ⇠ e4i⇡/5 in the operators in Eq.25
responsible for the right-handed neutrino masses, as discussed below.

Using Eq.79, the see-saw formula in Eq.76 leads to the neutrino mass matrix m⌫ ,

m⌫ = ma

0

@
0 0 0
0 1 1
0 1 1

1

A+mbe
2i⌘

0

@
1 4 2
4 16 8
2 8 4

1

A+mce
2i⌘

0

@
0 0 0
0 0 0
0 0 1

1

A , (80)

where,

ma =
a2v2u
M

1

, mb =
b2v2u
M

2

, mc =
c2v2u
M

3

, (81)

are three real parameter combinations which determine the three physical neutrino
masses m

1

,m
2

,m
3

, respectively. According to sequential dominance mc will determine
the lightest neutrino mass m

1

where we will have m
1

⌧ m
2

< m
3

, so that the third term
arising from the heaviest right-handed neutrino of mass M

3

is approximately decoupled
from the see-saw mechanism. (This is why the correction ✏ is completely negligible in
the lepton sector.)

In order to understand the origin of the relative phases ⌘ = 2⇡/5 which enter the
neutrino mass matrix m⌫ , it is worth recalling that the see-saw operators responsible
for the dominant first two terms of the neutrino mass matrix in Eq.80 have the form

m⌫ ⇠ h�
atm

ih�
atm

iT

h⇠i2 +
h�

sol

ih�
sol

iT

h⇠i , (82)

where we have written �
atm

= �u
1

, �
sol

= �u
2

to highlight the fact that the first term
gives the dominant contribution to the atmospheric neutrino mass m

3

, while the second
term controls the solar neutrino mass m

2

. The mild neutrino hierarchy between m
3

and m
2

emerges due to the choice of Majoron VEV h⇠i in Eq.42 which partly cancels
the hierarchy in the square of the flavon VEVs in Eq.32. The lightest neutrino mass
m

1

arises from smaller terms (not shown), leading to a normal neutrino mass hierarchy,
where the heaviest atmospheric neutrino mass m

3

is associated with the lightest right-
handed neutrino mass M

1

as in light sequential dominance [14].
Since h�

atm

i and h�
sol

i have the same phase, e�i3⇡/5, and h⇠i has a phase 4 e4i⇡/5,
Eq.82 shows that the atmospheric term has a phase (e�i3⇡/5)2/(e4i⇡/5)2 = e�14i⇡/5, while
the solar term is real. After multiplying m⌫ by an overall phase e4i⇡/5, which we are
allowed to do since overall phases are irrelevant, the atmospheric term becomes real,
while the other two terms pick up phases of e4i⇡/5. This is equivalent to having a phase

4This phase is the complex conjugate of the phase given in the previous convention in Eq.25.
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and hence,
����
yµ
ys

yd
ye

���� = 10.7, (100)

which reproduces the central value in Eq.95. In the above estimate we have assumed
A = 9, B = 7, C = 36 and the other couplings in Eq.72. Using the same neutrino mass
parameters as in Eq.84, the MPT package gives the same lepton mixing parameters as
for the GJ form in Eq.91, to very good accuracy.

5.5 Numerical results for neutrino masses and lepton mixing

In our numerical results we shall use the charged lepton Yukawa matrix in Eq.98, to-
gether with the neutrino mass matrix in Eq.80, as summarised below,

m⌫ = ma

0

@
0 0 0
0 1 1
0 1 1

1

A+mbe
i4⇡/5

0

@
1 4 2
4 16 8
2 8 4

1

A+mce
i4⇡/5

0

@
0 0 0
0 0 0
0 0 1

1

A , (101)

Y e =

0

@
�(y0d/3)e

�i2⇡/5 0 Ay0de
�i2⇡/5

By0de
�i3⇡/5 �4.5y0se

�i2⇡/5 �3Cy0de
�i3⇡/5

By0de
�i3⇡/5 0 y0b � 3Cy0de

�i3⇡/5

1

A . (102)

As discussed previously, the lepton mixing depends on predominantly on m⌫ which
involves the three real mass parameters ma, mb, mc, which are e↵ectively fixed by the
neutrino masses. However there are small corrections coming from Y e, which involves the
real parameters A,B,C which determine the quark mixing angles and the real Yukawa
couplings y0d, y

0

s , y
0

b which were previously determined from the down-type quark masses.
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Figure 6: The neutrino mass squared parameters �m2
31 and �m2

21 resulting from Eq.101, plotted as
a function of the lightest neutrino mass m1. Each line corresponds to a fixed ma and mb with varied
mc. The (Blue, Red, Green) coloured lines correspond to ma = (0.036, 0.035, 0.034) eV, respectively,
and give (High, Central, Low) values of �m2

31. The (Dashed, Solid, Dotted) styles correspond to
mb = (0.00210, 0.00205, 0.00200) eV, respectively, and yield (High, Central, Low) values of �m2

21. The
parameter mc is varied from 0 � 0.004 eV corresponding to m1 = 0 � 0.006 eV.
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In the present model |mee| is predicted to be always very small and unobservable in the
foreseeable future. For example, for the parameters in Eq.84, 85 and 91, we find,

|mee| ⇡ |0.2 + 2.4e�i0.12⇡ + 1.2ei0.61⇡| meV ⇡ 2.1 meV. (107)

The sum of neutrino masses is relevant for cosmology, since it contributes to hot
dark matter, leading to a constraint on its value and eventually a measurement. This
is defined by,

⌃mi ⌘ ⌃3

i=1

mi = m
1

+m
2

+m
3

. (108)

Due to the rather strong normal hierarchy, this value is dominated by the value of m
3

,
which is controlled by the parameter ma in the neutrino mass matrix in Eq.101.
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Figure 9: The neutrinoless double beta decay parameter |mee| (left panel) and the sum of neutrino
masses ⌃mi (right panel) as predicted by the model, resulting from Eqs.101,102, plotted as a function
of the lightest neutrino mass m1 for charged lepton parameters given by A = 9, B = 7, C = 36 and the
down quark couplings in Eq.72. Each line corresponds to a fixed ma and mb with varied mc, using the
same values as in Fig.6, with the colour coding and line styles as before.

In Fig.9 we show the neutrinoless double beta decay parameter |mee| (left panel)
and the sum of neutrino masses ⌃mi (right panel) as predicted by the model, using
the same parameter sets and colour coding as for the other plots. Note that for |mee|
(left panel) the three colours corresponding to di↵erent values of ma lie accurately on
top of each other. The three dashed curves predict |mee| ⇡ 2.15 meV, the three solid
curves predict |mee| ⇡ 2.10 meV and the three dotted curves predict |mee| ⇡ 2.05
meV, corresponding to the three di↵erent values of mb = 2.15, 2.10, 2.05. This can be
understood from the neutrino mass matrix in Eq.101, since |mee| = |m⌫

11

| = mb, with the
charged lepton matrix in Eq.98 providing only very small corrections to this result. The
fact that Eq.106 was used to calculate the results and agrees very accurately with the
expectation |mee| = |m⌫

11

| = mb provides a highly non-trivial check on our calculation
of PMNS parameters and neutrino masses, and gives confidence to all our results. Note
that |mee|, being equal to mb, is approximately fixed by �m2

21

in Fig.6. Since |mee|
is predicted to be too small to measure in the foreseeable future, an observation of
neutrinoless double beta decay could exclude the model. Similar comments apply to a
cosmological observation of ⌃mi.

28

In the present model |mee| is predicted to be always very small and unobservable in the
foreseeable future. For example, for the parameters in Eq.84, 85 and 91, we find,

|mee| ⇡ |0.2 + 2.4e�i0.12⇡ + 1.2ei0.61⇡| meV ⇡ 2.1 meV. (107)

The sum of neutrino masses is relevant for cosmology, since it contributes to hot
dark matter, leading to a constraint on its value and eventually a measurement. This
is defined by,

⌃mi ⌘ ⌃3

i=1

mi = m
1

+m
2

+m
3

. (108)

Due to the rather strong normal hierarchy, this value is dominated by the value of m
3

,
which is controlled by the parameter ma in the neutrino mass matrix in Eq.101.

0.0 0.1 0.2 0.3 0.4 0.5 m1HmeVL
2.05

2.10

2.15

meeHmeVL

0.1 0.2 0.3 0.4 0.5 m1HmeVL57
58
59
60
61

SmiHmeVL

Figure 9: The neutrinoless double beta decay parameter |mee| (left panel) and the sum of neutrino
masses ⌃mi (right panel) as predicted by the model, resulting from Eqs.101,102, plotted as a function
of the lightest neutrino mass m1 for charged lepton parameters given by A = 9, B = 7, C = 36 and the
down quark couplings in Eq.72. Each line corresponds to a fixed ma and mb with varied mc, using the
same values as in Fig.6, with the colour coding and line styles as before.

In Fig.9 we show the neutrinoless double beta decay parameter |mee| (left panel)
and the sum of neutrino masses ⌃mi (right panel) as predicted by the model, using
the same parameter sets and colour coding as for the other plots. Note that for |mee|
(left panel) the three colours corresponding to di↵erent values of ma lie accurately on
top of each other. The three dashed curves predict |mee| ⇡ 2.15 meV, the three solid
curves predict |mee| ⇡ 2.10 meV and the three dotted curves predict |mee| ⇡ 2.05
meV, corresponding to the three di↵erent values of mb = 2.15, 2.10, 2.05. This can be
understood from the neutrino mass matrix in Eq.101, since |mee| = |m⌫

11

| = mb, with the
charged lepton matrix in Eq.98 providing only very small corrections to this result. The
fact that Eq.106 was used to calculate the results and agrees very accurately with the
expectation |mee| = |m⌫

11

| = mb provides a highly non-trivial check on our calculation
of PMNS parameters and neutrino masses, and gives confidence to all our results. Note
that |mee|, being equal to mb, is approximately fixed by �m2

21

in Fig.6. Since |mee|
is predicted to be too small to measure in the foreseeable future, an observation of
neutrinoless double beta decay could exclude the model. Similar comments apply to a
cosmological observation of ⌃mi.

28

1406.7005

mb = 2.05 meV

mb = 2.10 meV

mb = 2.15 meV
ma = 36 meV

ma = 35 meV

ma = 34 meV

Neutrino mass variables



0.0 0.1 0.2 0.3 0.4 0.5 m1HmeVL
8.5

9.0

9.5

ql13HdegL

0.0 0.1 0.2 0.3 0.4 0.5 m1HmeVL31.5
32.0
32.5
33.0
33.5
34.0
34.5

ql12HdegL

0.0 0.1 0.2 0.3 0.4 0.5 m1HmeVL44.5
45.0
45.5
46.0
46.5

ql23HdegL

0.0 0.1 0.2 0.3 0.4 0.5 m1HmeVL256
258
260
262
264
266
dlHdegL

Figure 7: PMNS predictions of the model, resulting from Eqs.101,102, plotted as a function of the
lightest neutrino mass m1 for charged lepton parameters given by A = 9, B = 7, C = 36 and the down
quark couplings in Eq.72. Each line corresponds to a fixed ma and mb with varied mc, using the same
values as in Fig.6, with the colour coding and line styles as before.

As discussed previously (c.f. Eqs.87, 91, 92) the e↵ect on lepton mixing depends on
the sign of y0b where the negative sign pushes up the atmospheric angle towards maximal,
while also decreasing the reactor angle, while the positive sign has the opposite e↵ect.
Here we shall show results for the negative sign of y0b , as in Eq.72. We shall also use
the same real parameters A = 9, B = 7, C = 36 which gave a good fit to the quark
mixing angles and CP phase in Eq.75. Since lepton mixing depends mainly on the three
real mass parameters ma, mb and mc which also determine the neutrino masses, we
shall show results as a function of the neutrino mass parameters. Here we shall restrict
ourselves to showing results where we keep the parameters appearing in Y e fixed at
the above “benchmark” values, and vary only ma, mb and mc. The parameter ma is
mainly responsible for the atmospheric neutrino mass and hence �m2

31

, while mb is
mainly responsible for the solar neutrino mass and hence �m2

21

, with mc being mainly
responsible for the lightest neutrino mass m

1

, which is zero for mc = 0. Once the
parameters ma and mb are chosen to fix �m2

31

and �m2

21

for mc = 0 , then all neutrino
parameters are predicted as a function of mc and hence m

1

, as described below.
Using the Mixing Parameter Tools package [38], in Fig.6 we show the neutrino mass

squared di↵erences as a function of the lightest physical neutrino massm
1

, corresponding
to varying mc for various fixed values of ma,mb as given in the figure caption. Note that
�m2

21

actually increases withm
1

. This is because, with fixedma andmb, switching onmc
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tan � ⇠ 50 have been shown to be [40]: �✓l
23

⇠ +1�, �✓l
12

⇠ +0.4�, �✓l
13

⇠ �0.1�,
where the positive sign means that the value increases in running from the GUT scale
to low energy, while for low tan � <⇠ 10 the RG corrections are negligible compared to
the range of the predictions. In particular the e↵ect of right-handed neutrino thresholds
[39] is expected to be negligible in this model since the heaviest right-handed neutrino
mass is close to the GUT scale, while the lighter right-handed neutrinos have very small
Yukawa couplings given by a ⇠ 2.10�5 and b ⇠ 10�3 from Eq.32.

We emphasise that, since the parameters in Y e in Eq.102 are fixed from the quark
sector, and the light neutrino masses are determined by three real parameters ma, mb,
mc in Eq.101, the entire PMNS matrix containing 3 mixing angles and 3 CP phases
emerges as a prediction of the model, although 2 of these CP phases will be di�cult to
measure for a normal neutrino mass hierarchy, so we have not plotted their predictions.
The model may be tested most readily by its prediction of maximal atmospheric mixing
and a normal neutrino mass hierarchy. It would be interesting to perform a �2 analysis
of the quark and lepton masses and mixing angles predicted by the model, but that is
beyond the scope of the present paper.

5.6 Majorana phases, Neutrinoless double beta decay and Sum
of Neutrino Masses relevant for Cosmology

The Majorana phases ↵
21

,↵
31

(in PDG convention defined below Eq.78) predicted by
the model are displayed in Fig.8, using the same parameter sets and colour coding as
for the other plots. Note that ↵

31

⇡ �90�, similar to the oscillation phase �l.
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Figure 8: Majorana phases (in PDG convention defined below Eq.78) as predicted by the model,
resulting from Eqs.101,102, plotted as a function of the lightest neutrino mass m1 for charged lepton
parameters given by A = 9, B = 7, C = 36 and the down quark couplings in Eq.72. Each line
corresponds to a fixed ma and mb with varied mc, using the same values as in Fig.6, with the colour
coding and line styles as before.

The Majorana phases ↵
21

,↵
31

enter the e↵ective mass |mee| observable in neutrinoless
double beta decay parameter given by,

|mee| = |m
1

c2
12

c2
13

+m
2

s2
12

c2
13

ei↵21 +m
3

s2
13

ei(↵31�2�)|. (106)
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Conclusions
See-saw does not explain lepton mixing, we need 
symmetry to find a theory of flavour

Direct models: either a small family symmetry with large 
correction or a large family group with a small correction

Indirect models: allow small family symmetry groups 
such as A4 if broken by new alignments as in CSD(n)

GUT embeddings of indirect models, unifying quarks 
and leptons, is a highly predictive framework 

Considered a A4xZ5 Pati-Salam model with PMNS 
predicted (plus normal hierarchy, Cabibbo angle)
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Lepton Mixing Predictions with ∆(6n2) Family Symmetry

Stephen F. King,∗ Thomas Neder,† and Alexander J. Stuart‡

University of Southampton

We obtain predictions lepton mixing parameters for models based on ∆(6n2) family symmetry
groups for arbitrarily large n. After reviewing and developing the group theory associated with
∆(6n2), we find many new family symmetry groups able to yield reactor angle predictions within
3σ of recent global fits. Within the framework of direct models, we show that ∆(6n2) generically
leads to tri-maximal mixing with Dirac phase either zero or π, leading to a testable sum rule
θ23 = 45◦ ∓ θ13/

√
2.

INTRODUCTION

The measurement of a rather large reactor mixing an-
gle by the Daya Bay [1], RENO [2], and Double Chooz [3]
collaborations adds further complexity to an already dif-
ficult puzzle of flavour. Perhaps the best way to ad-
dress this dilemma is to utilise the methods developed
in the era of an unmeasured reactor angle and introduce
an additional discrete family symmetry, Gf , under which
all fields transform. This family symmetry will then be
spontaneously broken in order to generate the observed
fermionic masses and mixings [4]. However before even
considering the construction of a model, it may be in-
sightful to know some of the possible candidate symme-
tries for Gf . Herein lies the goal of this work, shedding
light on a particular class of candidates for Gf , i.e. the
∆(6n2) groups.
In the following text, we demand that the discrete

group Gf be a subgroup of the continuous group SU(3)
(or U(3)) because its fundamental representation is 3-
dimensional. We further restrict ourselves to working
with the ∆(6n2) ∼= (Zn × Zn) ! S3 subgroups of SU(3)
due to the past and current popularity of S4

∼= ∆(24)
(n = 2) in flavour model building (see [5] and Refs. con-
tained therein) as well as recent publications demonstrat-
ing that ∆(96) (n = 4)[6, 7], ∆(150) (n = 5)[8, 9], ∆(600)
(n = 10)[9, 10] and ∆(1536) (n = 16)[10] generate phe-
nomenologically viable predictions for the lepton mixing
angles. We further limit ourselves to working only with
the ∆(6n2) groups where n is even because these are the
only ∆(6n2) groups which can contain a complete Klein
subgroup, i.e. all four Klein subgroup elements. Thus
with the preliminary assumptions and goals of this work
put forth, we proceed by introducing the framework in
which we will work. Afterwards, a brief review of the rep-
resentations of ∆(6n2) will be presented. Finally, the de-
tails of our method elucidated and the results presented.

FROM Gf TO LEPTON MIXING

As previously mentioned, to address the puzzling is-
sue of flavour, we will introduce a discrete family sym-
metry which will be spontaneously broken to different

subgroups in the charged lepton and neutrino sectors,
thereby generating the observed lepton masses and mix-
ings. In such a direct model of flavour [5], the family
group is broken to some abelian subgroup ZT

m (m an in-
teger) in the charged lepton sector and to the ZS

2 × ZU
2

Klein Symmetry Group in the neutrino sector. The su-
perscripts denote that S, T and U are the generators of
their corresponding Zm group in the diagonal charged
lepton basis. Hence, the ZS

2 ×ZU
2 transformations on νL

and the ZT
m transformations on eL leave the Lagrangian

invariant. This implies that

[S,Mν ] = [U,Mν ] = 0 and [T,M e] = 0, (1)

where Mν and M e represent the mass matrices multi-
plied by their Hermitian conjugates. Since S and U com-
mute with Mν they are diagonalised by the same matrix
V ν . Similarly T and M e are diagonalised by the same
matrix V e. Since Mν and M e relate to the left-handed
fields, the PMNS matrix is then given by

V = V e†V ν . (2)

To obtain the matrices V ν and V e, and hence the PMNS
matrix, we only need to identify the generators S, U and
T and diagonalise them. In practice, this amounts to
finding the eigenvectors of S, U and T which form the
columns of V ν and V e. This is straightforward for T since
the eigenvalues are non-degenerate due to the fact that T
must be an element of Gf of order 3 or greater. However
for the S and U generators the situation is slightly dif-
ferent because they are 3× 3 matrices of order 2. Thus,
each eigenvalue of S or U can only be ±1. Without
loss of generality, we choose det(S) = det(U) = +1, so
that each generator has two−1 eigenvalues, rendering the
corresponding eigenvectors non-unique. Since the three
matrices S, U and SU each have one (unique) +1 eigen-
value this allows for the calculation of three unique eigen-
vectors (one for each non-trivial Klein group generator),
each providing an ith column of the matrix V ν :

GiV
ν
i = +V ν

i , for Gi ∈ {S,U, SU}. (3)

In this way all three columns of V ν can be obtained.
The remarkable method outlined in this section en-

ables the calculation of the lepton mixing matrix by only



A4

a mass range, neutrinoless double beta decay will not be observable in the foreseeable
future. In the longer term, the superbeam proposals [45] would measure the atmospheric
mixing angle to high accuracy, confronting the prediction ✓l

23

= 45�±0.5�, and ultimately
testing the prediction of the leptonic CP violating oscillation phase �l = 260� ± 5�.
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A A4

A
4

has four irreducible representations, three singlets 1, 10 and 100 and one triplet 3.
The products of singlets are:

1⌦ 1 = 1 10 ⌦ 100 = 1 10 ⌦ 10 = 100 100 ⌦ 100 = 10. (115)

The generators of the A
4

group, can be written as S and T with S2 = T 3 = (ST )3 = I.
We work in the Ma-Rajasakaran basis [16] where the triplet generators are,

S =

0

@
1 0 0
0 �1 0
0 0 �1

1

A , T =

0

@
0 1 0
0 0 1
1 0 0

1

A . (116)

In this basis one has the following Clebsch rules for the multiplication of two triplets,
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where !3 = 1, a = (a
1

, a
2

, a
3

) and b = (b
1

, b
2

, b
3
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Under a CP transformation in this basis we require [31],
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so that
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Multiplying S and T we generate 12 group elements

With 
eigenvectors

The A4 group is formed by all even permutations of S4. Thus, its order is equal to 4!/2 = 12. A4

group is isomorphic to the symmetry group T of a tetrahedron. Using the notation in Eq. (67), all 12
elements can be written as

a1 =

0

@
1 0 0
0 1 0
0 0 1

1

A , a2 =

0

@
1 0 0
0 �1 0
0 0 �1

1

A , a3 =

0

@
�1 0 0
0 1 0
0 0 �1

1

A , a4 =

0

@
�1 0 0
0 �1 0
0 0 1

1

A ,

b1 =

0

@
0 0 1
1 0 0
0 1 0

1

A , b2 =

0

@
0 0 1

�1 0 0
0 �1 0

1

A , b3 =

0

@
0 0 �1
1 0 0
0 �1 0

1

A , b4 =

0

@
0 0 �1

�1 0 0
0 1 0

1

A ,(83)

c1 =

0

@
0 1 0
0 0 1
1 0 0

1

A , c2 =

0

@
0 1 0
0 0 �1

�1 0 0

1

A , c3 =

0

@
0 �1 0
0 0 1

�1 0 0

1

A , c4 =

0

@
0 �1 0
0 0 �1
1 0 0

1

A .

They are classified by the conjugacy classes as

C1 : {a1}, h = 1,
C3 : {a2, a3, a4}, h = 2,
C4 : {b1, b2, b3, b4, }, h = 3,
C40 : {c1, c2, c3, c4, }, h = 3,

(84)

where we have also shown the orders of each element in the conjugacy class by h. There are four conjugacy
classes and there must be four irreducible representations, i.e. m1 + m2 + m3 + · · · = 4.

The orthogonality relation (27) requires

X

↵

[�↵(C1)]
2 =

X

n

mnn2 = m1 + 4m2 + 9m3 + · · · = 12, (85)

for mi, which satisfy m1 + m2 + m3 + · · · = 4. There exists one solution, (m1, m2, m3) = (3, 0, 1). That
is, the A4 group has three singlets, 1, 10, and 100, and one triplet 3, where the triplet representation
corresponds to Eq. (83).

Another algebraic definition of A4 is often used in the literature. We denote a1 = e, a2 = s and b1 = t.
They satisfy the following algebraic relations,

s2 = t3 = (st)3 = e. (86)

The closed algebra of these elements, s and t, is defined as the A4 group. That is, s and t are generators
of A4. It is straightforward to write all elements ai, bi, and ci in terms of s and t. Then, the conjugacy
classes are rewritten as

C1 : {e}, h = 1,
C3 : {s, tst2, t2st}, h = 2,
C4 : {t, ts, st, sts}, h = 3,
C40 : {t2, st2, t2s, tst}, h = 3.

(87)

Using them, we can study characters. First, we consider characters of the three singlets. Because of
s2 = e, there are two possibilities for the character of C3, �↵(C3) = ±1. However, the two elements
t and ts belong to the same conjugacy class C4. This implies that �↵(C3) should have the unique
value �↵(C3) = 1. Similarly, because of t3 = e, the character �↵(t) could correspond to three values, i.e.
�↵(t) = !n, n = 0, 1, 2, where all three values are consistent with the above structure of conjugacy classes.
Thus, the three singlets, 1, 10, and 100 are classified by these three values, �↵(t) = 1, !, and !2, respectively.
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A
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has four irreducible representations, three singlets 1, 10 and 100 and one triplet 3.
The products of singlets are:

1⌦ 1 = 1 10 ⌦ 100 = 1 10 ⌦ 10 = 100 100 ⌦ 100 = 10. (115)

The generators of the A
4

group, can be written as S and T with S2 = T 3 = (ST )3 = I.
We work in the Ma-Rajasakaran basis [16] where the triplet generators are,
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@
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1
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@
0 1 0
0 0 1
1 0 0

1

A . (116)

In this basis one has the following Clebsch rules for the multiplication of two triplets,
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where !3 = 1, a = (a
1

, a
2

, a
3

) and b = (b
1

, b
2

, b
3
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Under a CP transformation in this basis we require [31],
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), (118)
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Figure 1: A to Z of flavour with Pati-Salam, where A ⌘ A4 and Z ⌘ Z5. The left-handed families
form a triplet of A4 and are doublets of SU(2)L. The right-handed families are distinguished by Z5

and are doublets of SU(2)R. The SU(4)C unifies the quarks and leptons with leptons as the fourth
colour, depicted here as white.

2 Overview of the model

2.1 Symmetries of the model

The model is based on the Pati-Salam gauge group [26], with A
4

⇥Z
5

family symmetry,

SU(4)C ⇥ SU(2)L ⇥ SU(2)R ⇥ A
4

⇥ Z
5

. (1)

The quarks and leptons are unified in the PS representations as follows,

Fi = (4, 2, 1)i =

✓
u u u ⌫
d d d e

◆

i

! (Qi, Li),

F c
i = (4̄, 1, 2)i =

✓
uc uc uc ⌫c

dc dc dc ec

◆

i

! (uc
i , d

c
i , ⌫

c
i , e

c
i), (2)

where the SM multiplets Qi, Li, uc
i , d

c
i , ⌫

c
i , e

c
i resulting from PS breaking are also shown

and the subscript i (= 1, 2, 3) denotes the family index. The left-handed quarks and
leptons form an A

4

triplet F , while the three (CP conjugated) right-handed fields F c
i are

A
4

singlets, distinguished by Z
5

charges ↵,↵3, 1, for i = 1, 2, 3, respectively. Clearly the
Pati-Salam model cannot be embedded into an SO(10) Grand Unified Theory (GUT)
since di↵erent components of the 16-dimensional representation of SO(10) would have
to transform di↵erently under A

4

⇥Z
5

, which is impossible. On the other hand, the PS
gauge group and A

4

could emerge directly from string theory (see e.g. [28]).

2.2 Pati-Salam breaking

The Pati-Salam gauge group is broken at the GUT scale to the SM,

SU(4)C ⇥ SU(2)L ⇥ SU(2)R ! SU(3)C ⇥ SU(2)L ⇥ U(1)Y , (3)

4

SU(4)C ⇥ SU(2)L ⇥ SU(2)R
! SU(3)C ⇥ SU(2)L ⇥ U(1)Yby PS Higgs, Hc and Hc,

Hc = (4̄, 1, 2) = (uc
H , d

c
H , ⌫

c
H , e

c
H),

Hc = (4, 1, 2) = (ūc
H , d̄

c
H , ⌫̄

c
H , ē

c
H). (4)

These acquire vacuum expectation values (VEVs) in the “right-handed neutrino” direc-
tions, with equal VEVs close to the GUT scale 2⇥ 1016 GeV,

hHci = h⌫c
Hi = hHci = h⌫̄c

Hi ⇠ 2⇥ 1016 GeV, (5)

so as to maintain supersymmetric gauge coupling unification. Since the PS Higgs fields
do not carry any A

4

⇥ Z
5

charges, the potential responsible for supersymmetric PS
breaking considered in [29] is assumed to be responsible for PS breaking here.

2.3 CP violation

Our starting point is to assume that the high energy theory, above the PS breaking
scale, conserves CP [30]. We shall further assume that CP is spontaneously broken by the
complex VEVs of scalar fields which spontaneously break A

4

and Z
5

. The scalars include
A

4

triplets � ⇠ 3, A
4

singlets ⇠ ⇠ 1, and other one dimensional A
4

representations such
as ⌃u ⇠ 10 and ⌃d ⇠ 100. In addition all of the above fields carry Z

5

charges denoted as
the powers ↵n, where ↵ = e2⇡i/5 and n is an integer. For example ⇠ ⇠ ↵4 under Z

5

. The
group theory of A

4

is reviewed in Appendix A, while Z
5

corresponds to ↵5 = 1.
Under a CP transformation, the A

4

singlet fields transform into their complex con-
jugates [31],

⇠ ! ⇠⇤, ⌃u ! ⌃⇤
u, ⌃d ! ⌃⇤

d, (6)

where the complex conjugate fields transform in the complex conjugate representations
under A

4

⇥ Z
5

. For example if ⇠ ⇠ ↵4, under Z
5

, then ⇠⇤ ⇠ ↵. Similarly if ⌃u ⇠ 10,
⌃d ⇠ 100, under A

4

, then ⌃⇤
u ⇠ 100, ⌃⇤

d ⇠ 10. On the other hand, in the Ma-Rajarsakaran
[16] basis of Appendix A, for A

4

triplets � ⇠ (�
1

,�
2

,�
3

), a consistent definition of CP
symmetry requires the second and third triplet components to swap under CP [31],

� ! (�⇤
1

,�⇤
3

,�⇤
2

). (7)

CP violation has also been considered in a variety of other discrete groups [32]. With
the above definition of CP, all coupling constants g and explicit masses m are real due
to CP conservation and the only source of phases can be the VEVs of fields which break
A

4

⇥ Z
5

. In the model of interest, all the physically interesting CP phases will arise
from Z

5

breaking as in [30].
For example, consider the A

4

singlet field ⇠ which carries a Z
5

charge ↵4. The VEV
of this field arises from Z

5

invariant quintic terms in the superpotential [30],

gP

✓
⇠5

⇤3

�m2

◆
(8)
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FIG. 1: The possible values that |V13| can take in ∆(6n2)
family symmetry groups with even n. Examples include
|V13| = 0.211, 0.170, 0.160, 0.154 for n = 4, 10, 16, 22. The
lines denote the present approximate 3σ range of |V13|.

and found many new family symmetry groups able to
yield lepton mixing angle predictions within 3σ of recent
global fits. All the examples predict exact TM2 mixing in
Eq. (??) with zero Dirac phase but differ in the predic-
tion of |V13| as shown in FIG. 1. Our results show that,
for large n, the predictions for |V13| densely fill the al-
lowed range, rendering any prediction meaningless. Nev-
ertheless, our method of analysing all the ∆(6n2) groups
is of interest since it provides a general method for deal-
ing with an infinite class of groups, which until now have
only been analysed within particular scans up to a much
lower order than we have considered. The general predic-
tion ∆(6n2) models is that of tri-maximal mixing with
Dirac phase of zero or π leading to the testable sum rule,
θ23 = 45◦ ∓ θ13/

√
2.

APPENDIX

We begin the consideration of T generators of order
greater than 3 by considering the order of T to be even.
Then, Tm = 1 with m = 2q where q is an integer. As a
result, there are four types of elements that T may be:

cγ
′′

dδ
′′

, bcγ
′′

dδ
′′

, abcγ
′′

dδ
′′

, a2bcγ
′′

dδ
′′

(22)

each having certain constraints on γ′′ and δ′′ depending
on the value of m that fixes the order of the element. For
example, if T = cγ

′′

dδ
′′

is to be of order m, then mγ′′ =
mδ′′ = 0 mod n and γ′′ and δ′′ cannot be simultaneously
zero. cγ

′′

dδ
′′

is a diagonal matrix of phases and will not
yield any phenomenologically viable results. Considering
the other possible T generator candidates after applying
unitary transformations of the form R = cxdy with x and
y real numbers to eliminate unphysical phases and/or
permutations with R = a, only

T = bcξn/q, ξ = 1, . . . , q − 1 (23)

remains.

The matrices of Eq. (23) are diagonalised by

V e =
1√
2





0 e−iπγ/n −e−iπγ/n
√
2 0 0
0 1 1



 (24)

When applying the above matrix to cn/2 results in:

U (BM) =





−1 0 0
0 0 1
0 1 0



 . (25)

The unique eigenvector of this generator is given by
(0, 1, 1)/

√
2. Picking the smallest element of the mix-

ing matrix as V13 gives V13 = 0. For n = 4 this results in
a completely bimaximal mixing matrix [14].
If the order of T is not even but can be divided by

3, application of a unitary transformation R = cxdy can
remove all phases implying only T = a remains, yielding
the previously discussed predictions for T = a.
Continuing the systematic consideration of candidate

T generators leads us to consider the case of a T gen-
erator in which the order is odd, not divisible by 3 but
larger than 3. A ∆(6n2) group can only contain such an
element if m divides n. Then, for this case the possible
T generators are given by

T = cµn/mdρn/m (26)

where µ, ρ = 0, . . . ,m−1 and µ, ρ are not simultaneously
zero. These yield no phenomenologically viable predic-
tions. Therefore, only Z3 subgroups for candidate T gen-
erators are phenomenologically viable.
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Lepton Mixing Predictions with ∆(6n2) Family Symmetry

Stephen F. King,∗ Thomas Neder,† and Alexander J. Stuart‡

University of Southampton

We obtain predictions lepton mixing parameters for models based on ∆(6n2) family symmetry
groups for arbitrarily large n. After reviewing and developing the group theory associated with
∆(6n2), we find many new family symmetry groups able to yield reactor angle predictions within
3σ of recent global fits. Within the framework of direct models, we show that ∆(6n2) generically
leads to tri-maximal mixing with Dirac phase either zero or π, leading to a testable sum rule
θ23 = 45◦ ∓ θ13/

√
2.

INTRODUCTION

The measurement of a rather large reactor mixing an-
gle by the Daya Bay [1], RENO [2], and Double Chooz [3]
collaborations adds further complexity to an already dif-
ficult puzzle of flavour. Perhaps the best way to ad-
dress this dilemma is to utilise the methods developed
in the era of an unmeasured reactor angle and introduce
an additional discrete family symmetry, Gf , under which
all fields transform. This family symmetry will then be
spontaneously broken in order to generate the observed
fermionic masses and mixings [4]. However before even
considering the construction of a model, it may be in-
sightful to know some of the possible candidate symme-
tries for Gf . Herein lies the goal of this work, shedding
light on a particular class of candidates for Gf , i.e. the
∆(6n2) groups.
In the following text, we demand that the discrete

group Gf be a subgroup of the continuous group SU(3)
(or U(3)) because its fundamental representation is 3-
dimensional. We further restrict ourselves to working
with the ∆(6n2) ∼= (Zn × Zn) ! S3 subgroups of SU(3)
due to the past and current popularity of S4

∼= ∆(24)
(n = 2) in flavour model building (see [5] and Refs. con-
tained therein) as well as recent publications demonstrat-
ing that ∆(96) (n = 4)[6, 7], ∆(150) (n = 5)[8, 9], ∆(600)
(n = 10)[9, 10] and ∆(1536) (n = 16)[10] generate phe-
nomenologically viable predictions for the lepton mixing
angles. We further limit ourselves to working only with
the ∆(6n2) groups where n is even because these are the
only ∆(6n2) groups which can contain a complete Klein
subgroup, i.e. all four Klein subgroup elements. Thus
with the preliminary assumptions and goals of this work
put forth, we proceed by introducing the framework in
which we will work. Afterwards, a brief review of the rep-
resentations of ∆(6n2) will be presented. Finally, the de-
tails of our method elucidated and the results presented.

FROM Gf TO LEPTON MIXING

As previously mentioned, to address the puzzling is-
sue of flavour, we will introduce a discrete family sym-
metry which will be spontaneously broken to different

subgroups in the charged lepton and neutrino sectors,
thereby generating the observed lepton masses and mix-
ings. In such a direct model of flavour [5], the family
group is broken to some abelian subgroup ZT

m (m an in-
teger) in the charged lepton sector and to the ZS

2 × ZU
2

Klein Symmetry Group in the neutrino sector. The su-
perscripts denote that S, T and U are the generators of
their corresponding Zm group in the diagonal charged
lepton basis. Hence, the ZS

2 ×ZU
2 transformations on νL

and the ZT
m transformations on eL leave the Lagrangian

invariant. This implies that

[S,Mν ] = [U,Mν ] = 0 and [T,M e] = 0, (1)

where Mν and M e represent the mass matrices multi-
plied by their Hermitian conjugates. Since S and U com-
mute with Mν they are diagonalised by the same matrix
V ν . Similarly T and M e are diagonalised by the same
matrix V e. Since Mν and M e relate to the left-handed
fields, the PMNS matrix is then given by

V = V e†V ν . (2)

To obtain the matrices V ν and V e, and hence the PMNS
matrix, we only need to identify the generators S, U and
T and diagonalise them. In practice, this amounts to
finding the eigenvectors of S, U and T which form the
columns of V ν and V e. This is straightforward for T since
the eigenvalues are non-degenerate due to the fact that T
must be an element of Gf of order 3 or greater. However
for the S and U generators the situation is slightly dif-
ferent because they are 3× 3 matrices of order 2. Thus,
each eigenvalue of S or U can only be ±1. Without
loss of generality, we choose det(S) = det(U) = +1, so
that each generator has two−1 eigenvalues, rendering the
corresponding eigenvectors non-unique. Since the three
matrices S, U and SU each have one (unique) +1 eigen-
value this allows for the calculation of three unique eigen-
vectors (one for each non-trivial Klein group generator),
each providing an ith column of the matrix V ν :

GiV
ν
i = +V ν

i , for Gi ∈ {S,U, SU}. (3)

In this way all three columns of V ν can be obtained.
The remarkable method outlined in this section en-

ables the calculation of the lepton mixing matrix by only
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where ϑ = πγ′/n (cf. [9]). Since γ′ = 1, . . . , n/2, we obtain discrete predictions for the

mixing angles corresponding to ϑ = π/n, . . . , π/2. In general we cannot predict the order

of the rows and columns with this method, so we pick the entry with the smallest absolute

value and assign it to be |V13|. Notice that for the different values of ϑ, different elements of

Eq. (20) play the role of V13. After V13 has been fixed, the second and third row can still be

interchanged, leading to two different predictions for the atmospheric angle, corresponding

to δCP = 0 and δCP = π, leading to the testable sum rules, θ23 = 45◦ ∓ θ13/
√
2, respectively

[5]. (Note that Klein subgroups do not predict Majorana phases.) These sum rule relations

follow from considering the atmospheric angle sum rule given in [15] for the cases δCP = 0, π.

The sum rule θ23 = 45◦ − θ13/
√
2 was also proposed in [16] in a different context.

FIG. 1 shows all possible predictions for |V13| corresponding to the different Klein sub-

groups for each ∆(6n2) of even n one obtains using the method previously discussed. As n

increases the number of possible values of |V13| predicted by ∆(6n2) also increases according

to the above discussion.

CONCLUSIONS

In this paper we have obtained predictions of lepton mixing parameters for direct models

based on ∆(6n2) family symmetry groups for arbitrarily large n in which the full Klein

symmetry is identified as a subgroup of the family symmetry. After reviewing and developing

the group theory associated with ∆(6n2), we confirmed some known results of the recent
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