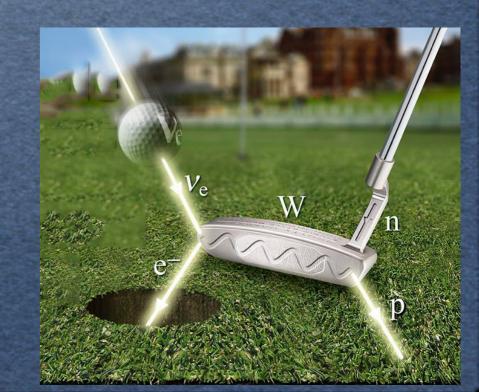
Southampton

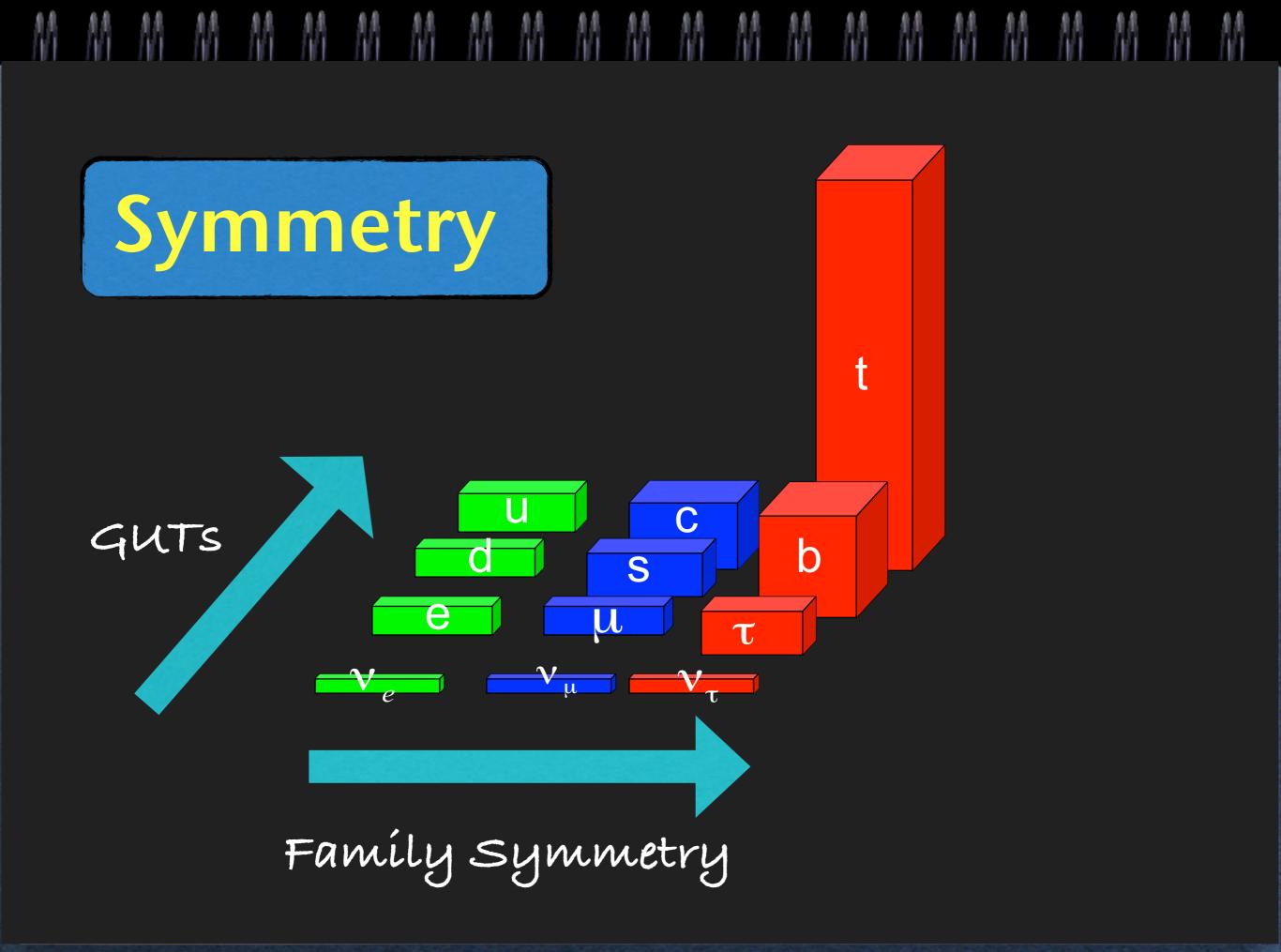

School of Physics and Astronomy

Neutrino Mass Models

Lecture 3: Flavour Models

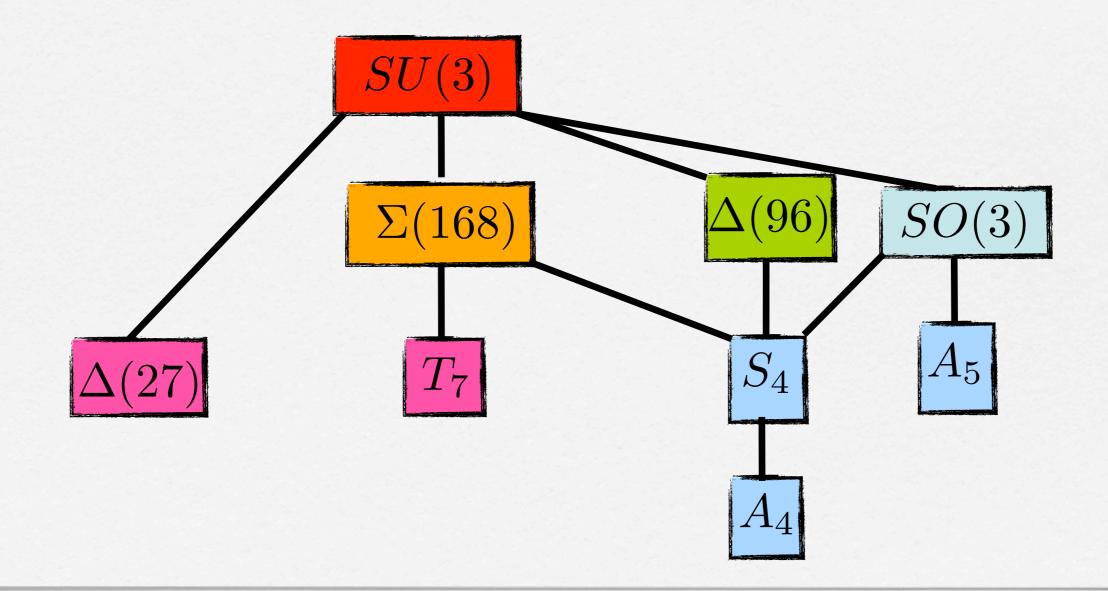
Steve King, St.Andrews, Scotland, 10-22 August, 2014

International Neutrino Summer School 2014 (INSS 2014) 70th Scottish Universities Summer School in Physics (SUSSP70)


Towards a Theory of Flavour

۲

Anarchy

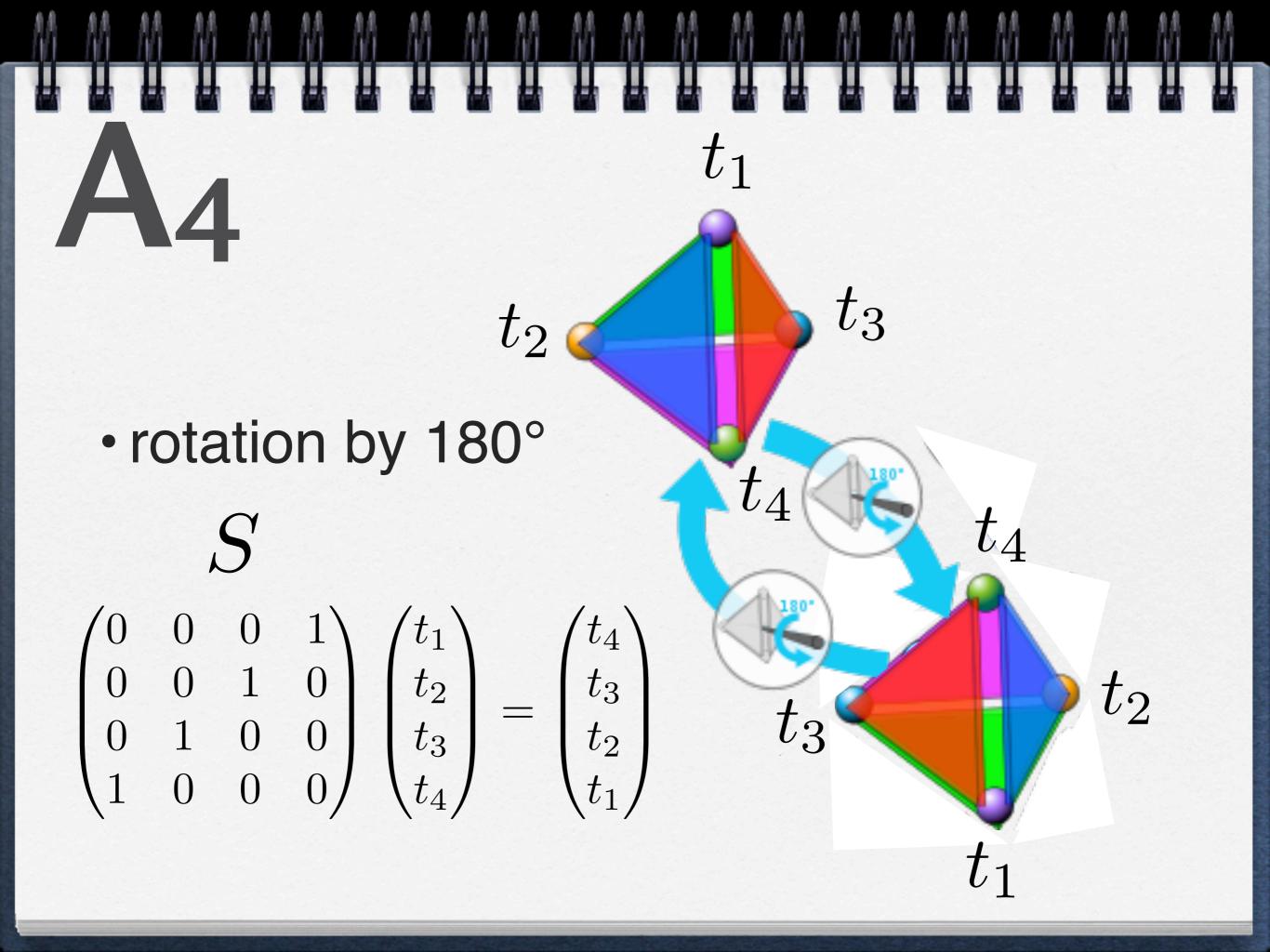


Example of a commutative group

Family Symmetry (non-Abelian)

444444 A4

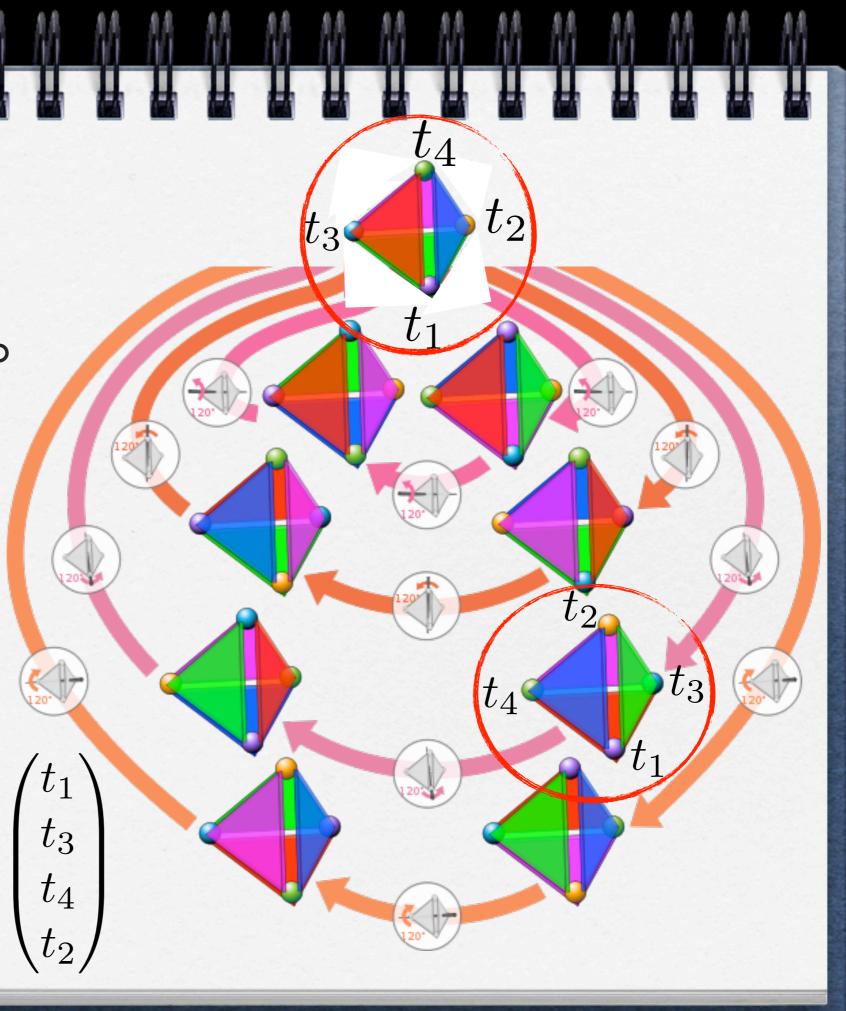
Symmetry of the tetrahedron

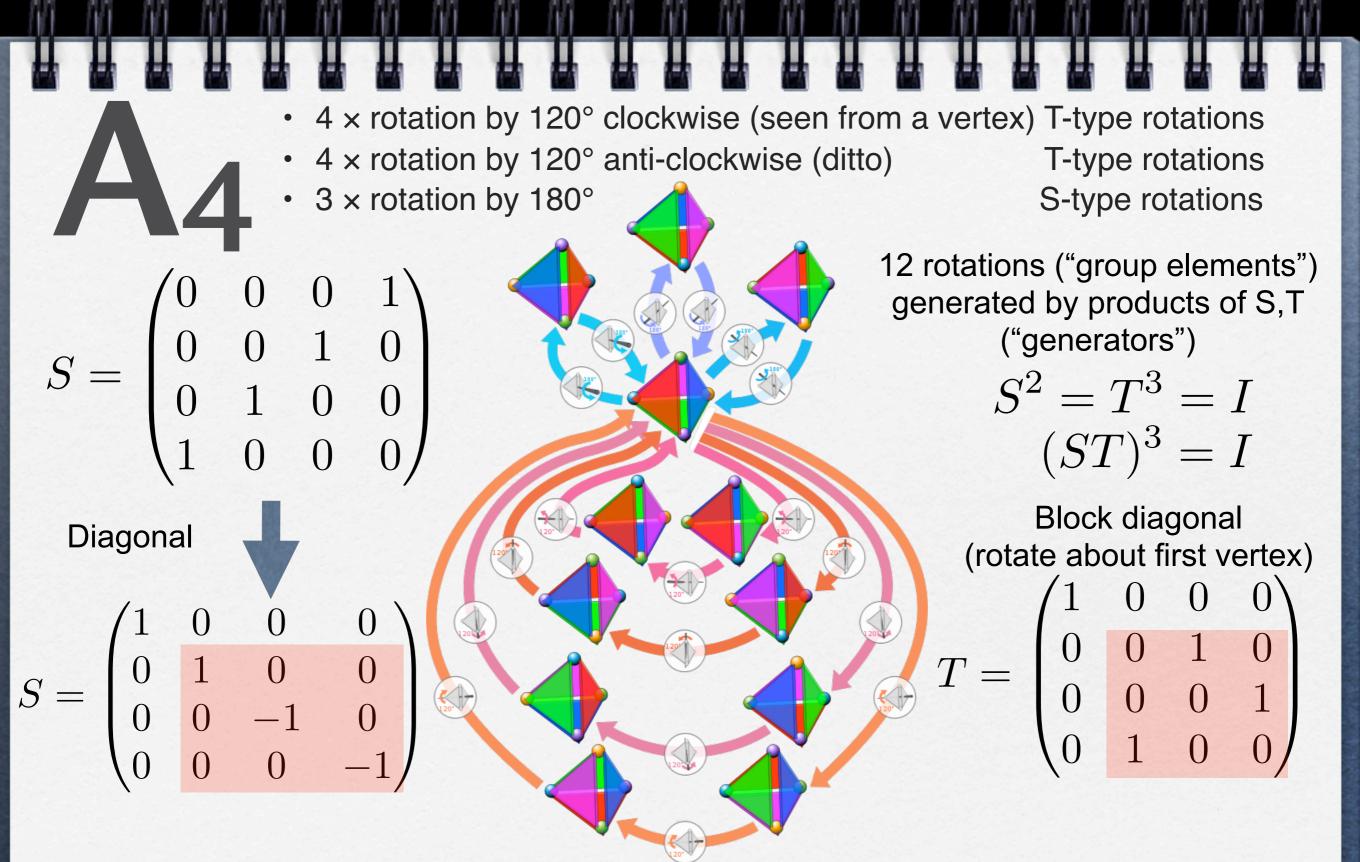

 t_3

 t_4

 t_1

 t_2

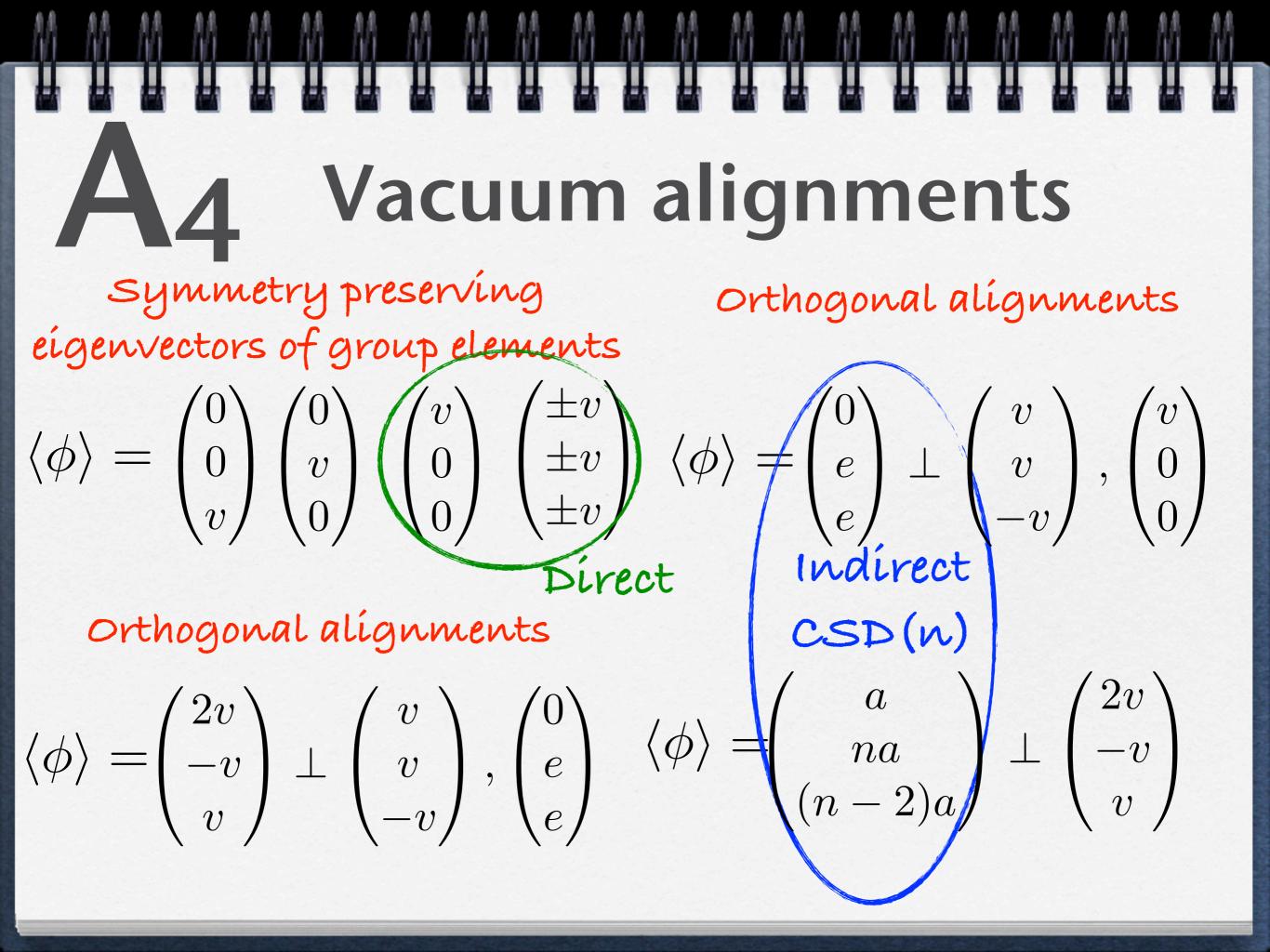

Vertices labelled by t_i



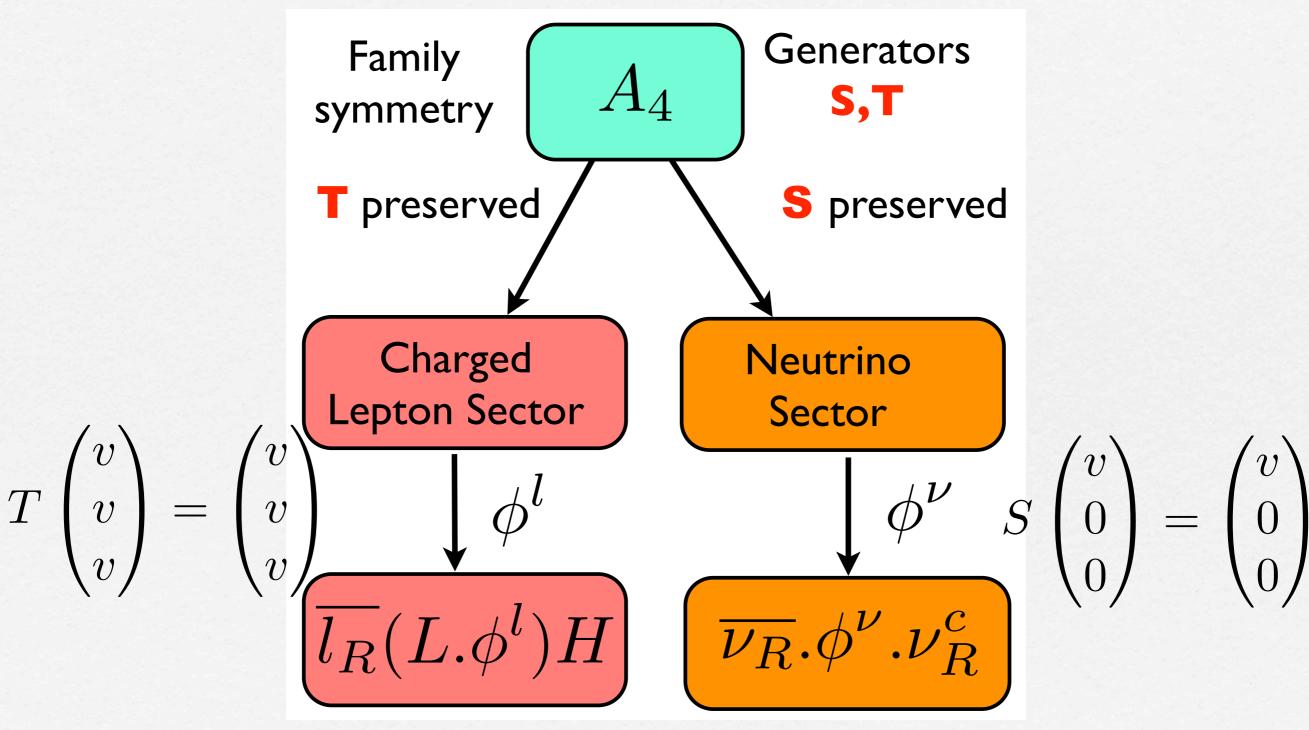
4444

 rotation by 120° anti-clockwise (seen from a vertex)

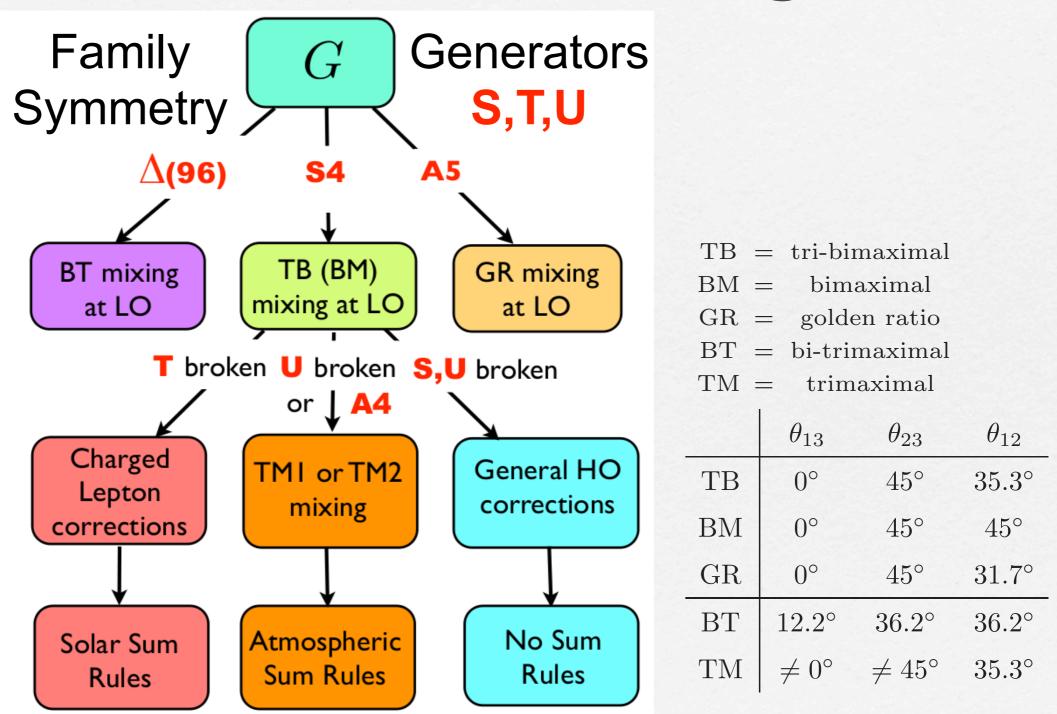
T t_1 0 0 0 0 0 1 0 t_2 0 0 0 1 t_3 $\mathbf{0}$ 0 0



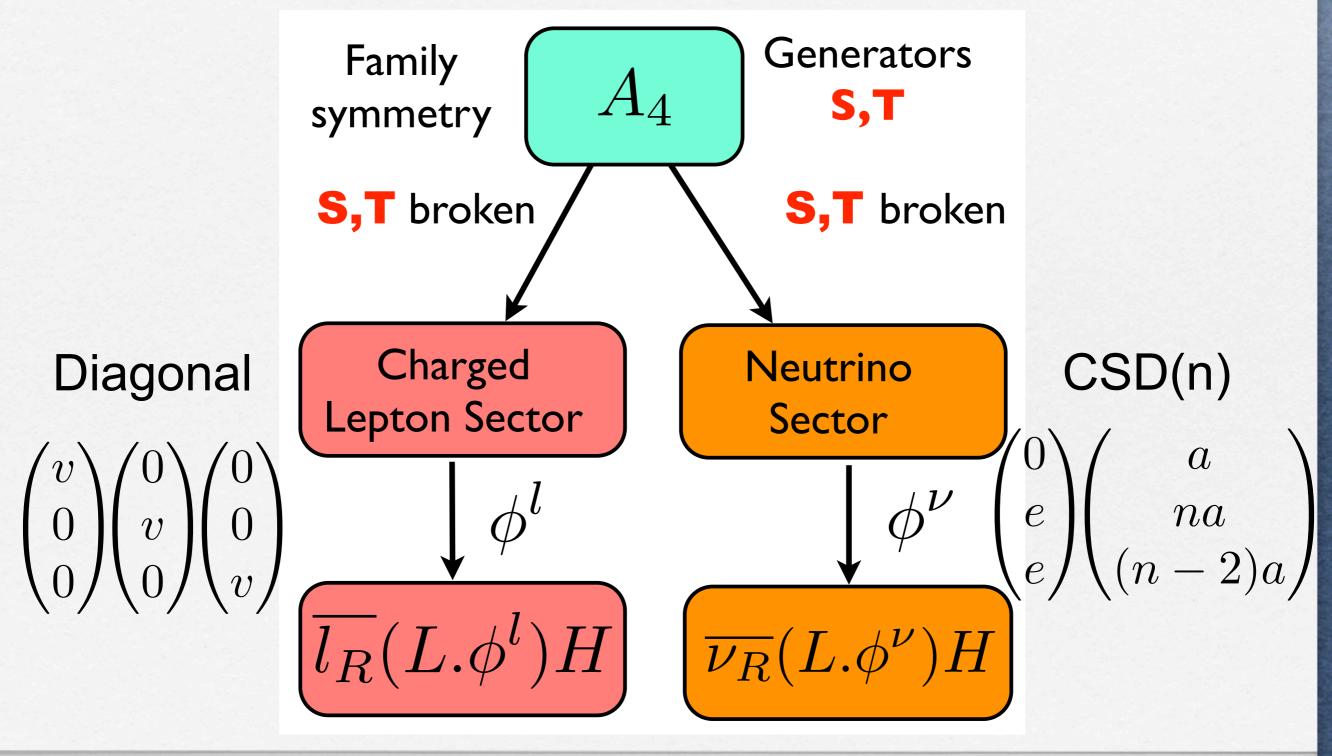
 $4 \rightarrow 3 \oplus 1$


Since S,T are block diagonal, the 4 dimensional matrix of vertex transformations is equivalent to a triplet plus singlet

A₄ Family Symmetry


Lepton doublets of SU(2), form triplets of A4 $L = (L_1, L_2, L_3) \sim 3$ Higgs which break family symmetry called "flavons" $\phi = (\phi_1, \phi_2, \phi_3) \sim 3$ Neutríno Yukawa couplings involve $L.\phi\sim 1$ $\overline{\nu_R}(L.\phi)H = \overline{\nu_R}(L_1\phi_1 + L_2\phi_2 + L_3\phi_3)H$ "Flavon" VEVs with various "vacuum alignments" control the Yukawa couplings

Direct Models


Direct Model Building

1301.1340

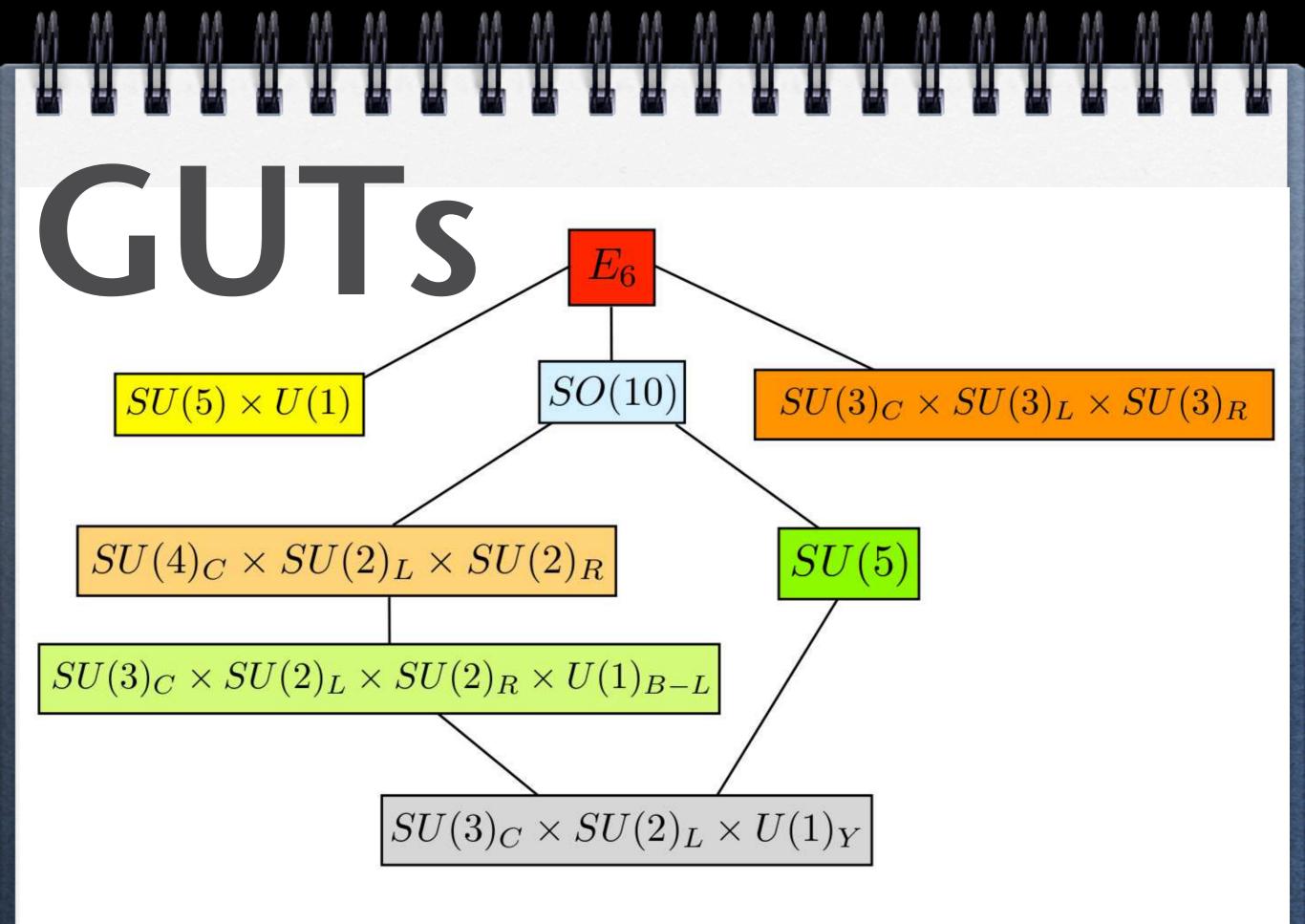
1402.4271

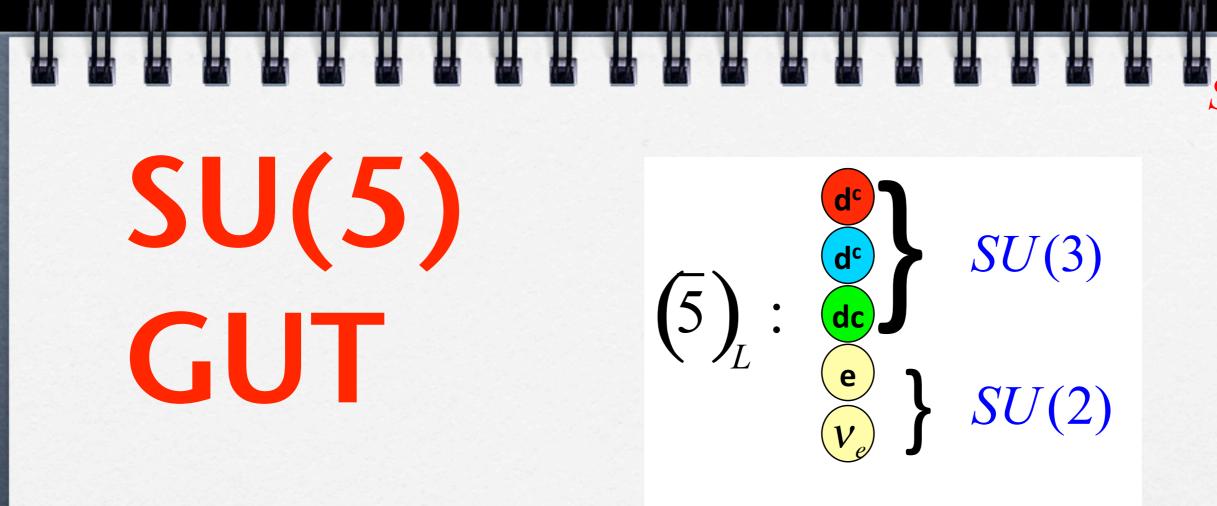
Indirect Models

Indirect Models (cont'd)

$$\overline{e_R}(L.\phi^e)H + \overline{\mu_R}(L.\phi^\mu)H + \overline{\tau_R}(L.\phi^\tau)H$$

$$\langle \phi^e \rangle \propto \begin{pmatrix} 1\\0\\0 \end{pmatrix} \quad \langle \phi^\mu \rangle \Leftrightarrow \begin{pmatrix} 0\\1\\0 \end{pmatrix} \quad \langle \phi^\tau \rangle \propto \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$


 $\overline{l_R}(L.\phi^l)H$


$$m_{RL}^{l} = \begin{pmatrix} m_{e} & 0 & 0 \\ 0 & m_{\mu} & 0 \\ 0 & 0 & m_{\tau} \end{pmatrix}$$

 $\overline{\nu_R^{\text{sol}}(L.\phi^{\text{sol}})H + \overline{\nu_R^{\text{atm}}(L.\phi^{\text{atm}})H}}$ $\langle \phi^{\text{sol}} \rangle = \begin{pmatrix} a \\ na \\ (n-2)a \end{pmatrix} \quad \langle \phi^{\text{atm}} \rangle = \begin{pmatrix} 0 \\ e \\ e \end{pmatrix}$ $m_{RL}^D = \begin{pmatrix} a & na & (n-2)a \\ 0 & e & e \end{pmatrix}$

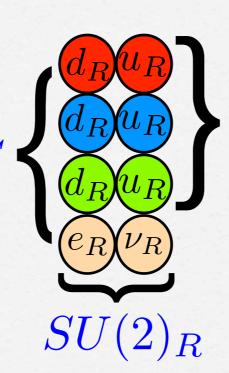
 $\overline{\nu_R}(L.\phi^{\nu})H$

CSD(n)

 $(10)_{L}:$

d

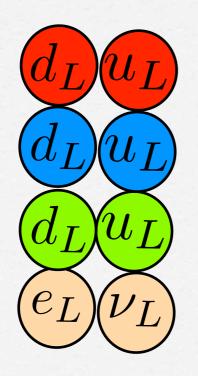
Ríght-handed neutríno ís a sínglet

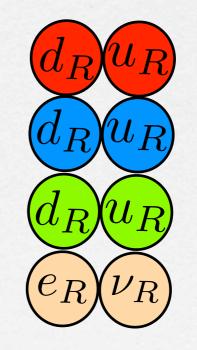

 $(1)_L: \mathcal{V}$

Pati-Salam $SU(4)_C \times SU(2)_L \times SU(2)_R$

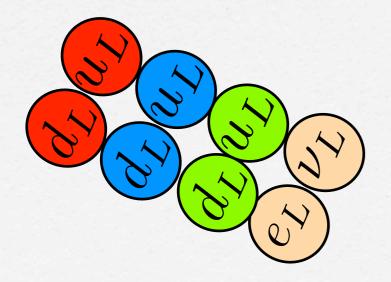
 $(4,2,1)_L: SU(4)_C$

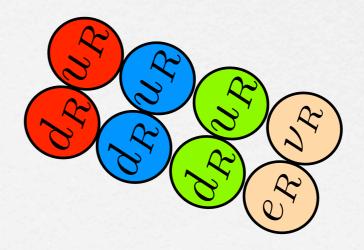
"Lepton number as the fourth colour"

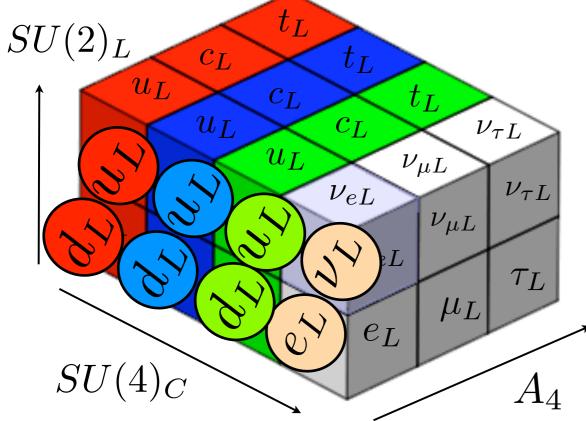

 $(4,1,2)_R: SU(4)_C$

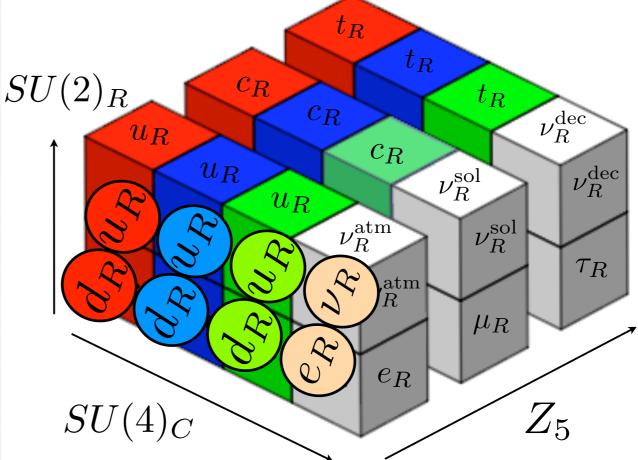


SU(3)_C Ríght-handed neutríno ís predícted


 $SU(2)_L$


A to Z of Flavour with Pati-Salam $A_4 \times Z_5 \times SU(4)_C \times SU(2)_L \times SU(2)_R$ Left-handed quarks and leptons triplets of A_4 Right-handed quarks and $Leptons distinguished by Z_5$




A to Z of Flavour with Pati-Salam $A_4 \times Z_5 \times SU(4)_C \times SU(2)_L \times SU(2)_R$ Left-handed quarks and leptons triplets of A_4 Right-handed quarks and $Leptons distinguished by Z_5$

to Z of Flavour with Pati-Sala $\times SU(4)_C \times SU(2)_L \times SU(2)_R$ Z_5 Right-handed quarks and Left-handed quarks leptons distinguished by Z_5 and leptons triplets of A_4 t_R

1406. 7005 of Flavour with Pati-Sala 7 $\times SU(4)_C \times SU(2)_L \times SU(2)_R$ Z_5 Right-handed quarks and Left-handed quarks leptons distinguished by Z_5 and leptons triplets of A_4 t_R t_R t_L $SU(2)_L$ $SU(2)_R$ c_R t_R t_L CL $u_R^{ m dec}$ c_R u_L u_R c_L t_L c_R u_L c_L $\nu_{\tau L}$ u_R $\nu_R^{\rm dec}$ u_L $\nu_R^{\rm sol}$ u_L u_R u_R $\nu_{\mu L}$ u_R^{atm} u_L $u_{R'}$ $\nu_R^{\rm sol}$ $\nu_{\tau L}$ ν_{eL} u_R u_L $\nu_{\mu L}$ d_L au_R d_R ν_{eL} $\nu_R^{ m atm}$ $\nu_R^{\rm atm}$ ν_{eL} d_L d_R au_L μ_R d_L μ_L d_R e_R e_R

 A_4

 $SU(4)_C$

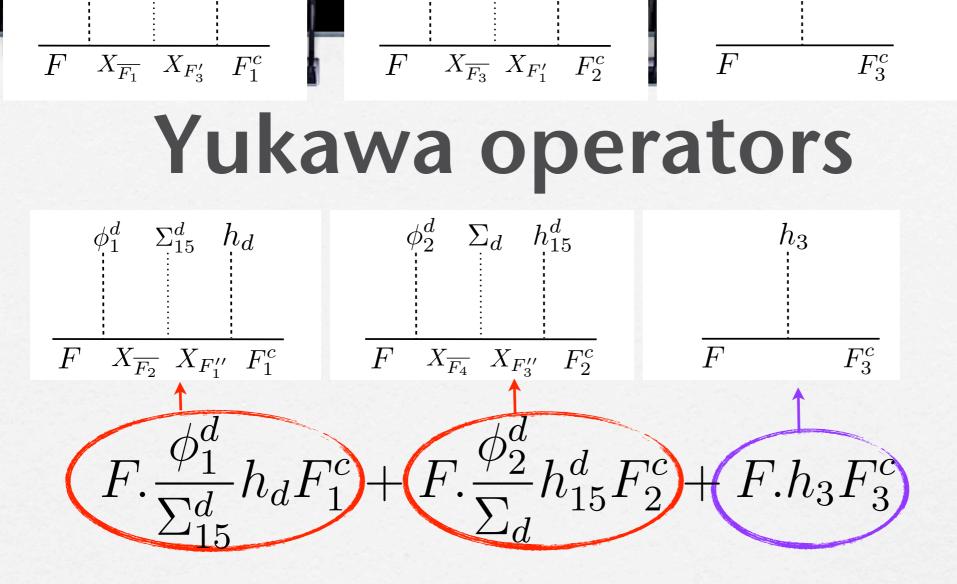
 Z_5

 $SU(4)_C$ $e_L e_L$

M								
	name	field	$SU(4)_C$ >	$\langle SU(2)_L \rangle$	$\times SU(2)_R$	A_4		R
	Quarks and leptons	F F^c		(4, 2, 1) $(\overline{4}, 1, 2)$		3	$egin{array}{c} 1 \ lpha, lpha^3, 1 \end{array}$	1 1
	and leptons	$F^{c}_{1,2,3}$		(4, 1, 2)			$\alpha, \alpha, 1$	
							•	
_								

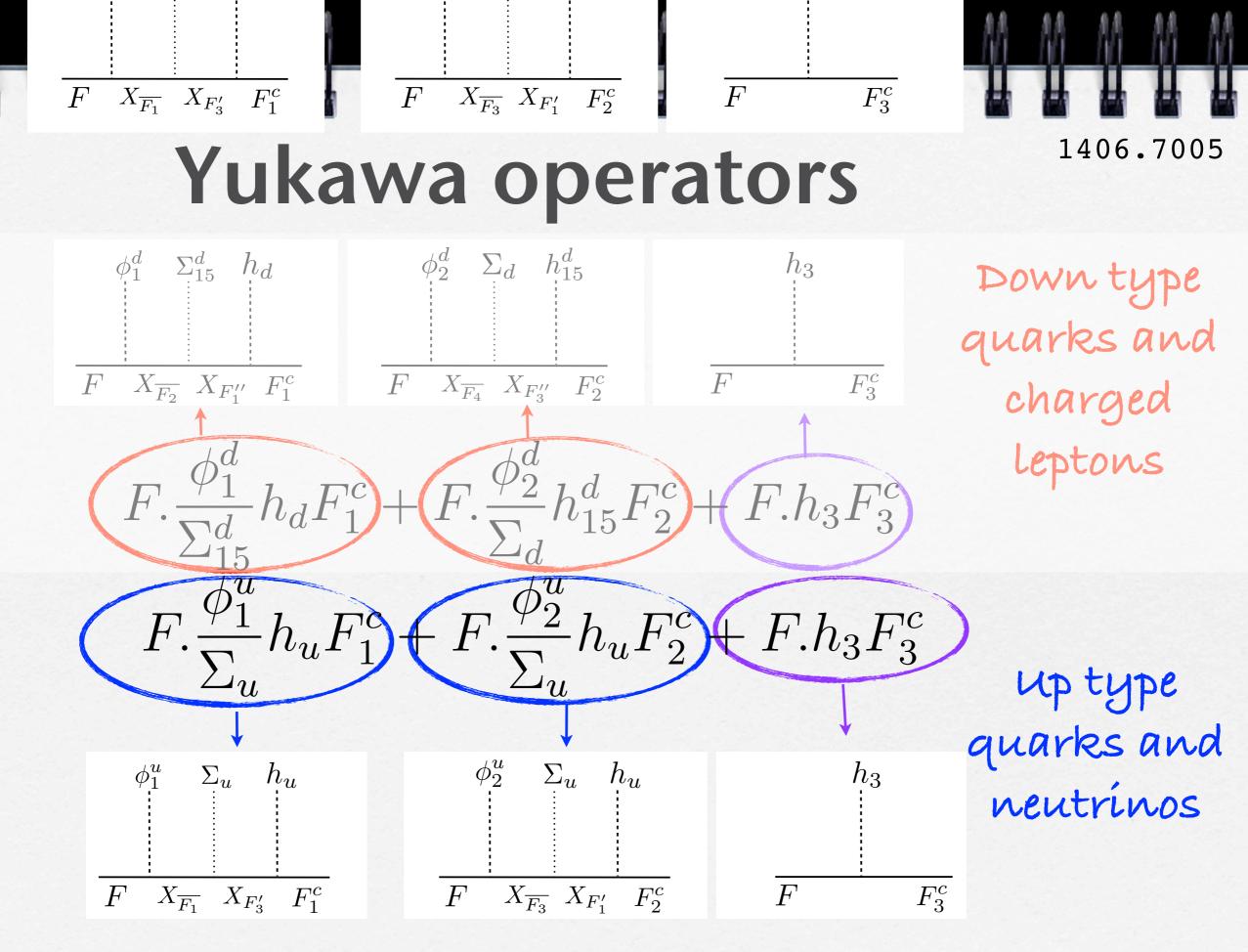
M							M
	name	field	$SU(4)_C \times SU(2)_L \times SU(2)_R$	A_4	Z_5	R	Ī
	Quarks	F	(4, 2, 1)	3	1	1	
	and leptons	$F^{c}_{1,2,3}$	$(\overline{4}, 1, 2)$	1	$lpha, lpha^3, 1$	1	
	PS Higgs	$\overline{H^c}, H^c$	$(4, 1, 2), (\overline{4}, 1, 2)$	1	1	0	
					<u>.</u>		

M	M M M	MMM	<u>N N N N N N N N N</u>	M	M M M	M
₩						
	name	field	$SU(4)_C \times SU(2)_L \times SU(2)_R$	A_4	Z_5	R
	Quarks	F	(4, 2, 1)	3	1	1
	and leptons	$F_{1,2,3}^{c}$	(4, 1, 2)	1	$\alpha, \alpha^3, 1$	1
	PS Higgs	H^c, H^c	(4, 1, 2), (4, 1, 2)	1	1	0
	A_4 triplet	$\phi^u_{1,2}$	(1, 1, 1)	3	α^4, α^2	
	flavons	$\phi^a_{1,2}$	(1, 1, 1)	3	α^3, α	0


1	<u>N_N_N_N</u>	<u>n n</u> n	<u>N N N N N N N N N</u>	M	<u>N_N_N</u>	M	M
				H		H	H
	name	field	$SU(4)_C \times SU(2)_L \times SU(2)_R$	A_4	Z_5	R	
	Quarks	F	(4, 2, 1)	3	1	1	
	and leptons	$F^{c}_{1,2,3}$	$(\overline{4}, 1, 2)$	1	$lpha, lpha^3, 1$	1	
	PS Higgs	$\overline{H^c}, H^c$	$(4,1,2),(\overline{4},1,2)$	1	1	0	
	A_4 triplet	$\phi^u_{1,2}$	(1,1,1)	3	$lpha^4, lpha^2$	0	
	flavons	$\phi^{d^{'}}_{1,2}$	(1,1,1)	3	$lpha^3, lpha$	0	
		h_3	(1, 2, 2)	3	1	0	
	Higgs	h_u	(1, 2, 2)	1"	α	0	
	bidoublets	h_d, h_{15}^d	(1, 2, 2), (15, 2, 2)	1'	α^3, α^4	0	
		h_{15}^u	(15, 2, 2)	1	α	0	

			H		
name	field	$SU(4)_C \times SU(2)_L \times SU(2)_R$	A_4		R
Quarks and leptons	$F_{\mathbf{F}^c}$	$(4, 2, 1) \ (\overline{4}, 1, 2)$	3	$\begin{vmatrix} 1\\ \alpha, \alpha^3, 1 \end{vmatrix}$	1
PS Higgs	$\frac{F^c_{1,2,3}}{H^c, H^c}$	(4, 1, 2) $(4, 1, 2), (\overline{4}, 1, 2)$	1	α, α, μ	0
A_4 triplet flavons	$\phi^u_{1,2}_{\phi^d}$	$(1, 1, 1) \ (1, 1, 1)$	3 3	$egin{array}{c c} lpha^4, lpha^2 \ lpha^3, lpha \end{array}$	0
IIavoIIS	$egin{array}{c} \phi_{1,2} \ h_3 \end{array}$	(1, 1, 1) (1, 2, 2)	3	1	0
Higgs bidoublets	$egin{array}{c} h_u\ h_d, h_{15}^d \end{array}$	$(1,2,2) \ (1,2,2), \ (15,2,2)$	1″ 1′	$lpha^{lpha}, lpha^4$	0
	h_{15}^{u}	(1, 2, 2), (10, 2, 2) (15, 2, 2)	1	α , α	0
Dynamical masses	$\Sigma_u \ \Sigma_d, \Sigma_{15}^d$	(1, 1, 1) (1, 1, 1), (15, 1, 1)	1" 1'	$\begin{vmatrix} lpha \\ lpha^3, lpha^2 \end{vmatrix}$	$\begin{array}{c} 0\\ 0 \end{array}$

M	M M M M	MMM	na na na na na na na na	M	M M M	M
	name	field	$\frac{SU(4)_C \times SU(2)_L \times SU(2)_R}{SU(4)_C \times SU(2)_L \times SU(2)_R}$	A_4	Z_5	
	Quarks	F	(4, 2, 1)	3	1	1
	and leptons PS Higgs	$\frac{F^c_{1,2,3}}{H^c, H^c}$	$(\overline{4}, 1, 2)$ $(4, 1, 2), (\overline{4}, 1, 2)$	1	$\alpha, \alpha^3, 1$	1
	A_4 triplet	$\phi^u_{1,2}$	(1, 1, 1)	3	α^4, α^2	0
	flavons	$\phi^a_{1,2} \ h_3$	(1,1,1) $(1,2,2)$	3	α^3, α	0
	Higgs	h_u	(1, 2, 2)	1"	α	0
	bidoublets	$egin{array}{c} h_d, h_{15}^d \ h_{15}^u \ h_{15}^u \end{array}$	$(1,2,2),(15,2,2)\(15,2,2)$	1' 1	$\left egin{array}{c} lpha^3, lpha^4 \ lpha \end{array} ight ^{-1}$	0
	Dynamical	Σ_u	(1, 1, 1)	1″	α	0
	masses Majoron	${\Sigma_d,\Sigma_{15}^d\over \xi}$	(1,1,1), (15,1,1) (1,1,1)	1	$lpha^3, lpha^2$ $lpha^4$	0


M	M M M	M M M	N N N N N N N N N	M	M M M	M	M
	name	field	$\frac{U}{SU(4)_C} \times SU(2)_L \times SU(2)_R$		X X X X X X X X X X		
	Quarks	F	(4,2,1) (4,2,1)	3	1	1	
	and leptons	$F^{c}_{1,2,3}$	$(\overline{4}, \overline{2}, \overline{1})$	1	$\alpha, \alpha^3, 1$	1	
	PS Higgs	$\overline{H^c}, H^c$	$(4, 1, 2), (\overline{4}, 1, 2)$	1	1	0	
	A_4 triplet	$\phi^u_{1,2}$	(1, 1, 1)	3	$lpha^4, lpha^2$	0	
	flavons	$\phi_{1,2}^{d^{'}}$	(1,1,1)	3	$lpha^3, lpha$	0	
		h_3	(1,2,2)	3	1	0	
	Higgs	h_u .	(1,2,2)	1"	α	0	
	bidoublets	h_d, h_{15}^d	$(1,2,2),\ (15,2,2)$	1'	$lpha^3, lpha^4$	0	
		h^u_{15}	(15,2,2)	1	α	0	
	Dynamical	Σ_u	(1, 1, 1)	1"	α	0	
	masses	Σ_d, Σ_{15}^d	(1, 1, 1), (15, 1, 1)	1'	$lpha^3, lpha^2$	0	
	Majoron	ξ	(1, 1, 1)	1	$lpha^4$	0	
		$X_{F_{1,3}''}$	(4, 2, 1)	1"	$egin{array}{c c} lpha, lpha^3 \ lpha, lpha^3 \end{array}$	1	
	Fermion	$X_{F_{1,3}'}$	(4, 2, 1)	1'	α, α^3	1	
	Messengers	$X_{\overline{F_i}}^{1,0}$	$(\overline{4}, 2, 1)$	1	α^i	1	
		X_{ξ_i}	(1, 1, 1)	1	α^i	1	

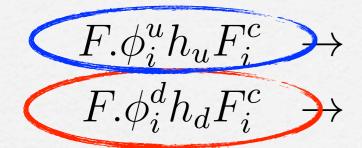
M	MMMM	M M M	<u>NA NA NA NA NA NA NA</u>	M	<u>M M M</u>	M	M
	name	field	$SU(4)_C \times SU(2)_L \times SU(2)_R$	A_4	Z_5	R	
	Quarks	F	(4, 2, 1)	3	1	1	
	and leptons	$F^{c}_{1,2,3}$	$(\overline{4}, 1, 2)$	1	$\alpha, \alpha^3, 1$	1	
	PS Higgs	$\overline{H^c}, H^c$	$(4, 1, 2), (\overline{4}, 1, 2)$	1	1	0	
	A_4 triplet	$\phi^u_{1,2}$	(1,1,1)	3	α^4, α^2	0	
	flavons	$\phi^d_{1,2}$	(1, 1, 1)	3	α^3, α	0	
		h_3	(1, 2, 2)	3	1	0	
	Higgs	h_u	(1, 2, 2)	1"	α	0	
	bidoublets	h_{d}, h_{15}^{d}	(1, 2, 2), (15, 2, 2)	1'	α^3, α^4	0	
		h_{15}^{u}	(15, 2, 2)	1	α	0	
	Dynamical	\sum_{u}	(1, 1, 1)	1"	α	0	
	masses	Σ_d, Σ_{15}^d	(1, 1, 1), (15, 1, 1)	1'	α^3, α^2	0	
	Majoron	ξ	(1, 1, 1)	1	α^4	0	
		$X_{F_{1,3}^{\prime\prime}}$	(4, 2, 1)	1"	α, α^3	1	
	Fermion	$\begin{array}{c} X_{F_{1,3}'} \\ X_{\overline{F_i}} \end{array}$	(4, 2, 1)	1'	α, α^3	1	
	Messengers	$X_{\overline{F_i}}$	$(\overline{4}, 2, 1)$	1	α^{i}	1	
		X_{ξ_i}	(1, 1, 1)	1	α^{i}	1	

Down type quarks and charged leptons

1406.7005

Yukawa operators (cont'd) 1406.7005

Third family renormalisable


 $F.h_3F_3^c \to Q_3H_uu_3^c + Q_3H_dd_3^c + L_3H_u\nu_3^c + L_3H_de_3^c$

1406.7005 Yukawa operators (cont'd)

Third family renormalisable

 $(F.h_3F_3^c \rightarrow Q_3H_uu_3^c + Q_3H_dd_3^c + L_3H_u\nu_3^c + L_3H_de_3^c)$

First and second family involve flavons

 $(F.\phi_i^u h_u F_i^c) \to Q.\langle \phi_i^u \rangle H_u u_i^c + L.\langle \phi_i^u \rangle H_u \nu_i^c,$ $F.\phi_i^d h_d F_i^c \rightarrow Q.\langle \phi_i^d \rangle H_d d_i^c + L.\langle \phi_i^d \rangle H_d e_i^c,$

1406.7005 Yukawa operators (cont'd)

Third family renormalisable

 $F.h_3F_3^c \to Q_3H_uu_3^c + Q_3H_dd_3^c + L_3H_u\nu_3^c + L_3H_de_3^c$

First and second family involve flavons

 $F.\phi_i^u h_u F_i^c \rightarrow Q.\langle \phi_i^u \rangle H_u u_i^c + L.\langle \phi_i^u \rangle H_u \nu_i^c,$ $F.\phi_i^d h_d F_i^c \rightarrow Q.\langle \phi_i^d \rangle H_d d_i^c + L.\langle \phi_i^d \rangle H_d e_i^c,$

CSD4 Vacuum alignment

$$\begin{split} \langle \phi_1^u \rangle &= \frac{V_1^u}{\sqrt{2}} e^{im\pi/5} \begin{pmatrix} 0\\1\\1 \end{pmatrix} , \quad \langle \phi_2^u \rangle = \frac{V_2^u}{\sqrt{21}} e^{im\pi/5} \begin{pmatrix} 1\\4\\2 \end{pmatrix} \\ & (\langle \phi_{atm} \rangle)'' \\ \langle \phi_1^d \rangle &= V_1^d e^{in\pi/5} \begin{pmatrix} 1\\0\\0 \end{pmatrix} , \quad \langle \phi_2^d \rangle = V_2^d e^{in\pi/5} \begin{pmatrix} 0\\1\\0 \end{pmatrix} \\ & (\langle \phi_\mu \rangle)'' \end{split}$$

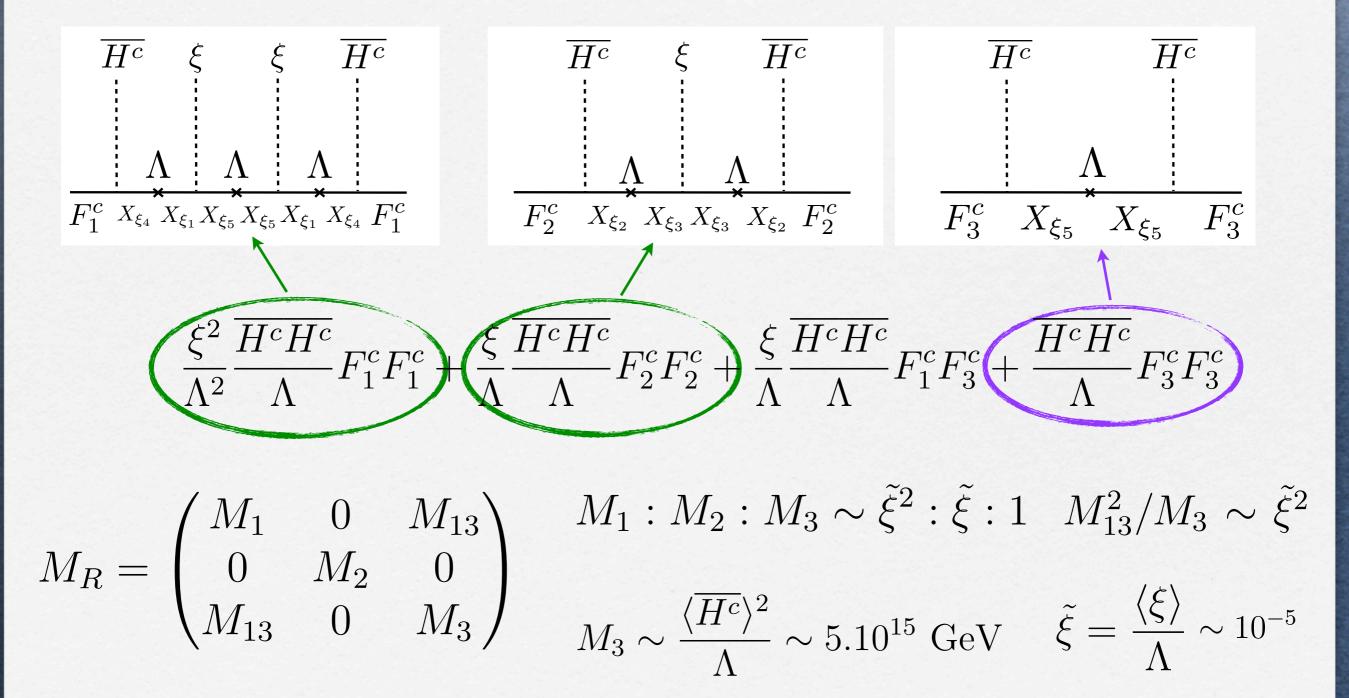
1406.7005 Yukawa operators (cont'd)

Third family renormalisable

 $F.h_3F_3^c \to Q_3H_uu_3^c + Q_3H_dd_3^c + L_3H_u\nu_3^c + L_3H_de_3^c$

First and second family involve flavons

 $F.\phi_i^u h_u F_i^c \rightarrow Q.\langle \phi_i^u \rangle H_u u_i^c + L.\langle \phi_i^u \rangle H_u \nu_i^c$, Flavons form first $F.\phi_i^d h_d F_i^c \rightarrow Q.\langle \phi_i^d \rangle H_d d_i^c + L.\langle \phi_i^d \rangle H_d e_i^c$, two columns of Yukawa matrices


CSD4 Vacuum alignment

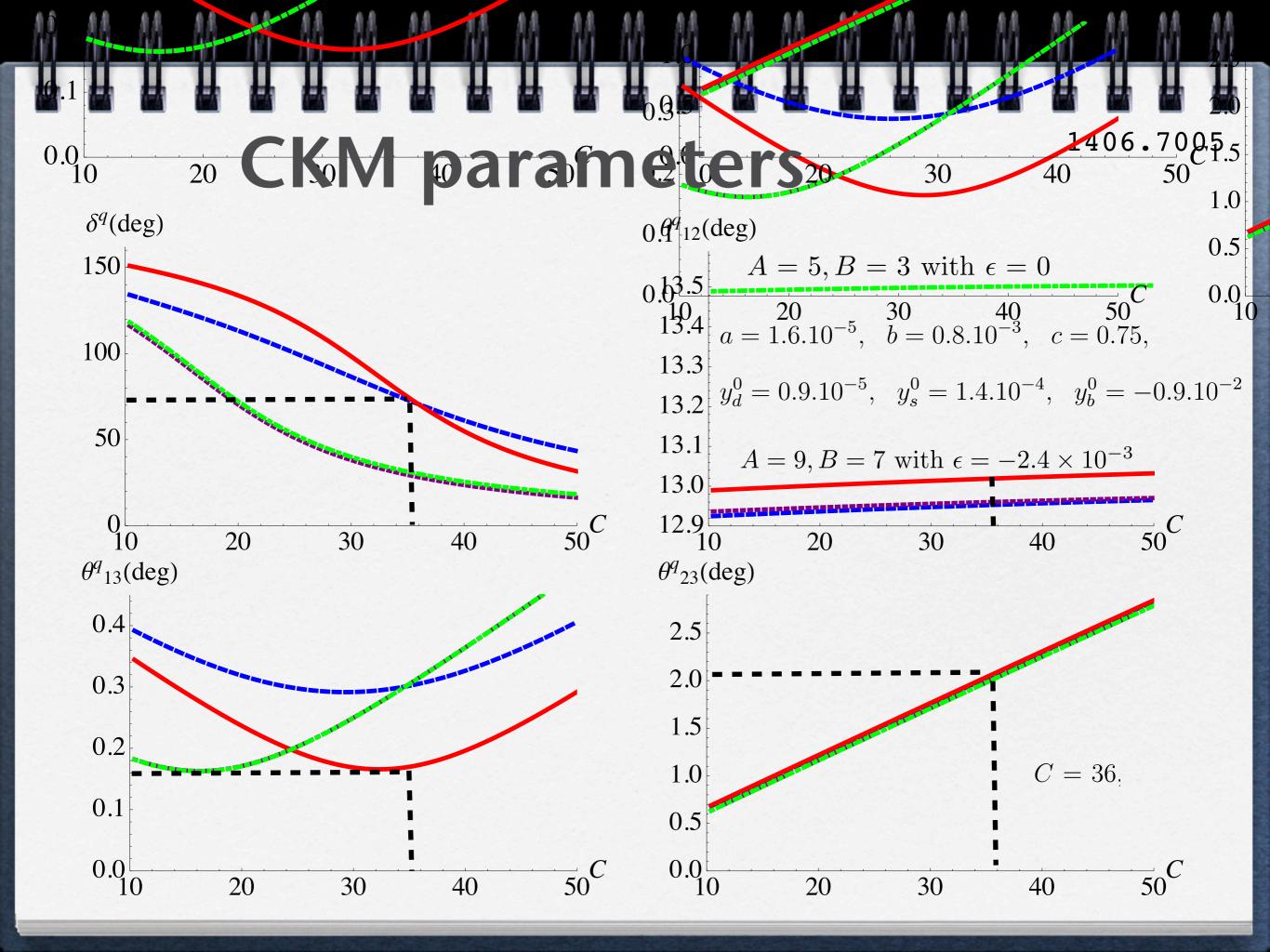
$$\begin{split} \langle \phi_1^u \rangle &= \frac{V_1^u}{\sqrt{2}} e^{im\pi/5} \begin{pmatrix} 0\\1\\1 \end{pmatrix} , \\ \langle \phi_{\rm atm} \rangle " & 1 \end{pmatrix} , \\ \langle \phi_1^d \rangle &= V_1^d e^{in\pi/5} \begin{pmatrix} 1\\0\\0 \end{pmatrix} , \\ \langle \phi_e \rangle " & 0 \end{pmatrix} \end{split}$$

$$\begin{aligned} \langle \phi_2^u \rangle &= \frac{V_2^u}{\sqrt{21}} e^{im\pi/5} \begin{pmatrix} 1\\4\\2 \end{pmatrix} \qquad Y^u \\ \langle \phi_{2} \rangle &= V_2^d e^{in\pi/5} \begin{pmatrix} 0\\1\\0 \end{pmatrix} \qquad Y^d \\ Y^d &= V_2^d \phi_{\mu} \rangle \end{aligned}$$

$$=Y^{\nu} = \begin{pmatrix} 0 & b & 0 \\ a & 4b & 0 \\ a & 2b & c \end{pmatrix}$$

~ $Y^{e} \sim \begin{pmatrix} y_{d}^{0} & 0 & 0 \\ 0 & y_{s}^{0} & 0 \\ 0 & 0 & y_{b}^{0} \end{pmatrix}$

1406.7005 Majorana operators

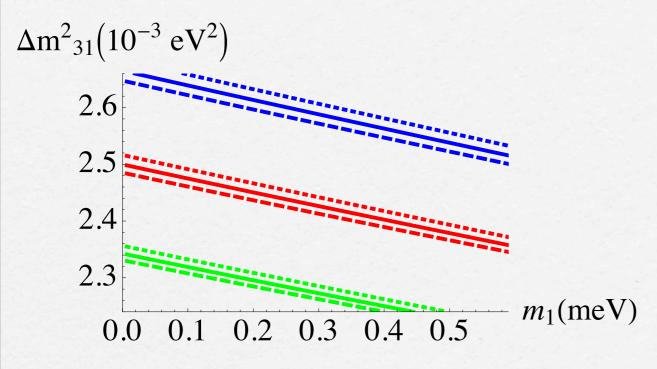


1406.7005

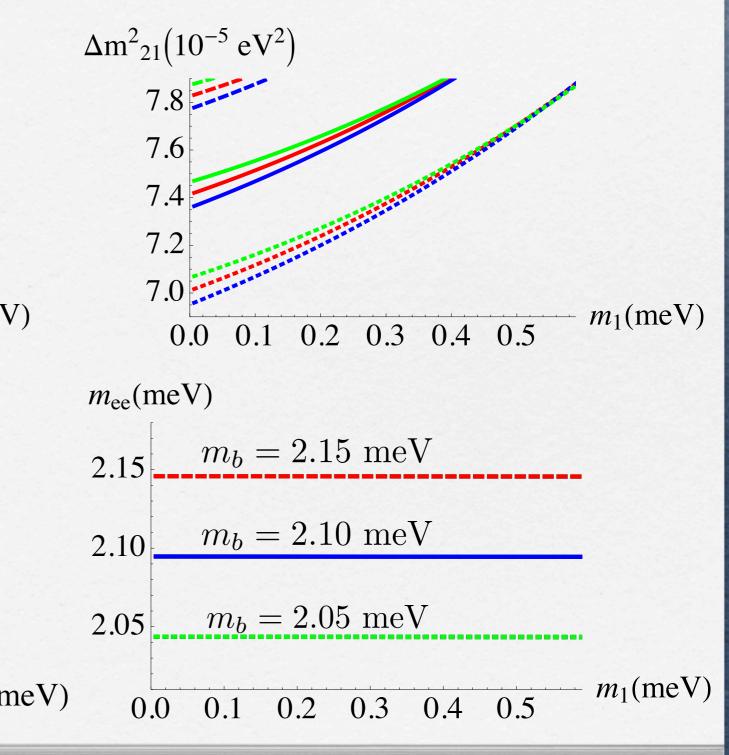
Yukawa and Mass Matrices

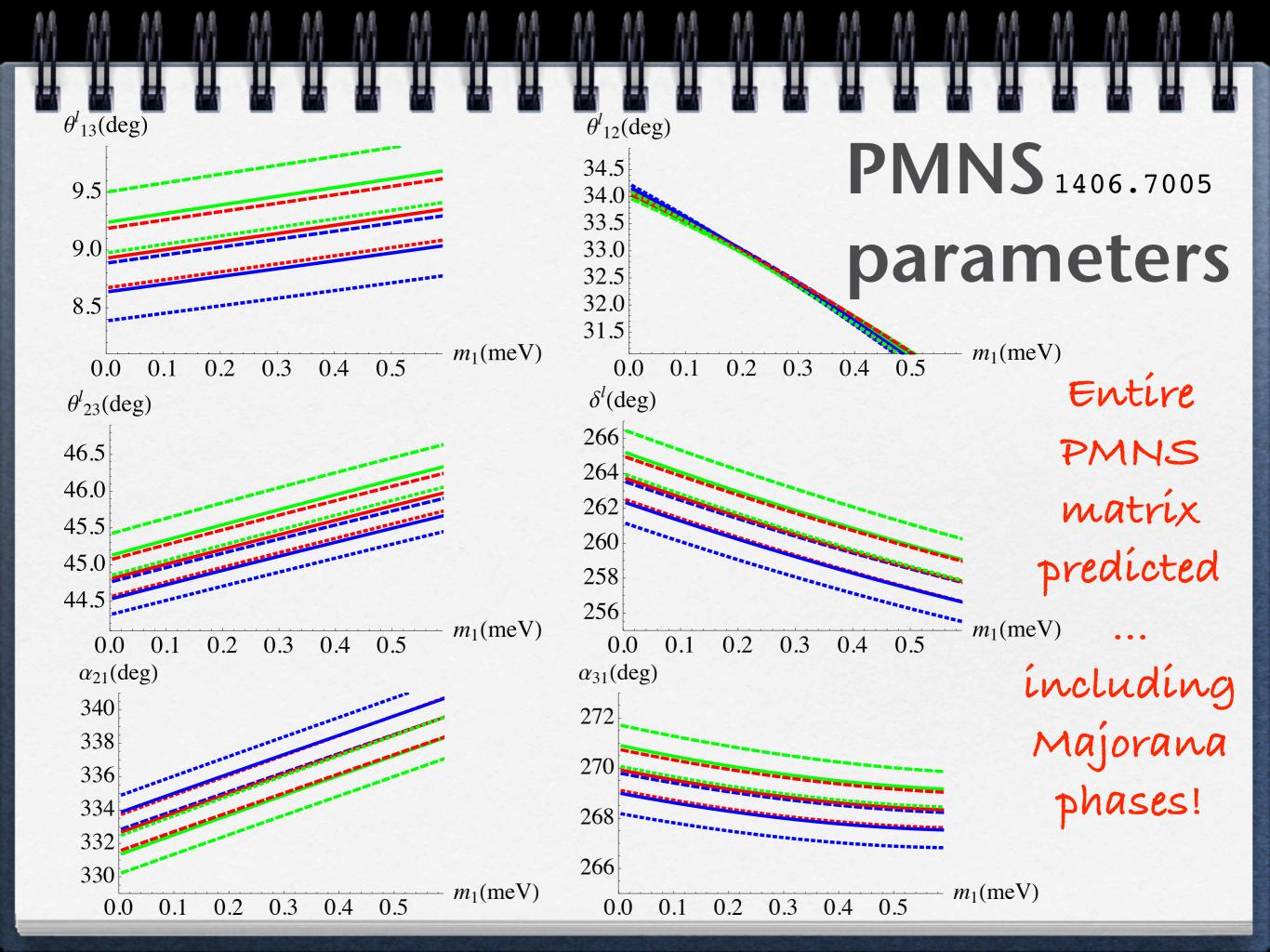
$$Y^{u} = Y^{\nu} = \begin{pmatrix} 0 & be^{-i3\pi/5} & \epsilon c \\ ae^{-i3\pi/5} & 4be^{-i3\pi/5} & 0 \\ ae^{-i3\pi/5} & 2be^{-i3\pi/5} & c \end{pmatrix} \qquad Y^{d} = \begin{pmatrix} y_{d}^{0}e^{-i2\pi/5} & 0 & Ay_{d}^{0}e^{-i2\pi/5} \\ By_{d}^{0}e^{-i3\pi/5} & y_{s}^{0}e^{-i2\pi/5} & Cy_{d}^{0}e^{-i3\pi/5} \\ By_{d}^{0}e^{-i3\pi/5} & 0 & y_{b}^{0} + Cy_{d}^{0}e^{-i3\pi/5} \end{pmatrix}$$
$$M_{R} \approx \begin{pmatrix} M_{1}e^{8i\pi/5} & 0 & 0 \\ 0 & M_{2}e^{4i\pi/5} & 0 \\ 0 & 0 & M_{3} \end{pmatrix} \qquad Y^{e} = \begin{pmatrix} -(y_{d}^{0}/3)e^{-i2\pi/5} & 0 & Ay_{d}^{0}e^{-i3\pi/5} \\ By_{d}^{0}e^{-i3\pi/5} & -4.5y_{s}^{0}e^{-i2\pi/5} & -3Cy_{d}^{0}e^{-i3\pi/5} \\ By_{d}^{0}e^{-i3\pi/5} & 0 & y_{b}^{0} - 3Cy_{d}^{0}e^{-i3\pi/5} \end{pmatrix}$$

SO(10)-like diagonal RHN masses $M_1: M_2: M_3 \sim m_u^2: m_c^2: m_t^2$ Physical neutrino masses in a normal hierarchy (CSD) CSD(4) + PS gives Cabibbo connection $\theta_C \approx 1/4$ or $\theta_C \approx 14^\circ$ All CP phases are fifth roots of unity due to Z_5


The See-Saw mechanism

$$m^{\nu} = -v_u^2 Y^{\nu} M_{\rm R}^{-1} Y^{\nu T}$$


1406.7005


Neutríno mass matrix only depends on ma, mb, mc

Neutrino mass variables

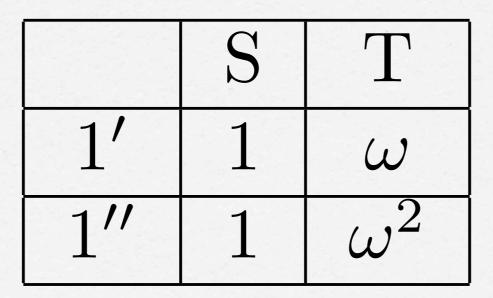
$$\Sigma m_i (meV)$$

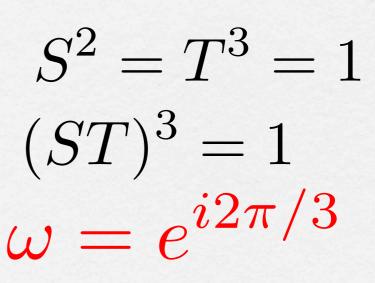
- See-saw does not explain lepton mixing, we need symmetry to find a theory of flavour
- Dírect models: either a small family symmetry with large correction or a large family group with a small correction
- Indirect models: allow small family symmetry groups such as A_4 if broken by new alignments as in CSD(n)
- GUT embeddings of indirect models, unifying quarks and leptons, is a highly predictive framework
- Considered a A₄xZ₅ Pati-Salam model with PMNS predicted (plus normal hierarchy, Cabibbo angle)

Extra material

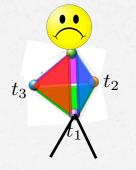
A4 group theory
Patí-Salam Breaking $\Delta(6n^2)$

 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad T = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$


Multiplying S and T we generate 12 group elements


 $\begin{aligned} a_1 &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \ a_2 &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \ a_3 &= \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \ a_4 &= \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ b_1 &= \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \ b_2 &= \begin{pmatrix} 0 & 0 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}, \ b_3 &= \begin{pmatrix} 0 & 0 & -1 \\ 1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}, \ b_4 &= \begin{pmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \\ c_1 &= \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \ c_2 &= \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ -1 & 0 & 0 \end{pmatrix}, \ c_3 &= \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 0 \end{pmatrix}, \ c_4 &= \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{pmatrix} \end{aligned}$

With
eigenvectors $\begin{pmatrix} 1\\0\\0 \end{pmatrix}$ $\begin{pmatrix} 0\\1\\0 \end{pmatrix}$ $\begin{pmatrix} 0\\0\\1 \end{pmatrix}$ $\begin{pmatrix} \pm \frac{1}{\sqrt{3}}\\\pm \frac{1}{\sqrt{3}}\\\pm \frac{1}{\sqrt{3}} \end{pmatrix}$ c.f. Trimaximal
mixing


A_4 Non-trivial singlets 1',1" Since $T^3 = 1$ it may be rep by cube roots of unity hence two additional one dimensional reps 1', 1''

ina na na na na na na

These additional singlets have no geometric t_3 interpretation in terms of a tetrahedron

A4 Clebsch Gordan coefficients

Irreducible reps 1, 1', 1'', 3

$$S = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad T = \begin{pmatrix} 0 & 1 \\ 0 & 0 \\ 1 & 0 \end{pmatrix}$$

0 1 0

 $1 \otimes 1 = 1$ $1' \otimes 1'' = 1$ $1' \otimes 1' = 1''$ $1'' \otimes 1'' = 1'$

$$\begin{array}{rcl} (ab)_1 &=& a_1b_1 + a_2b_2 + a_3b_3 \,; & 3 \otimes 3 = 1 \\ (ab)_{1'} &=& a_1b_1 + \omega a_2b_2 + \omega^2 a_3b_3 \,; & \oplus 1' \\ (ab)_{1''} &=& a_1b_1 + \omega^2 a_2b_2 + \omega a_3b_3 \,; & \oplus 1'' \\ (ab)_{3_1} &=& (a_2b_3, a_3b_1, a_1b_2) \,; & \oplus 3_1 \\ (ab)_{3_2} &=& (a_3b_2, a_1b_3, a_2b_1) \,, & \oplus 3_2 \end{array}$$

where $\omega^3 = 1$, $a = (a_1, a_2, a_3)$ and $b = (b_1, b_2, b_3)$

Pati-Salam breaking $SU(4)_C \times SU(2)_L \times SU(2)_R$ $\rightarrow SU(3)_C \times SU(2)_L \times U(1)_Y$ $H^c = (\bar{4}, 1, 2) = (y_{\mu}^c, d_{\mu}^c, y_{\mu}^c, e_{\mu}^c)$

$$\overline{H^c} = (4, 1, 2) = (\overline{u}_H^c, \overline{d}_H^c, \overline{\nu}_H^c, \overline{e}_H^c)$$
$$\langle H^c \rangle = \langle \nu_H^c \rangle = \langle \overline{H^c} \rangle = \langle \overline{\nu}_H^c \rangle \sim 2 \times 10^{16} \text{ Ge}$$

$$F_{i} = (4, 2, 1)_{i} = \begin{pmatrix} u & u & u & \nu \\ d & d & d & e \end{pmatrix}_{i} \to (Q_{i}, L_{i}),$$

$$F_{i}^{c} = (\bar{4}, 1, 2)_{i} = \begin{pmatrix} u^{c} & u^{c} & u^{c} & \nu^{c} \\ d^{c} & d^{c} & d^{c} & e^{c} \end{pmatrix}_{i} \to (u_{i}^{c}, d_{i}^{c}, \nu_{i}^{c}, e_{i}^{c})$$