Lecture 3: Flavour Models

Steve King, St.Andrews, Scotland, 10-22 August, 2014
International Neutrino Summer School 2014 (INSS 2014) 70th Scottish Universities
Summer School in Physics (SUSSP70)

Towards a Theory of Flavour

Symmetry

GUTS

Family symmetry

Example of a commutative group

Family Symmetry

 (non-Abelian)

A_{4}

- rotation by 180°

$$
\left.\begin{array}{c}
S \\
\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
t_{1} \\
t_{2} \\
t_{3} \\
t_{4}
\end{array}\right)
\end{array}\right)=\left(\begin{array}{c}
t_{4} \\
t_{3} \\
t_{2} \\
t_{1}
\end{array}\right) .
$$

A4 Family Symmetry

Lepton doublets of $\operatorname{SU}(2)_{L}$ form triplets of A_{4}

$$
L=\left(L_{1}, L_{2}, L_{3}\right) \sim 3
$$

Higgs which break family symmetry called "flavors"

$$
\phi=\left(\phi_{1}, \phi_{2}, \phi_{3}\right) \sim 3
$$

Neutrino Yukawa couplings involve $L . \phi \sim 1$

$$
\overline{\nu_{R}}(L . \phi) H=\overline{\nu_{R}}\left(L_{1} \phi_{1}+L_{2} \phi_{2}+L_{3} \phi_{3}\right) H
$$

"Flavon" VEVs with various "vacuum alignments" control the Yukawa couplings

Vacuum alignments

symmetry preserving
orthogonal alignments eigenvectors of group elements

$$
\begin{gathered}
\langle\phi\rangle=\left(\begin{array}{l}
0 \\
0 \\
v
\end{array}\right)\left(\begin{array}{l}
0 \\
v \\
0
\end{array}\right)\left(\begin{array}{l}
\left(\begin{array}{c}
v \\
0 \\
0
\end{array}\right)\left(\begin{array}{c}
\pm v \\
\pm v \\
\pm v
\end{array}\right)
\end{array}\langle\phi\rangle=\left(\begin{array}{c}
0 \\
e \\
e
\end{array}\right) \perp\left(\begin{array}{c}
v \\
v \\
-v
\end{array}\right),\left(\begin{array}{l}
v \\
0 \\
0
\end{array}\right)\right. \\
\text { orthogonal alignment } \\
\text { Insects } \\
\operatorname{CSD}(n)
\end{gathered}
$$

$$
\langle\phi\rangle=\left(\begin{array}{c}
2 v \\
-v \\
v
\end{array}\right) \perp\left(\begin{array}{c}
v \\
v \\
-v
\end{array}\right),\left(\begin{array}{l}
0 \\
e \\
e
\end{array}\right)\langle\phi\rangle=\left(\begin{array}{c}
a \\
n a \\
(n-2) a
\end{array}\right) \perp\left(\begin{array}{c}
2 v \\
-v \\
v
\end{array}\right)
$$

Direct Models

$\mathrm{TB}=$ tri-bimaximal $\mathrm{BM}=$ bimaximal $\mathrm{GR}=$ golden ratio $\mathrm{BT}=$ bi-trimaximal $\mathrm{TM}=$ trimaximal			
	θ_{13}	θ_{23}	θ_{12}
TB	0°	45°	$35.3{ }^{\circ}$
BM	0°	45°	45°
GR	0°	45°	31.7°
BT	12.2°	36.2°	36.2°
TM	$\neq 0^{\circ}$	$\neq 45^{\circ}$	35.3°

$\overline{e_{R}}\left(L . \phi^{e}\right) H+\overline{\mu_{R}}\left(L . \phi^{\mu}\right) H+\overline{\tau_{R}}\left(L . \phi^{\tau}\right) H$
$\left\langle\phi^{e}\right\rangle \propto\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right) \quad\left\langle\phi^{\mu}\right\rangle \not \downarrow\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right) \quad\left\langle\phi^{\tau}\right\rangle \propto\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$

$$
m_{R L}^{l}=\left(\begin{array}{ccc}
m_{e} & 0 & 0 \\
0 & m_{\mu} & 0 \\
0 & 0 & m_{\tau}
\end{array}\right)
$$

$\overline{\nu_{R}^{\mathrm{sol}}}\left(L . \phi^{\mathrm{sol}}\right) H+\overline{\nu_{R}^{\mathrm{atm}}}\left(L . \phi^{\mathrm{atm}}\right) H$

$$
\left\langle\phi^{\mathrm{sol}}\right\rangle=\left(\begin{array}{c}
a \\
n a \\
(n-2) a
\end{array}\right) \downarrow\left\langle\phi^{\mathrm{atm}}\right\rangle=\left(\begin{array}{l}
0 \\
e \\
e
\end{array}\right)
$$

$$
m_{R L}^{D}=\left(\begin{array}{ccc}
a & n a & (n-2) a \\
0 & e & e
\end{array}\right)
$$

"Lepton number as the fourth colour"

Left-handed quarks and leptons triplets of A_{4}

Right-handed quarks and leptons distinguished by Z_{5}

A to Z of Flavour with Pati-Salam

$$
\left(A_{4} \times\left(Z_{5}\right) \times S U(4)_{C} \times S U(2)_{L} \times S U(2)_{R} \times\right. \text { Reant-handed auares and }
$$

Left-handed quarks
and leptons triplets of A_{4}

Right-handed quarks and leptons distinguished by Z_{5}

Left-handed quarles and leptons triplets of A_{4} Right-handed quarks and leptons distinguished by Z_{5}

Left-handed quarles and leptons triplets of A_{4} Right-handed quarks and leptons distinguished by Z_{5}

 Yukawa operators

 Yukawa operators
 1406.7005

Third family renormalisable
$F . h_{3} F_{3}^{c} \rightarrow Q_{3} H_{u} u_{3}^{c}+Q_{3} H_{d} d_{3}^{c}+L_{3} H_{u} \nu_{3}^{c}+L_{3} H_{d} e_{3}^{c}$

Third family renormalisable
$F . h_{3} F_{3}^{c} \rightarrow Q_{3} H_{u} u_{3}^{c}+Q_{3} H_{d} d_{3}^{c}+L_{3} H_{u} \nu_{3}^{c}+L_{3} H_{d} e_{3}^{c}$
First and second family involve flavons

$$
\begin{aligned}
F \cdot \phi_{i}^{u} h_{u} F_{i}^{c} & \rightarrow Q \cdot\left\langle\phi_{i}^{u}\right\rangle H_{u} u_{i}^{c}+L \cdot\left\langle\phi_{i}^{u}\right\rangle H_{u} \nu_{i}^{c}, \\
F \cdot \phi_{i}^{d} h_{d} F_{i}^{c} & \rightarrow Q \cdot\left\langle\phi_{i}^{d}\right\rangle H_{d} d_{i}^{c}+L \cdot\left\langle\phi_{i}^{d}\right\rangle H_{d} e_{i}^{c},
\end{aligned}
$$

Yukawa operators (cont'd)
 1406.7005

Third family renormalisable
$F . h_{3} F_{3}^{c} \rightarrow Q_{3} H_{u} u_{3}^{c}+Q_{3} H_{d} d_{3}^{c}+L_{3} H_{u} \nu_{3}^{c}+L_{3} H_{d} e_{3}^{c}$
First and second family involve flavons
$\xrightarrow{F \cdot \phi_{i}^{u} h_{u} F_{i}^{c} \rightarrow}$
$Q \cdot\left\langle\phi_{i}^{u}\right\rangle H_{u} u_{i}^{c}+L \cdot\left\langle\phi_{i}^{u}\right\rangle H_{u} \nu_{i}^{c}$,

CSD4 vacuum alignment

$$
\begin{array}{lc}
\left\langle\phi_{1}^{u}\right\rangle=\frac{V_{1}^{u}}{\sqrt{2}} e^{i m \pi / 5}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right), & \left\langle\phi_{2}^{u}\right\rangle=\frac{V_{2}^{u}}{\sqrt{21}} e^{i m \pi / 5}\left(\begin{array}{l}
1 \\
4 \\
2
\end{array}\right) \\
"\left\langle\phi_{\mathrm{atm}}\right\rangle " & "\left\langle\phi_{\mathrm{sol}}\right\rangle " \\
\left\langle\phi_{1}^{d}\right\rangle=V_{1}^{d} e^{i n \pi / 5}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), & \left\langle\phi_{2}^{d}\right\rangle=V_{2}^{d} e^{i n \pi / 5}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \\
"\left\langle\phi_{e}\right\rangle "
\end{array}
$$

Third family renormalisable
$F . h_{3} F_{3}^{c} \rightarrow Q_{3} H_{u} u_{3}^{c}+Q_{3} H_{d} d_{3}^{c}+L_{3} H_{u} \nu_{3}^{c}+L_{3} H_{d} e_{3}^{c}$
First and second family involve flavors
$\left\langle F . \phi_{i}^{u} h_{u} F_{i}^{c}\right\rangle Q .\left\langle\phi_{i}^{u}\right\rangle H_{u} u_{i}^{c}+L .\left\langle\phi_{i}^{u}\right\rangle H_{u} \nu_{i}^{c}$, Flavons form first $\left.F . \phi_{i}^{d} h_{d} F_{i}^{c}\right\rangle \quad Q .\left\langle\phi_{i}^{d}\right\rangle H_{d} d_{i}^{c}+L .\left\langle\phi_{i}^{d}\right\rangle H_{d} e_{i}^{c}$, two columns of

CSD4 vacuum alignment

$$
\left.\begin{array}{lc}
\left\langle\phi_{1}^{u}\right\rangle=\frac{V_{1}^{u}}{\sqrt{2}} e^{i m \pi / 5}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right), & \left\langle\phi_{2}^{u}\right\rangle=\frac{V_{2}^{u}}{\sqrt{21}} e^{i m \pi / 5}\left(\begin{array}{l}
1 \\
4 \\
2
\end{array}\right) \\
"\left\langle\phi_{\mathrm{atm}}\right\rangle " & \left.\square \phi_{\mathrm{sol}}\right\rangle " \\
\begin{array}{l}
\left\langle\phi_{1}^{d}\right\rangle=V_{1}^{d} e^{i n \pi / 5} \\
"\left\langle\phi_{e}\right\rangle "
\end{array}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), & \left\langle\phi_{2}^{d}\right\rangle=V_{2}^{d} e^{i n \pi / 5}=\left(\begin{array}{ccc}
0 & b & 0 \\
a & 4 b & 0 \\
a & 2 b & c
\end{array}\right) \\
1 \\
0
\end{array}\right) \square Y^{d} \sim Y^{e} \sim\left(\begin{array}{ccc}
y_{d}^{0} & 0 & 0 \\
0 & y_{s}^{0} & 0 \\
0 & 0 & y_{b}^{0}
\end{array}\right)
$$ Yukawa matrices

$M_{R}=\left(\begin{array}{ccc}M_{1} & 0 & M_{13} \\ 0 & M_{2} & 0 \\ M_{13} & 0 & M_{3}\end{array}\right) \quad \begin{array}{cll}M_{1}: M_{2}: M_{3} \sim \tilde{\xi}^{2}: \tilde{\xi}: 1 & M_{13}^{2} / M_{3} \sim \tilde{\xi}^{2} \\ M_{3} \sim \frac{\left\langle\overline{H^{c}}\right\rangle^{2}}{\Lambda} \sim 5.10^{15} \mathrm{GeV} & \tilde{\xi}=\frac{\langle\xi\rangle}{\Lambda} \sim 10^{-5}\end{array}$

Yukawa and Mass Matrices

$$
\begin{aligned}
Y^{u}=Y^{\nu}=\left(\begin{array}{ccc}
0 & b e^{-i 3 \pi / 5} & \epsilon c \\
a e^{-i 3 \pi / 5} & 4 b e^{-i 3 \pi / 5} & 0 \\
a e^{-i 3 \pi / 5} & 2 b e^{-i 3 \pi / 5} & c
\end{array}\right) & Y^{d}=\left(\begin{array}{ccc}
y_{d}^{0} e^{-i 2 \pi / 5} & 0 & A y_{d}^{0} e^{-i 2 \pi / 5} \\
B y_{d}^{0} e^{-i 3 \pi / 5} & y_{s}^{0} e^{-i 2 \pi / 5} & C y_{d}^{0} e^{-i 3 \pi / 5} \\
B y_{d}^{0} e^{-i 3 \pi / 5} & 0 & y_{b}^{0}+C y_{d}^{0} e^{-i 3 \pi / 5}
\end{array}\right) \\
M_{R} \approx\left(\begin{array}{ccc}
M_{1} e^{8 i \pi / 5} & 0 & 0 \\
0 & M_{2} e^{4 i \pi / 5} & 0 \\
0 & 0 & M_{3}
\end{array}\right) & Y^{e}=\left(\begin{array}{ccc}
-\left(y_{d}^{0} / 3\right) e^{-i 2 \pi / 5} & 0 & A y_{d}^{0} e^{-i 2 \pi / 5} \\
B y_{d}^{0} e^{-i 3 \pi / 5} & -4.5 y_{s}^{0} e^{-i 2 \pi / 5} & -3 C y_{d}^{0} e^{-i 3 \pi / 5} \\
B y_{d}^{0} e^{-i 3 \pi / 5} & 0 & y_{b}^{0}-3 C y_{d}^{0} e^{-i 3 \pi / 5}
\end{array}\right)
\end{aligned}
$$

SO (10)-Like diagonal RHN masses $M_{1}: M_{2}: M_{3} \sim m_{u}^{2}: m_{c}^{2}: m_{t}^{2}$ Physical neutrino masses in a normal hierarchy (CSD) $\operatorname{CSD}(4)+$ PS gives cabibbo connection $\theta_{C} \approx 1 / 4$ or $\theta_{C} \approx 14^{\circ}$ All CP phases are fifth roots of unity due to Z_{5}

The See-Saw mechanism

$$
m^{\nu}=-v_{u}^{2} Y^{\nu} M_{\mathrm{R}}^{-1} Y^{\nu T}
$$

Neutrino mass matrix only depends on m_{a}, m_{b}, m_{c}

$$
m^{\nu}=m_{a}\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)+m_{b} e^{2 i \eta}\left(\begin{array}{ccc}
1 & 4 & 2 \\
4 & 16 & 8 \\
2 & 8 & 4
\end{array}\right)+m_{c} e^{2 i \eta}\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

CSD(4)

$$
m^{\nu} \sim \frac{\left\langle\phi_{\mathrm{atm}}\right\rangle\left\langle\phi_{\mathrm{atm}}\right\rangle^{T}}{\langle\xi\rangle^{2}}+\frac{\left\langle\phi_{\mathrm{sol}}\right\rangle\left\langle\phi_{\mathrm{sol}}\right\rangle^{T}}{\langle\xi\rangle}
$$

CP phase
z_{5} invariant potential $\left|\frac{\langle\xi\rangle^{5}}{\Lambda^{3}}-m^{2}\right|^{2}=0$
$\langle\xi\rangle=\left|\left(\Lambda^{3} m^{2}\right)^{1 / 5}\right| e^{-4 i \pi / 5}$
from z_{5}

Neutrino mass variables
 1406.7005

$\Sigma \mathrm{m}_{i}(\mathrm{meV})$
$\begin{array}{l:l}61 & m_{a}=36 \mathrm{meV} \\ 60 & m_{a}=35 \mathrm{meV} \\ 59 & m_{a}=34 \mathrm{meV} \\ 58 & m_{a}=3 \\ 57 & \begin{array}{lllll} & \\ & 0.1 & 0.2 & 0.3 & 0.4 \\ & 0.5\end{array}\end{array}$
$\Delta \mathrm{m}^{2}{ }_{21}\left(10^{-5} \mathrm{eV}^{2}\right)$

$m_{\text {ee }}(\mathrm{meV})$
$2.15 m_{b}=2.15 \mathrm{meV}$
$2.10 \quad m_{b}=2.10 \mathrm{meV}$
$2.05 m_{b}=2.05 \mathrm{meV}$

Conclusions

- See-saw does not explain lepton mixing, we need symmetry to find a theory of flavour
- Direct models: either a small family symmetry with large correction or a large family group with a small correction
- Indirect models: allow small family symmetry groups such as A_{4} if broken by new alignments as in CSD (n)
- GUT embeddings of indirect models, unifying quarks and leptons, is a highly predictive framework
- Considered a $A_{4} \times Z_{5}$ Pati-salam model with PMNS predicted (plus normal hierarchy, cabibbo angle)

Extra material

- A4 group theory
- Pati-salam Breaking
- $\Delta\left(6 n^{2}\right)$

$$
S=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right), \quad T=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

Multiplying S and Tie generate 12 group elements $a_{1}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right), a_{2}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right), a_{3}=\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right), a_{4}=\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right)$
$b_{1}=\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right), b_{2}=\left(\begin{array}{ccc}0 & 0 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0\end{array}\right), b_{3}=\left(\begin{array}{ccc}0 & 0 & -1 \\ 1 & 0 & 0 \\ 0 & -1 & 0\end{array}\right), b_{4}=\left(\begin{array}{ccc}0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$
$c_{1}=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right), c_{2}=\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & -1 \\ -1 & 0 & 0\end{array}\right), c_{3}=\left(\begin{array}{ccc}0 & -1 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 0\end{array}\right), c_{4}=\left(\begin{array}{ccc}0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0\end{array}\right)$
With $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right) \quad\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right) \quad\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right) \quad\left(\begin{array}{c} \pm \frac{1}{\sqrt{3}} \\ \pm \frac{1}{\sqrt{3}} \\ \pm \frac{1}{\sqrt{3}}\end{array}\right)$ cf. Trimaximal \quad mixing

 Non-trivial singlets $1^{\prime}, 1^{\prime \prime}$

since $T^{3}=1$ it may be rep by cube roots of unity hence two additional one dimensional reps $1^{\prime}, 1^{\prime \prime}$

	S	T
1^{\prime}	1	ω
$1^{\prime \prime}$	1	ω^{2}

$$
\begin{gathered}
S^{2}=T^{3}=1 \\
(S T)^{3}=1 \\
\omega=e^{i 2 \pi / 3}
\end{gathered}
$$

These additional singlets have no geometric interpretation in terms of a tetrahedron

Clebsch Gordan coefficients

Irreducible reps
$1,1^{\prime}, 1^{\prime \prime}, 3$

$$
S=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right),
$$

$T=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)$

$$
\begin{array}{rlr}
1 \otimes 1=1 & 1^{\prime} \otimes 1^{\prime \prime}=1 \quad 1^{\prime} \otimes 1^{\prime}=1^{\prime \prime} & 1^{\prime \prime} \otimes 1^{\prime \prime}=1^{\prime} \\
(a b)_{1} & =a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} ; & 3 \otimes 3=1 \\
(a b)_{1^{\prime}} & =a_{1} b_{1}+\omega a_{2} b_{2}+\omega^{2} a_{3} b_{3} ; & \oplus 1^{\prime} \\
(a b)_{1^{\prime \prime}} & =a_{1} b_{1}+\omega^{2} a_{2} b_{2}+\omega a_{3} b_{3} ; & \oplus 1^{\prime \prime} \\
(a b)_{3_{1}} & =\left(a_{2} b_{3}, a_{3} b_{1}, a_{1} b_{2}\right) ; & \oplus 3_{1} \\
(a b)_{3_{2}} & =\left(a_{3} b_{2}, a_{1} b_{3}, a_{2} b_{1}\right), & \oplus 3_{2}
\end{array}
$$

where $\omega^{3}=1, a=\left(a_{1}, a_{2}, a_{3}\right)$ and $b=\left(b_{1}, b_{2}, b_{3}\right)$

$$
\begin{aligned}
& S U(4)_{C} \times S U(2)_{L} \times S U(2)_{R} \\
& \rightarrow S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y} \\
& H^{c}=(\overline{4}, 1,2)=\left(u_{H}^{c}, d_{H}^{c}, \nu_{H}^{c}, e_{H}^{c}\right) \\
& \overline{H^{c}}=(4,1,2)=\left(\bar{u}_{H}^{c}, \bar{d}_{H}^{c}, \bar{\nu}_{H}^{c}, \bar{e}_{H}^{c}\right) \\
&\left\langle H^{c}\right\rangle=\left\langle\nu_{H}^{c}\right\rangle=\left\langle\overline{H^{c}}\right\rangle=\left\langle\bar{\nu}_{H}^{c}\right\rangle \sim 2 \times 10^{16} \mathrm{GeV}
\end{aligned}
$$

$$
F_{i}=(4,2,1)_{i}=\left(\begin{array}{llll}
u & u & u & \nu \\
d & d & d & e
\end{array}\right)_{i} \rightarrow\left(Q_{i}, L_{i}\right),
$$

$$
F_{i}^{c}=(\overline{4}, 1,2)_{i}=\left(\begin{array}{cccc}
u^{c} & u^{c} & u^{c} & \nu^{c} \\
d^{c} & d^{c} & d^{c} & e^{c}
\end{array}\right)_{i} \rightarrow\left(u_{i}^{c}, d_{i}^{c}, \nu_{i}^{c}, e_{i}^{c}\right)
$$

