

Structure of Tutorial Sessions

- August 12: Break up into groups and receive problem sets, pick your challenge!
- August 12, 13, 15, 18: solve problems, prepare presentations
- August 20, 21: Present your answers as a group (10 minutes+ question time, 8 groups/day to present)
- August 21 Fabulous prizes presented for "best" answers at the school banquet

Categories of Competition

- Outstanding Pedagogy
- Most prolific (yet accurate) Responses
- Most Unexpected (but plausibly correct) Answer

How to pick the questions you'll answer

- Please try to answer at least one "open" and one "closed" questions:
- Open questions: ones with many possible good answers (i.e. Design an experiment to do x)
- Closed questions: questions with only 1 answer: "show that if x and y, then $z "$.
- Try to answer at least one experimental and one theoretical question
- Answer as many questions as you have time to answer
- Pick one and only one question to present at the end
- Everyone in group has to present

Breakdown of Questions

- 35 Questions in total
- Closed: 1-7,9,10,14-18,20-23,29-33
- Open: 8,11,12,13,19,26, 27, 28, 34, 35
- Theory: 1-7, 29-34, 9, 14, 15
- Experiment: 8 (asked by a theorist), 10-12, 13, 16-23, 19-28, 35

Assumptions

- Assume a golfer's arm is 0.8 m long
- Assume a golf club is 1.1 m long
- Assume the swing takes 0.1 second to complete
- Assume ball weighs 46 grams

List the assumptions you make to answer the questions

Calculations

- Speed for "lower π of swing" at contact if it were constant:
- speed of club= $\pi r / 0.1$ second
$-6 \mathrm{~m} / 0.1 \mathrm{sec}=200 \mathrm{~km} / \mathrm{hour}$
- Energy of golf ball at contact:
$-1 / 2 \mathrm{mv}^{2}=0.5^{*} .043 \mathrm{~kg} * 4 \mathrm{e} 10 \mathrm{~m} / 3.6 \mathrm{e} 3$ seconds=2.3e5J
- Power given to ball: assume energy is transmitted in that 0.1 second: $2.3 \mathrm{e} 6 \mathrm{~J} / \mathrm{sec}$
- 2.3MW power

Doñt need to show @ll your math
 Give answer to 1 or 2 significant figures

Wonder how far that ball would go if there were no air friction...

- Initial speed: $60 \mathrm{~m} / \mathrm{sec}$
- For longest distance, assume ball was hit at 45 degrees $w / r t$ the horizontal
- High school physics and algebra not shown...
- Initial Energy: $1 / 2 \mathrm{mv}_{0}{ }^{2}$
- Energy at maximum height $\mathrm{h}: 1 / 2 m v_{0}{ }^{2} \cos (45)+m g h$
- Total distance: 2 times horizontal distance at max height
- Answer: 250m

Extend the problem of you like!

How far do you need to hit the ball?

- Old Course at St. Andrews:
- 6721 yards, par 72
- http://www.standrews.com/Play/Courses/OldCourse
- This means that the average shot could be less than 100 m
- Friction might play a bigger role here than I naively assumed.

Cite your sources, concludle with whatt you learned

Goals of Tutorial Sessions

- Give you a chance to apply what you're learning at the school
- Get you to meet other students who you haven't met before
- Look around you: these are your future collaborators, why not start now?
- Practice your presentation skills
- Have fun!

