Light dark matter search with a spherical proportional counter

I. Giomataris, CEA-Irfu-France

NEWS is a more general network which could search for: Light dark, neutrino coherent scattering, low energy neutrino oscillations, Neutrinoless double beta decay, KK axions,

Possible collaboration

- Cea/IRFU Saclay
- Laboratoire Souterrain de Modane
- University of Tessaloniki
- University of Tsignhua
- **Institute of High Energy Physics**
- University of Jiao tong
- NCSR Demokritos
- University of Ioannina

- France
- Greece

- Greece

- Helenic Open university
 - University of Zaragoza
- Livermore National Lab
- University of Princeton
- JINR Dubna
- Cea/DRT
- University of Georgia
- CNRS/IN2P3/CPPM

- Greece Spain US US Russia France US
- France

- France
- China
- China
- China
- Greece

University of Saragoza detector

svstem

Calibration window

HV filter & PreAmplifier

Gas

input

Gas output or air input

Spherical detector propagation

University of Thessaloniki detector

Future projects 2m detector will be developed At SNOLAB (G. Gerbier et al.)

University of Tsinghua - HEP detector

Radial TPC with spherical proportional counter read-out

Saclay-Thessaloniki-Saragoza

A Novel large-volume Spherical Detector with Proportional Amplification read-out, I. Giomataris *et al.*, JINST 3:P09007,2008

- Simple and cheap
- Large volume
- single read-out
- Robustness
- Good energy resolution
- Low energy threshold
- Efficient fiducial cut

Parallel Plate Detector

E = constant $C \approx S > 1nF$

Cylindrical Proportional Counter

E=V/ln(b/a)r L = length and a=radius of the wire, b = tube radius C= $2\pi L/ln(b/a) >> 10 pF$

Spherical Proportional Counter

E=1/r² \approx V/R_i close to the ball C \approx R_{in} < 1pF

Electrostatics deal - how to maintain a radial field

High voltage The detec placed at support Streamline: Electric field 0.5

Ball with wire

High voltage of the High voltage of umbrella ; *HV2* the ball; **HV1**

The Ball with umbrella corrector

Energy resolution ~ 6 % and 9 % for Cu and Cd

If rt ~ 0.0155 ms ==> R = 65 cm 0.014 ms ==> ~70% of signal

New low-energy calibration source *Argon-37*

Home made Ar-37 source: irradiating Ca-40 powder with fast neutrons 7x10⁶neutrons/s Irradiation time 14 days. Ar-37 emits K(2.6 keV) and L(260 eV) X-rays (35 d decay time)

First measurement with Ar-37 source Total rate 40 hz in 250 mbar gas, 8 mm ball 260 eV peak clearly seen A key result for light dark matter search

Cuurent light DM: DAMA, COGENT, claim rejected?

Light Dark Matter candidates < 10 GeV

- Light U boson(Fayet, Boehm&Fayet)
 Secluded WIMP dark matter (Arkani-Hamed, Pospelov, Ritz, Voloshin)
- Kaluza-Klein Axion like Particle
- Assymetric Dark Matter
- Electron-Interacting dark matter

➡ SEARCH FOR LIGHTER MASSES

DAMA+LIBRA 11 years, 0.83 ton \times year, 8.2 σ modulation signal.

2-4 keV

Search for light dark matter Detector installed at LSM end 2012

SEDINE detector made out of radiopure Cu Diameter = 60 cm, Pressure = up to 10 bar

Gas targets: Ar, Ne, He, CH4

Signing radon and Po-210 contamination with spherical detector

Po-210, Pb-210 contamination deal

<u>1st prototype</u>: after cleaning the internal spherical vessel by spraying nitric acid we observed a decrease of alpha rate (at 5.3 MeV) with a decay time of Po-210

Low background detector:

1st cleaning: after filling the internal spherical vessel (last year) with nitric acid we observed a decrease of alpha rate of about 3 but then a stable rate (.06Hz) (Pb-210 not removed?)

2nd cleaning: Cu vessel was sprayed with nitric acid Similar to the 1st prototype procedure the rate drops to (.004Hz)

3rd cleaning: the rate drops to (.002Hz) Significant drop

Light WIMP search results

Projected sensitivity with a 2 m detector Simulations by Kaxuan Ni et al.,

Quenching factor measurements

Goal: measure QF down to 500 eV ion energy using the Grenoble MIMAC facility for H, He, Ne, CF4, Ar, Xe at various pressures

Recent investigations with a 15 cm sphere show the capability to measure 500 eV He-4 ions with an estimated QF of about 30% *Saclay, Grenoble, Thessaloniki, Queen's-Kingston*

Additional Physics

Motivated by:

- Sub-keV energy threshold of the detector
- Large volume detector (1 m³ to much larger)
- Large mass and sub-keV energy threshold
- Good energy resolution
- Low background
- Versatility of the target (gas and pressure)
- Neutrino-nucleus coherent elastic scattering near a nuclear reactor
- A dedicated Supernova detector (4 m in diameter) *Y. Giomataris, J. D. Vergados, Phys.Lett.B*634:23-29,2006

Idea : A world wide network, at University level, of several (tenths or hundreds) of such dedicated Supernova detectors managed by students

- Gravitationally trapped massive Axion (like) particles decays L. Di Lella, K. Zioutas, Astropart. Phys. 19 (2003) 145
- Room size Neutrino oscillations using very low energy neutrino sources
- I. Giomataris, J.D. Vergados, Nucl.Instrum.Meth.A530:330-358,2004, J.D. Vergados, Y. Giomataris, Y. Novikov, Nucl.Phys. B854 (2012) 54-66, Phys.Rev. D85 (2012) 033003
- Background free double beta decay experiment, I. Giomataris, arXiv:1012.4289

KK-axions as a candidate to low energy decay

 $T_{\odot} \ll \tau_a$

Gravitationally trapped massive Axion (like) particles decays L. Di Lella, K. Zioutas, Astropart. Phys. 19 (2003) 145

SEDINE sensitivity 10^-11 $\rho_a = 1.18 \times 10^{39} \left(\frac{g_{a\gamma}}{\text{GeV}^{-1}} \right)^2 [\text{m}^{-3}]$ xion coupling [GeV-1] 10^-12 $\tau_a = 1.35 \times 10^5 \left(\frac{g_{a\gamma}}{\text{GeV}^{-1}}\right)^{-2} \left(\frac{m_a}{\text{eV}}\right)^{-3} \text{ s}$ $N_{\gamma} = \tau_a^{-1} \cdot \rho_a \cdot V_{Sph} \cdot T_{exp} \cdot \epsilon_{det}$ 10^-13 combined 200 mbar 2000 mbar 50 mbar 💷 10^-14

6

8

10

Axion mass [keV]

12 14 16 18

Zero background estimation

 $(g_{a\gamma} = 9.2 \times 10^{-14} \text{GeV}^{-1})$

 $\rho_a\gtrsim 10^{13}{\rm m}^{-3}$

Distance from Sun

Axion density

Furthermore flexibility on gas mixture and pressure allows to proof the decay hypothesis by modulating the 2-prong and 1-prong efficiency

0

2

Low energy decay detection capability

CONCLUSIONS

- A new promising counter on spherical geometry
- Ultra low energy threshold capability down to single electron
- Light dark matter search down to 100 MeV
- Excess below 400 eV in Neon is under study