Future of solar axion searches with the International AXion Observatory IAXO

Igor G Irastorza
Universidad de Zaragoza

10th Patras Workshop on Axions, WIMPs and WISPs
July 3rd, 2014
Outline

- Axion motivation:
 - Strong CP problem
 - Axions as CDM
 - Solar axions

- Previous helioscopes & CAST

- IAXO Conceptual Design
 - CDR
 - LoI to CERN

- IAXO physics potential

- Status of project

- Next steps

- Conclusions

IAXO Letter of Intent: CERN-SPSC-2013-022
90 signatures / 38 institutions

IAXO Conceptual Design: JINST 9 (2014)
T05002 (arXiv:1401.3233)
Axion motivation in a nutshell

- Most compelling solution to the *Strong CP problem* of the SM

- Axion-like particles (ALPs) *predicted by many extensions* of the SM (e.g. string theory)

- Axions, like WIMPs, may *solve the DM problem for free*. (i.e. not *ad hoc* solution to DM)

- **Astrophysical hints** for axion/ALPs?
 - Transparency of the Universe to UHE gammas
 - White dwarfs anomalous cooling → point to few meV axions

- Relevant axion/ALP parameter space at *reach of current and near-future experiments*

- Still too little experimental efforts devoted to axions when compared e.g. to WIMPs... (not justified...)
Axion Helioscope principle

- Solar axions produced by photon-to-axion conversion of the solar plasma photons in the solar core
- Detectable by the Axion helioscope concept [Sikivie, PRL 51 (83)]

\[
P_{\alpha\gamma} = 2.6 \times 10^{-17} \left(\frac{B}{10 \text{ T}} \right)^2 \left(\frac{L}{10 \text{ m}} \right)^2 \left(g_{\alpha\gamma} \times 10^{10} \text{ GeV} \right)^2 \mathcal{F}
\]
Axion Helioscopes

- Previous helioscopes:
 - First implementation at Brookhaven (just few hours of data) [Lazarus et al. PRL 69 (92)]
 - TOKYO Helioscope (SUMICO): 2.3 m long 4 T magnet

- Presently running:
 - CERN Axion Solar Telescope (**CAST**)
CAST experiment @ CERN

- Decommissioned LHC test magnet (L=10m, B=9 T)
- Moving platform ±8°V ±40°H (to allow up to 50 days / year of alignment)
- 4 magnet bores to look for X rays
- 3 X rays detector prototypes being used.
- X ray Focusing System to increase signal/noise ratio.
IAXO – Concept

- **Sensitivity goal:** >4 orders of magnitude improvement in signal-to-noise ratio wrt CAST. (>1 order of magnitude in sensitivity of $g_{a\gamma}$)

\[
g_{a\gamma}^4 \propto \left(\frac{b}{\epsilon}\right) \times \left(\frac{a}{\epsilon_0}\right) \times \left(\frac{A}{(BL)^2}\right) \times \left(\frac{t^{-1/2}}{m^2}\right)
\]

- No technological challenge (build on CAST experience)
 - New dedicated superconducting magnet, built for IAXO (improve >300 B^2L^2A f.o.m wrt CAST)
 - Extensive (cost-effective) use of x-ray focalization over ~m² area.
 - Low background detectors (lower 1-2 order of magnitude CAST levels)

Patras Axions-WIMPs, CERN, July 2014

Igor G. Irastorza / Universidad de Zaragoza
IAXO – Conceptual Design

- Large toroidal 8-coil magnet $L = \sim 20$ m
- 8 bores: 600 mm diameter each
- 8 x-ray optics + 8 detection systems
- Rotating platform with services
IAXO magnet

TOROIDAL CONFIGURATION specifically built for axion physics

Each conversion bore (between coils) 600 mm diameter

Cryostat
Cold mass

Magnetic length 20 m Total cryostat length 25 m

Bores go through cryostat
IAXO magnet concept presented in:
• IEEE Trans. Appl. Supercond. 23 (ASC 2012)
IAXO x-ray optics

- X-rays are focused by means of grazing angle reflection (usually 2)
- Many techniques developed in the x-ray astronomy field. But usually costly due to exquisite imaging requirements
IAXO x-ray optics

- Each bore equipped with an x-ray optics
- Exquisite imaging not required
- **BUT** need cost-effective way to build 8 (+1 spare) optics of 600 mm diameter each
IAXO x-ray optics

- Technique of choice for IAXO: optics made of slumped glass substrates coated to enhance reflectivity in the energy regions for axions.
- Same technique successfully used in NuSTAR mission, recently launched.
- The specialized tooling to shape the substrates and assemble the optics is now available.
- Hardware can be easily configured to make optics with a variety of designs and sizes.
- Key institutions in NuSTAR optics: LLNL, U. Columbia, DTU Denmark. All in IAXO!
IAXO x-ray optics

Optimal focal length ~5 m

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telescopes</td>
<td>8</td>
</tr>
<tr>
<td>N. Layers (or shells) per telescope</td>
<td>123</td>
</tr>
<tr>
<td>Segments per telescope</td>
<td>2172</td>
</tr>
<tr>
<td>Geometric area of glass per telescope</td>
<td>0.38 m²</td>
</tr>
<tr>
<td>Focal length</td>
<td>5.0 m</td>
</tr>
<tr>
<td>Inner radius</td>
<td>50 mm</td>
</tr>
<tr>
<td>Outer Radius</td>
<td>300 mm</td>
</tr>
<tr>
<td>Minimum graze angle</td>
<td>2.63 mrad</td>
</tr>
<tr>
<td>Maximum graze angle</td>
<td>15.0 mrad</td>
</tr>
<tr>
<td>Coatings</td>
<td>W/B₄C multilayers</td>
</tr>
<tr>
<td>Pass band</td>
<td>1–10 keV</td>
</tr>
<tr>
<td>IAXO Nominal, 50% EEF (HPD)</td>
<td>0.29 mrad</td>
</tr>
<tr>
<td>IAXO Enhanced, 50% EEF (HPD)</td>
<td>0.23 mrad</td>
</tr>
<tr>
<td>IAXO Nominal, 80% EEF</td>
<td>0.58 mrad</td>
</tr>
<tr>
<td>IAXO Enhanced, 90% EEF</td>
<td>0.58 mrad</td>
</tr>
<tr>
<td>FOV</td>
<td>2.9 mrad</td>
</tr>
</tbody>
</table>
IAXO low background detectors

- 8 detector systems
- Small gas chamber with Micromegas readouts for low-background x-ray detection
- Shielding
IAXO low background detectors

- Small Micromegas-TPC chambers:
 - Shielding
 - Radiopure components
 - Offline discrimination

- Goal background level for IAXO:
 - $10^{-7} - 10^{-8} \text{ c keV}^{-1} \text{ cm}^{-2} \text{ s}^{-1}$

- Already demonstrated:
 - $\sim 8 \times 10^{-7} \text{ c keV}^{-1} \text{ cm}^{-2} \text{ s}^{-1}$ (in CAST 2013 result)
 - Below $10^{-7} \text{ c keV}^{-1} \text{ cm}^{-2} \text{ s}^{-1}$ (underground at LSC – 2014 - unpublished)

- Active program of development. Clear roadmap for improvement.

IAXO pathfinder at CAST
Exploratory optics+detector system

• IAXO optics+detector joint system
 • Newly designed MM detector (following IAXO CDR)
 • New x-ray optics fabricated following technique proposed for IAXO (but much smaller, adapted to CAST bore)
• It will take data in CAST in 2014 & 2015
 • First time low background + focusing in the same system
 • Very important operative experience for IAXO
IAXO sensitivity prospects

Astrophysical hints for ALPs

Much larger QCD axion region explored

Patras Axions-WIMPs, CERN, July 2014
Igor G. Irastorza / Universidad de Zaragoza
Additional IAXO physics cases

- Detection of “BCA”-produced solar axions (with relevant g_{ae} values)
- More specific WISPs models at the low energy frontier of particle physics:
 - Paraphotons / hidden photons
 - Chamaleons
 - Non-standard scenarios of axion production
- Microwave LSW setup
- Use of microwave cavities or dish antennas, DM axion searches

Possible additional technologies to push E thresholds down:
- GridPix
- TES
- Low-noise CCDs

IAXO as “generic axion/ALP facility”

See talk of B. Doebrich & J. Redondo
IAXO status of project

• **2011**: First studies concluded *(JCAP 1106:013,2011)*

• **2013**: Conceptual Design finished *(arXiv:1401.3233)*.
 – Most activity carried out up to now ancillary to other groups’ projects (e.g. CAST)

• **August 2013**: Letter of Intent submitted to the CERN SPSC
 – LoI: [CERN-SPSC-2013-022]
 – Presentation in the open session in October 2013:

• **January 2014**: Positive recommendations from SPSC.

• **2014**: Transition phase: In order to continue with TDR & preparatory activities, formal endorsement & resources needed.
 – Some IAXO preparatory activity already going on as part of CAST near term program.
 – Preparation of a MoU to carry out TDR work.
 – First IAXO-specific funding approved! (one week ago).
SPSC Draft minutes [Jan 2014]

The Committee **recognises** the physics motivation of an International Axion Observatory as described in the Letter of Intent SPSC-I-242, and considers that the proposed setup makes appropriate use of state-of-the-art technologies i.e. magnets, x-ray optics and low-background detectors.

The Committee **encourages** the collaboration to take the next steps towards a **Technical Design Report**.

The Committee recommends that, in the process of preparing the TDR, the possibility to **extend the physics reach** with additional detectors compared to the baseline goal should be investigated. The collaboration should be further strengthened.

Considering the required funding, the SPSC **recommends** that the R&D for the TDR should be pursuit within an MOU involving all interested parties.
Next steps

• Start works towards a Technical Design Report. As part of such:
 – Construction of a demonstration coil IAXO-T0
 – Construction of a prototype x-ray optics IAXO-X0
 – Construction of a prototype low background detector setup IAXO-D0
 – Complete pathfinder project detector+optic at CAST
 – Coordination activities. Update physics case. Site. Tracking platform. Gas system. Software
 – Feasibility studies for “IAXO-DM” options.

• TDR completion is a ~2-4 MEUR effort.

• Memorandum of Understanding in preparation among interested parties

• Search for new interested partners
Conclusions

• Axion searches \rightarrow increasingly strong physics case.
• To be taken seriously: time for large projects.
• In particular, solar axions \rightarrow CAST has been a very important milestone in axion research during the last decade
 – 1st CAST limits most cited exp. axion paper
 – Largest effort/collaboration in axion physics so far
• IAXO, a forth generation axion helioscope, natural and timely large-scale step to come now. It can probe deep into unexplored axion+ALP parameter space.
 – But also several additional physics cases
• LoI to CERN recently proposed. Positive recommendation from SPSC. MoU to start TDR under preparation.
• First firm steps for IAXO to become a large “generic axion facility” with discovery potential in the next decade.

More news in Zaragoza Patras2015!!
Backup slides...
IAXO costs

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost (MCHF)</th>
<th>Subtotals (MCHF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnet</td>
<td></td>
<td>31.3</td>
</tr>
<tr>
<td>Eight coils based assembled toroid</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Magnet services</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>Optics</td>
<td></td>
<td>16.0</td>
</tr>
<tr>
<td>Prototype Optic: Design, Fabrication, Calibration, Analysis</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>IAXO telescopes (8 + 1 spare)</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td>Calibration</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Integration and alignment</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>Detectors</td>
<td></td>
<td>5.8</td>
</tr>
<tr>
<td>Shielding & mechanics</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>Readouts, DAQ electronics & computing</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>Calibration systems</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Gas & vacuum</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>Dome, base, services building and integration</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td>56.8</td>
</tr>
</tbody>
</table>

Table 5: Estimated costs of the IAXO setup: magnet, optics and detectors. It does not include laboratory engineering, as well as maintenance & operation and physics exploitation of the experiment.
IAXO in astroparticle roadmaps

• **ASPERA/APPEC Roadmap** acknowledges axion physics, CAST, and recommends progress towards IAXO.

 "...A CAST follow-up is discussed as part of CERN’s physics landscape (new magnets, new cryogenic and X-ray devices). The Science Advisory Committee supports R&D on this follow up, as well as smaller ongoing activities on the search for axions and axion-like particles."

 C. Spiering, ESPP Krakow

• Important community input in the **European Strategy for Particle Physics**

• Presence in the Briefing Book of the ESPP, which reflects also APPEC roadmap recommendations.

• **ESPP recomends CERN to follow APPEC recomendations.**

• Important effort in relation with US roadmapping (Snowmass, and P5 process). **Snowmass reports speak very favourably of axion physics and IAXO.**
IAXO timeline

- **~18 months -> TDR + preparatory activities**
- **~3.5 years construction**
- **~2.5 years integration + commissioning**

<table>
<thead>
<tr>
<th>Years</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Months</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>15</td>
<td>18</td>
</tr>
<tr>
<td>Magnet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td>T0</td>
<td>T1-T8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demo coil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Services</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optic design study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prototype construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calibration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finalize design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Build assembly machines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procure mandrels & ovens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Build coating facilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slump glass</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deposit coatings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assemble optics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calibrate optics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Installation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detectors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prototype</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction (incl. spares)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Installation & commissioning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Axion parameter space

Astrophysical hints for ALPs

CDM "anthropic window"

CDM "classical window" Vaxuum mis. + defects

mixed CDM

White Dwarfs

Axions as HDM

WISPy CDM JCAP06(2012)013

Patras Axions-WIMPs, CERN, July 2014

Igor G. Irastorza / Universidad de Zaragoza
AXION theory motivation

- Axion: introduced to solve the **strong CP problem**

In QCD, nothing prevents from adding a term like that to the lagrangian:

\[
\mathcal{L}_{CP} = \theta \frac{\alpha_s}{8\pi} G \tilde{G}
\]

This term is **CP violating**.

From non-observation of neutron electric dipole moment:

\[
|\theta| < 0.7 \times 10^{-11}
\]

- Why so small?
- High fine-tuning required for this to work in the SM
AXION theory motivation

- **Peccei-Quinn solution** to the strong CP problem
 - New U(1) symmetry introduced in the SM: Peccei Quinn symmetry of scale f_a
 - The AXION appears as the *Nambu-Goldstone boson* of the spontaneous breaking of the PQ symmetry

\[\mathcal{L}_a = \frac{1}{2} (\partial_\mu a)^2 - \frac{\alpha_s}{8\pi f_a} a G \tilde{G} \]

\[\theta = \frac{\alpha}{f_a} \text{relaxes to zero...} \]

CP conservation is preserved “dynamically”
THE AXION

- The PQ scenario solves the strong CP-problem. But a most interesting consequence is the appearance of this new particle, the *axion*.

(Weinberg, Wilcek)

- **Basic properties:**
 - Pseudoscalar particle
 - Neutral
 - Gets very small mass through mixing with pions
 - Stable (for practical purposes).
 - Phenomenology driven by the PQ scale f_a.
 (couplings inversely proportional to f_a)

\[
\mathcal{L}_a = \frac{1}{2} (\partial_\mu a)^2 - \frac{\alpha_s}{3\pi f_a} a G \tilde{G}
\]

\[
m_a \approx 0.6 \ \text{eV} \frac{10^7 \text{GeV}}{f_a}
\]
AXION phenomenology

- **Axion-photon coupling** present in every model.

\[\mathcal{L}_{a \gamma} = g_{a \gamma \gamma} (E \cdot B) a \]

\[g_{a \gamma \gamma} = \frac{\alpha_s}{2\pi f_a} \left(\frac{E}{N} - 1.92 \right) \]

- **Axion-photon conversion** in the presence of an electromagnetic field (Primakoff effect)

This is probably the most relevant of axion properties. Most axion detection strategies are based on the axion-photon coupling.
Beyond axions

- Diverse theory motivation
 - Higher scale symm. breaking
 - String theory
 - DM / DE candidates
 - Astrophysical hints

- Generic Axion-like particles (ALPs) parameter space

WISPs (Weakly interacting Slim Particle)

- Hidden photons / paraphotons
- AXIONS
- Minicharged particles
- ALPS
- Chamaleons

Patras Axions-WIMPs, CERN, July 2014

Igor G. Irastorza / Universidad de Zaragoza
AXION as Dark Matter?

- Can not be baryonic
- Can not be relativistic (CDM)
- Can not be standard (neutrinos)
- Need to go **beyond the SM** →

Galactic scale

```

“Dark energy” ~68.3%

Baryonic < 5%

Visible < 1%

non baryonic

Dark Matter

~26.8 %
```

Cosmological scale

- SUSY
- PQWW

- WIMPs
- AXIONS

Patras Axions-WIMPs, CERN, July 2014

Igor G. Irastorza / Universidad de Zaragoza
AXION as Dark Matter?

- **Axions are produced** in the early Universe by a number of processes:
 - Axion realignment
 - Decay of axion strings
 - Decay of axion walls

- Axion mass giving the right CDM density? Depends on cosmological assumptions:
 - “classical window” $\sim 10^{-5} - 10^{-3}$ eV
 - “anthropic window” \sim much lower masses possible
 - Other \rightarrow subdominant CDM / non-standard scenarios

- Thermal production

- Axion masses $m_a > \sim 0.9$ eV gives densities too much in excess to be compatible with latest CMB data

Axion DM after BICEP2

- Quite an impact... (a few preprints)
 - Marsh et al. arXiv:1403.4216
 - L. Visinelli, P. Gondolo arXiv:1403.4594
 - Choi el al. arXiv:1404.3803
 - Chun. arXiv:1404.4284
 among others...

In summary:

if “high inflation scale” interpretation of BICEP2 results is right... “classical window” (high mass) scenario is favored.
Solar Axions

- Solar axions produced by photon-to-axion conversion of the solar plasma photons in the solar core

Solar axion flux

\[\frac{d\Phi_a}{dE} = 6.02 \times 10^{10} \text{ cm}^{-2} \text{ s}^{-1} \text{ keV}^{-1} g_{10}^2 E^{2.481} e^{-E/1.205} \]

\[g_{10} = g_{a\gamma}/10^{-10} \text{ GeV}^{-1} \]

Solar physics + Primakoff effect

Only one unknown parameter \(g_{a\gamma} \)

Patras Axions-WIMPs, CERN, July 2014
Axions in Astrophysics

- **Axions are produced at the core of stars**, like the Sun, by Primakoff conversion of the plasma photons.
 - Axions drain energy from stars and may alter their lifetime. Limits are derived to the axion properties.

- **Axion decay** $a \rightarrow \gamma \gamma$ may produce gamma lines in the emission from certain places (i.e. galactic center).

Astrophysical hints for axions/ALPs

- Anomalous gamma transparency of the Universe (observation of gamma rays from distant sources) \rightarrow very light ALPs
- Anomalous cooling of white dwarfs
 - Favors few meV axions

See PDG and references therein.
Detecting DM axions: “haloscopes”

- Resonant cavities (Sikivie, 1983)
 - Primakoff conversion inside a “tunable” resonant cavity
 - Energy of photon = $m_a c^2 + O(\beta^2)$

Primakoff conversion of DM axions into microwave photons inside cavity

\[P_0 = g_{a\gamma}^2 V B^2 C \frac{\rho_a}{m_a} Q \]

Axion DM field
Non-relativistic
Frequency \leftarrow axion mass

Cavity dimensions smaller than de Broglie wavelength of axions

If cavity tuned to the axion frequency, conversion is “boosted” by resonant factor (Q quality factor)
Recent papers proposing new detection schemes. Very active field!

- Precession of nuclear spins (CASPERs): PRD 84, 055013 (2011) and arXiv:1306.6089
- Directional effect in long thin cavities: JCAP 1210 (2012) 022
- Dish antenna: JCAP 1304 (2013) 016
- Directional effect in dish antenna: arXiv:1307.7181
- LC circuit in B field: PRL 112, 131301 (2014)
- Active resonators: arXiv:1403.6720
- Cavitiy with wires: arXiv:1403.3121 (also old Sikivie paper)
InGrid Detectors

- Micromegas built on top of a CMOS ASIC
- Bump bond pads of the ASIC are used as charge collection pads
- Mesh made of thin aluminum foil
- One hole per readout pixel → well aligned
 → each primary electron can be seen as one hit on a pixel

Cosmic ray track

2 X-ray photons of a ^{55}Fe source
Background Suppression

Knowledge of individual primary electrons gives detailed information on signal shape.

Different event shape variables can be used to distinguish background events (tracks) from signal events (photons).

First likelihood ratio-based analysis reached a background suppression of 120.

Threshold of detector is dominated by transmission of entrance window.

Good energy resolution with pixel counting eliminating contribution of gas amplification.

Efficiency vs. background rejection

- 5.9 keV
- 2.7 keV

Spectrum of a ^{55}Fe source