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Gauging a Globlal Symmetry

gange symmetries, for simplicity we will consider a complex scalar field, ¢, with a U(1)

symmetry which has the Lagrange density
L=d,0"" — V() , (1)

where V() is some secalar self interaction potential. A typical example is to have a Higgs,
symmetry breaking potential of the form V(é) = —m?|d|* + A|&|* where |4]* = ¢*d. Now
the Lagrangian density in (1) has the global gauge symmetry ¢ — ¢ where e is the
plectric charge of the scalar field and A is a global phase parameter. If one lets the phase

parameter become space-time dependent (i.e. A — A(xz,)) one can still maintain this new



introducing a four-vector gauge held 4,
covariant derivatives, [),, of the form

g, — D, =8, +1ieA, ,

F, =ad,A, —8A

o

is invariant under A# — A# — ﬂ#ﬂ



THIS STANDARD MINIMAL COUPLING

leads to the following Lagrangian
L=D,b(I*H)* — Vd 1F f
— #";-”: ':-I'_::I — ¥ [U} — I AL 5

with D), and F,,, defined above. This Lagrangian represents a complex, charged scalar

¢ coupled to a vector gauge boson, A,. It respects the local gauge transformation
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SCALAR GAUGE FIELDS

introducing a real, scalar B(x,) and two types of covariant derivatives

Dj =, +1ed, ; Df =, +ed, B .
gange transformation

b—ee ; A, - A —-8AN ; B—>B-A
L = 1D o(D¥$)" + D,/ oD )"
e D 6(D™ ) + eyD,/$(D™ )" — V(o)
1
— E;ﬂ“&,fﬂ“’ +es(A, —d,8)A" - B)




where EJ;':{':’- are CONSTtants

Fori=1, 2, 5 these constants are real, for i=3
and 4 we must have,

e g
Cq =— Cy

we require that (c; + o + 3 +¢4) = (e + o + Reles + o]} = 1



ca = a+hand ¢y = a — b

1
£ = 8.$8"¢" — V($) — - Fuu F™ + cx A, A

+ e38, B B — 2c5 A, 0" B
+ ie[¢d,d* — 6°8,0] (1 + a)A* + (c2 + a)9,B)

+ e"gd* (c1 A A* + 28, B B + 2ad, BA*)

— ebd,(¢°)(A* — & B) .



—ebil, (¢*¢)(A* — " B) will lead to ' and C'F violatior

Indeed, all the other terms in the lagrangian,
with the exception of this one are invariant
under the C transformation

o=+t ; A, —+-A, . B—=+-B

che currents by a particle and its associated
antiparticle will not be exactly opposite



Parity on the other hand is a symmetry
therefore CP is also violated

The parity transformation is

Ap(t 1) = Ag(—2* 1) 1 Aj(ot 1) = —A (- 1)

L) = o(—2t) ; Bl t) = B(—z',

the Lagrangian violates C'FP as well as €',



CURRENT SHOWING C VIOLATION
AND MASS GENERATION FOR VECTOR
FIELD

d,F* = ie(c; + a)|dd* &® — d*# | — ebd” [d*d

. 3 . - . _} T 1
+ 2[cie”(d* D) + x| A* + 2|ae”(d%d) — z|0" B



PARTICLE CONTENT AND THE GENERALIZED UNITARY GAUGE

Let us recall how the unitary gauge works:

scalar field as an amplitude and phase — ¢(x) = p(x)e™™
If $(x) develops a VEV due to the form of the potential

unitary gauge ¢ — =M= (x) with A = —68(x)/e

this way one removes the field #(x)
With the introduction of the scalar gauge field, B(x)

one no longer can gauge away both 8(x) and B(x)



What is the basic feature of the
unitary gauge, what is it good for?

the unitary gauge eliminates cross terms like A, "6

[n the present case the cross terms

we wish to eliminate by a generalized unitarv gauge are

Coroes = —205 A, 0 B +
ie(c1 + a)[dd,d* — d* O, d]|A* + 2ae”8, BA* * ¢



LPLE) 7 P

Lorpas = 2A,00 (—cs B + ecypnt + aepaf + uEEpEE:]

Defining F(x) = —cs B + c1ep50 + aepil + ae”pi B,

a Fauge transformation ( ie. # =28 +eA. B = B —A)
we can take some initial non-zero value F = F,

and always arrive at a gange F = 0. is possible by

choosing the gauge function as A = —Fy/(cx + c1e°p7).



In this Physical Gauge F=0

we can solve the # field in terms of the B field as

After replacing # in terms of B,

the kinetic term for B takes the form

(c2 + a)(cs — ae®pj)
polct +a)

(q+@££+z )@BWB



Define a canonically normalized Field

in the canonically normalized form %Ejﬁﬂﬁ“ﬂ, one should define B as

B =

|
.V."IE (.:_13 562 + o5 + 2

(ca + a)(cs — ae2ps)

polc1 + a)

)

B=fgB,

there is a remaining Goldstone boson like particle.

one can add non-derivative, potential terms

which give mass



Non derivative interactions for the B
field

- - rh a0,
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Specialize to the special case

Ve ‘er} = —m {JL’] + Al chah® J + Aet! c:m + A€ —ieB g+

V(B.p) = —m p” + Ap* + (AP 4+ X7 5)p .

A
Cy T Ap€ C1

K =
frpt(cie + ae)




Can obtain a sine Gordon equation.
Assuming the conventional (first two
terms in V) dominate and defining

Ay = cge™! we see that near the vacuum value ¢ = \k_.-“fmf_,.-"E}

.ri'.'l

Vi(B) = T 2evypgcos( KB 4+ wy) .



Interaction strength of the B particles

From looking at the covariant derivative that
uses the B field, we would think the interaction

goes as e, but the true strength of the
interaction is only found when we re-express B

In terms of the canonically normalize field.

The strength of the interaction of B

15 not e (as is the case with B(x)) but rather e/ fg

If f_r; 15 h']:f__‘_: the coupling of the B particles will be reduced.



VEV. gg. and/or ca, cs are large

gives us such a situation and therefore a
suppression of the interaction of these B particles.
So this is a mechanism by means of which these
particles can be made of weak strength. Also, as we
have seen, these particles can acquire a mass.

FINAL THOUGHT:

Could these WISPS, the B particles be good Dark
Matter Candidates? .The can be weakly interacting
and massive, They look similar to the axion, except
they are scalar particles rather than pseudo scalars.
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