
Random Number for
Concurrency

Lorenzo Moneta/PH-SFT

Concurrency Forum Meeting, 12 Feb 2014

Introduction

Problems using the HEP random number libraries
in a concurrent environment

ROOT (TRandom classes)

CLHEP Random

Parallel Random Number Generation

generating independent streams

Planned improvements for ROOT random library

2

CLHEP Concurrency Problems

Some CLHEP classes use static cache to
improve performance:

RandGauss, RandBinomial, RandPoisson

this causes problems, probably some
replacement exists (e.g RandGaussQ/T)

but with same accuracy ?

ROOT generator do not have these problems
3

ROOT Concurrency Problems

Problem in ROOT is the use of gRandom
when generating random number from an histogram
or a function
double TF1::GetRandom()

double TH1::GetRandom()

Possible solutions (to be added for ROOT 6):
1. pass a random generator instance, using gRandom as

default (need to check every time)
2. pass a x uniform value in [0,1] :

TH1::GetRandom(double x = -1);

3. have random engine as a data member of the class
4

Random Numbers in Geant4-MT

Solution for random number generation in Geant4-MT

could not modify all code to replace usage of static instance
of CLHEP generator

 use a patched version of CLHEP

make global random engine using a thread local storage

each thread has its own distinct engine

This is possible in Geant4 for its special seeding strategy

each event gets a new different seed

complete reproducibility when running in MT

same result as in serial mode
5

Multiple Stream Generation

Methods for generating multiple random streams:

different initial seeds

used currently in Geant4 and in the experiments (e.g.
CMS)

cycle splitting

skip ahead : (x1,x2,...xn) (xn+1,.... x2n)

Leap frog: (x1,xk+1, x2k+1,.. xnk+1) (x2,xk+2,.. xnk+2)

cycle parametrization

used mainly by SPRNG
6

Random123

Counter based generators

stateless random number generation using a
simple function

 function_rndm (counter, key)
counter incremented for every number requested

key is like a seed, a different stream for every key

speed: comparable to Mersenne-Twister

around 5 ns/number
7

Random123

8

from Random123 paper: (J. Salmon et al.) Parallel random numbers: as easy as 1, 2, 3

MixMax generator
Matrix recursive random number generator

Matrix Generator of Pseudorandom Numbers J.Comput.Phys.97, 573 (1991), (DOI link)

based on theory of dynamical system (Kolmogorov K-
systems)

strong theoretical ground

New fast implementation from Konstantin Savvidy

passes all tests of L’Ecuyer (testU01)

can generate independent sequences for different given
seed by applying a bik skip ahead

guaranteed no overlap if n < 10100

9

http://www.sciencedirect.com/science/article/pii/002199919190016E
http://www.sciencedirect.com/science/article/pii/002199919190016E
http://dx.doi.org/10.1016/0021-9991(91)90016-E
http://dx.doi.org/10.1016/0021-9991(91)90016-E

ROOT Planned Improvements

Add new generators more suitable for concurrency
Random123, MixMax (already in a dev branch on github)
something from SPRNG (e.g. MLFG, multiplicative lagged-
Fibonacci generator) ?
Mersenne-Twister (TRandom3) should not be used in parallel
applications

Make new classes independent by ROOT core libraries (TObject)
Make TRandom’s classes simple wrappers and useful for users
wanting I/O functionality
Have a separate library which can be used outside ROOT (e.g. for
Geant4)

Fix also problem with usage of static gRandom in ROOT classes
10

Possible Solutions
1. Use ROOT::Math::Random class

used currently in MathMore for wrapping
GSL random generators

template class on generator type

do we need to change
generator at run time ?

no penalty of virtual function
calls as in TRandom

11

Use std::random
2. Make new generators compliant with C++-11

random library

random123 already provides a C++-11 random
engine class

we could make use of C++-11 classes for
generating random number distributions

std::normal_distribution, std::poisson_distribution

wrapper to ROOT TRandom classes and CLHEP could be
easily provided

12

Summary
Some problems in using random classes from ROOT
and/or CLHEP in a concurrent environment

Usage of static random engine should be avoided in
concurrent application

Plan to improve current classes in ROOT by providing
new generators more suitable for concurrency

current usage by generating streams with different
seeds is potentially dangerous

Take occasion to package an independent random
library which could be used also outside ROOT (e.g in
Geant4)

13

