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•  Introduction 
•  3D pixels in IBL  

•  Qualification 
•  Production, sensor selection and yield 

•  3D pixels in AFP 
•  AFP introduction 
•  Qualification of 3D sensors 

•  3D Plans 
•  Summary 



S
. G

rin
st

ei
n 

(IF
A

E
) –

 V
er

te
x 

20
14

 

3 

3D Pixel Detectors 
•  Proposed by S. Parker, C. Kenney and J. Segal (NIM A 395 (1997) 328) 

Advantages of 3D 
Ø  Carriers drift parallel to wafer surface: 

shorter collection distance (less trapping) 
Ø  Lower depletion voltage 
Ø  Requires less cooling 
Ø  Active edges possible* 

NIM A 694 (2012) 321–330 

 Planar Technology          3D Technology 

Disadvantages of 3D 
Ø  Complex fabrication (lower yield) 
Ø  Higher capacitance (more noise) 
Ø  Columns can reduce collected charge 

Nucl. Instr. And Meth, 603 (2009) 319–324 

* Also possible in planar technology (NIM A 2006 Sep 1;565(1):272) 
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3D Pixels at ATLAS: History 
•  In 2005 the FP420 collaboration (ATLAS+CMS) included 3D sensors for the 

forward tracker (CERN-LHCC-2005-025) 
•  In 2008 AFP (ATLAS Forward Protons) collaboration formed 

• Passed physics/technical reviews in 3.2014 (more on second part of talk) 
 

•  3D R&D proposal (ATL-P-MN-0022,14/3/2007) approved by ATLAS Executive 
Board, creation of the ATLAS 3D Collaboration (18 institutions, 4 fabrication 
sites*), aim: 3D sensors for extreme radiation hardness 

• Big R&D effort on 3D sensors (see for e.g.: NIM A 604 (2009) 505) 
 

•  In 2009 ATLAS to install a new pixel layer: the IBL project 
• Evaluate possible sensor technologies for IBL: Planar, 3D and Diamond 

•  IBL TDR approved with installation date 2016 (LS2) 
•  1.2011 schedule changed, IBL to be installed in 2014 (LS1): fast-track IBL 
•  7.2011 IBL Sensor Review: install 75% planar and 25% 3D sensors 

• Now the IBL is being commissioned!  

* SNF (SLAC, US), Sintef (Norway), FBK (Italy) and CNM (Spain) 
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Insertable B-Layer (IBL) 

•  Layout: 
§  14 Staves, each with 32 front-end chips  
§  Mean radius 33cm, tilt angle: 14 deg 
§  No overlap on Z due to space restriction 

•  Front-end/Sensor Design: 
§  NIEL dose = 5x1015 neq cm-2  (w/ safety factor) 
§  TID 250 Mrads 
§  Small dead area (slim/active edge) 
§  Max sensor power < 200 mW/cm2 @ -15 C 
§  Max bias voltage: 1000V 
§  Hit efficiency after irradiation >97%  
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Fourth ATLAS pixel layer, motivation: 
improve physics, backup current inner layer  

IBL TDR, CERN-LHCC-2010-013 

See Alessandro La Rosa’s talk at this conference. 

Ø  Planar, 3D and diamond sensors considered for IBL 
•  Planar (n-on-n) used in first ATLAS pixel detector 
•  3D and diamond had to demonstrate manufacturability 

Ø  Evaluate sensor prototypes for IBL qualification   



IBL: Font End Chip: FE-I4 

FE-I4 

Medipix 

FE-I3 Pixel size (um2) 50x250 
Pixel array 80x336 
Chip size (mm2) 20.2x19.0 
Active fraction (%) 89 
Analog/Digital current (uA/pix) 12/6 
Analog/Digital voltage (V) 1.5/1.2 
LVDS output (Mb/s) 160 
ToT Resolution 4-bit 
Thickness 150 um 

•  Biggest chip in HEP to date 
•  Higher active fraction (x6) (than ATLAS predecessor) 
•  Higher data rate, lower power 
•  More radiation hard (130nm technology) 

•  250 Mrads 

Cc
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•  Pixel above threshold 
•  Time over threshold 
   (~collected charge) 
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•  FEI4-A: NIM A 636, 1, Pages S155, 2011 
•  FEI4-B: 2012 JINST 7 C02050 
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3D Pixel Detectors 
Full 3D technology: 

Double-sided 3D technology: 

•  Initial design 
•  Provides active edges 

•  Charge collection within few µms  
  of sensor edge (NIM A 628 (2011) 216) 

•  Difficult processing steps 
   (requires support wafer) 

•  Columns etched from both sides 
•  Simpler production process  
•  Larger dead region close to edges 

Ø  3D R&D Collaboration decided on a  
    common design mask to evaluate  
    technology options  

Critical for 3D: DRIE - column etching 

SNF (SLAC) and Sintef 

CNM and FBK 
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3D Pixel Detectors for IBL 
•  Full 3D: active ohmic trenches at edge, but needs 
   support wafer and “HV bias tap” 

Support wafer has to be 
removed  
SINTEF: deep reactive ion 
etching and temporary 
handle wafer  

arXiv:1402.6384v2 

1.5mm for bias tab 

Biasing solution not 
fully engineered 

IBL installation anticipated by 1 year:  
selected 3D double sided for IBL since it was a better established process  

More complex process 

NIM A 694 (2012) 321–330 
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IBL 3D Pixel Sensors 
• Standard 4” FZ p-type high 

resistivity wafers 
•  230 µm thick, ρ = 20 kΩ•cm 

•  Pixel geometry (50 x 250 µm2): 2E 
•  6 p+; 2 n+ readout electrodes 

• Double sided process: 
•  CNM: 210 µm columns 
•  FBK:  full-through  

•  Pixel isolation: 
•  CNM: p-stop 
•  FBK: p-spray 

•  Slim-edges: 200 µm 
•  CNM: 3D GR + fences 
•  FBK: fences 

CNM FBK 
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IBL 3D Pixel Sensors 
Evaluation of sensor at wafer level: 
Ø  Bump-bond only “good” sensors 

FBK: temporary metal 
• Short all pixel in a column 
• Measure IV of 80 strips 
• Needs extra steps to 

deposit/remove metal 

CNM: 3D Guard-ring 
• Measure IV only along the 3D 

guard-ring 
• Does not test full sensor area! 

Provided by: 
G-F Dalla Betta 
G. Pellegrini 

IEEE TNS 60(3) 2357-2366 
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Sensors had to meet wafer quality (bow, thickness tolerance, etc) and electrical 
specifications (leakage current, Vbd,…) 

10nA 

50V 

FBK Sensor 
IV for 80 strips 
 

CNM Sensors 
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Leakage curr.  
along edges  

NIM A 694 (2012) 321–330 

FBK Sensor 

IBL 3D Pixel Sensors: pre-production 

•  Good yield of pre-productions (~60% on 
selected wafers) 

•  Only ~20 assemblies bump-bonded… 
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Irradiation of IBL 3D Prototypes 

For 3D devices irradiated to IBL fluencies power dissipation is no constraint: 
Ø  At -15C and Vop (see next slide): 20mW/cm2 (planar ~90mW/cm2) 

 

Ø  3D IBL devices irradiated to IBL fluencies: 

•  Karlsruhe (http://www.fzk.de/) : 25MeV protons 
•  Ljubljana (http://www.ijs.si/): reactor neutrons 
•  Also LANL and CERN 

Before/after 
irradiation 

JINST 7 (2012) P11010 

5E15 neq/cm2 



IEEE NSS, 2011, 10.1109/NSSMIC.2011.6154405 
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Device Performance (laboratory) 
 

•  3D devices can be operated at 
threshold of 1500e  

  (current detector  3200e) 
•  3D noise ~150e (slightly higher for 

FBK, planar ~120e) 
• Charge collection verified 

•  FBK depletes at lower bias 
•  But lower Vbd (FBK future: 

partially pass-through) 
• Optimal high voltage for 3D 

devices: ~ 160 V 

IEEE NSS, 2011, 10.1109/NSSMIC.2011.6154405 

JINST 7 (2012) P11010 
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Device Performance: Test-beams 
•  Test beam measurements critical to study 

performance of IBL devices (sensor decision!) 
ü  Efficiency and position resolution 

•  Several test-beam periods carried out (DESY, 
CERN), and different devices tested 

•  EUDET and ACONITE telescopes 
•  Partially supported by AIDA 

FBK11 (5E15 neq/cm2) 
• Only part of the FE-I4 device covered 

by telescope planes 
•  15 deg tilt  in rφ (expected in IBL) 
•  Noisy, dead pixels masked out 
•  Efficiency determined from 

extrapolated track on devices 
   (3x3 matching window) 

Overall efficiency: 98.3% 

S. Grinstein (IFAE) – Vertex 2014 
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SCC105 FBK-3D: un-irrad  
HV = 20V, Φ = 0 deg, 1500e threshold 
Eff.=98.77% 

SCC81 CNM-3D: n-irrad (5E15 neq/cm2) 

HV = 160V, Φ = 0 deg, 1500e threshold 
Eff.=97.46% 

SCC55 CNM-3D: un-irrad 
HV = 20V, Φ = 0 deg, 1500e threshold  
Eff.=99.4% 

Pixel efficiency map: fold  
efficiency to “single” pixel 

 

SCC34 CNM-3D: p-irrad (5E15 neq/cm2) 
HV = 160V,  Φ = 15 deg, 1500e threshold  
Eff.=98.96% 

Ø  Cooling to -15C (measured on PCB at 1cm  from 
assembly) 

Ø  High efficiency (>97%) after irradiation  
    (5E15 neq/cm2) has been achieved 
Ø  Slim edge: 200 µm (less for FBK!, see slide 25) 

Test-beam Results 

Edge Pixel  

200 um CNM un-irr, 20V 

IEEE NSS, 2011, 10.1109/NSSMIC.
2011.6154405 
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IBL 3D Productions 
Productions yields: 
•  FBK: 57% (on 33 selected wafers, ≥ 3 good sensors) 

•  Based on temporary metal measurements at wafer level    
•  CNM: 72% (on 40 selected wafers, ≥ 3 good sensors) 

•  Based on 3D-GR method at wafer level! 

Evaluate devices (Vbd) after hybridization: 

Ø  3D-Guard Ring evaluation method not good enough! 
•  Little statistics because QA made with too low bias current limit… 
•  CNM implementing poly-silicon bias structure for new productions 

FBK: good correlation 
between wafer and 
assembly Vbd 

CNM: poor correlation 
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IBL 3D Modules 
FBK assemblies have lower Vbd than CNM 
• Modified process: partially etched junction 

columns 

10.1109/NSSMIC.2013.6829540 

•  Calibration: 10ToT @ 16ke 
•  Threshold: 3000e 
•  Temperature: -15C 

•  3D devices higher noise than planar: higher 
sensor capacitance 110fF vs 170fF (NIMA 714 
(2013) 83) 

•  FBK noise slightly higher than CNM, due to 
larger column overlap ATLAS publication in preparation 

ATL-INDET-INT-2014-003 
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Bump-Bonding and Assembly 
Initial problems with bump-bonding yield 
•  CNM affected by Vbd (3D GR selection method) 
•  FBK more affected by bump-bonding yield (not understood) 

•  Temporary metal? 
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IBL Installation 

•  See Alessandro’s talk 
•  3D detectors installed and working for the 1st time in an experiment! 

•  112 3D modules 
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AFP Introduction 
•  AFP will study events in which intact protons emerge from ATLAS inelastic 

collisions, with detectors close to the LHC beam at 210 m from the IP 

Many interesting scattering processes 
characterized by protons emitted at very low angles 
•  Tracker for momentum measurements 
•  ToF to reduce background (at high luminosity)  

AFP recently passed ATLAS internal physics 
and technical reviews.  
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AFP Tracker  
• Mounted as close as possible to the beam to increase physics sensitivity 

(allow mass resolution of ~5 GeV) 
• Run luminosity scenarios: 

•  Low-µ: dedicated runs (100/nb, proposed program) 
• High-µ: possible upgrade (100/fb) 

Tracker requirements: 
•  Position resolution of 10 µm (in x) 
• Detector with no inactive edge 
• Radiation hard (and cope with non-uniform 

dose) – for high luminosity operation 

Expected radiation profile on the tracker sensor  
for 100/fb (with 2 RP per side): 

Silicon detectors: 
•  3D pixel sensors 
•  FE-I4 readout (2x2cm2) 

[Trzebinski M., CERN-THESIS-2013-166] 

~ 5x1015 p/cm2 

(~ 3x1015 neq/cm2) 

Beam background not considered 

S. Grinstein (IFAE) – Vertex 2014 
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•  Edge slimming: 
•  Cut IBL sensors ~1.5mm inactive edge 

down to 100-150 µm (FE-I4 chip: 80 µm dead region) 
•  Investigated: Scribe-Cleave-Passivate (SCP) 

slimming with promising results 
NIM A 731 (2013) 198 

•  Technique used to make AFP prototypes: 
standard diamond-saw cut 

•  Used IBL sensors of low quality 

CNM (Gulio Pellegrini) 

Slim Edge for AFP 

Ø  AFP 3D pixel prototypes ready for testing!     
1.

5m
m

 

100-15
0 µm cut 

S. Grinstein (IFAE) – Vertex 2014 
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AFP Tracker: Performance 
Is the edge efficiency affected by the  

diamond saw cut? 
Average efficiency 
after slimming: 
~98% 

AFP prototypes slimed to ~150 um show excellent efficiency until last pixel row  
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Beam test campaign at 
DESY during 2013/14 

June/July 2013 DESY  
•  5 GeV electron beam 
•  0 deg incidence 
•  2000e thr., 30V bias 
•  10ToT @ 20ke 

AFP 
prototype Track 

reconstruction 
with EUDET 
telescope (AIDA 
support) 

CNM 3D GR 
restricts the 
active area 
compared to 
FBK fences-
only 

J. Lange, Pixel 2014  
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AFP Tracker: Radiation Hardness 

Efficiency: 98.0% 
(irradiated side) 

IFAE 

Beam tests CERN Aug 2012  
•  Threshold: 1700e 
•  Bias voltage: 130V 
•  Temperature: -20C (approx.) 

Device irradiated at IRRAD1  
(CERN) to 4E15 neq/cm2 

NIMA 730 (2013) 28 

For high luminosity program: 
Evaluate effect of non-uniform irradiations Wire bond 

side (away 
from beam) 

Irradiation focused 
here 

Slit 

12mm 

4mm 

KIT irradiation 2013 (3E15neq/cm2) 
(AIDA) 

CNM-S3-R5, 130 V 

Unirr. 
Irr. (centre) Irr. (ring) 

AT
LA

S
 P
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ar

y 

Good efficiency in irradiated 
region of AFP prototypes  

See J. Lange, Pixel 2014  



S. Grinstein (IFAE) – Vertex 2014 26 

Outlook: future 3D sensors 
•  Front-end for LHC Phase-II pixels, RD53 (from M. Garcia-Sciveres)  

•  50x50 um2 , 25x100 um2 ? 
•  Cdet<100fF 
•  Threshold~1000e 
•  Ideal: Ileak< 5nA/pixel  

•  Next generation of 3D sensors being developed at 
  SLAC (SNF), CNM (within the RD50 collaboration), FBK 
  and Sintef 

Ø  Thinner substrate (narrower columns), active edges, on-wafer sensor selection 
(poly-silicon), improved Vbd, 6 inch wafer productions (FBK, Sintef),…   



Summary 
•  Big progress made recently on 3D pixel sensors by ATLAS: 

from R&D to industrialization (ATLAS 3D R&D collaboration) 
•  3D pixels selected for 25% of ATLAS new pixel layer (IBL) 

–  High efficiency (>97%) after irradiation (5E15 neq/cm2) has been achieved 
–  Inactive edges of ~ 200 um 

•  3D sensor productions at CNM and FBK completed in time and 
with good yield*, lessons 
–  3D-GR not good enough for sensor selection 
–  Not passing through columns better for Vbd and Q collection 

•  Promising results for Forward Physics 
–  Diamond saw cut can reduce inactive edge to 100 µm 
–  Obtained high efficiency for non-uniform irradiation (7E15neq/cm2) 

•  Other experiments at LHC interested in 3D pixel technology 

S. Grinstein (IFAE) – Vertex 2014 
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Back-up Slides 
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•  Standard	
  diamond-­‐saw	
  cuts	
  	
  
•  Repeated	
  cuts	
  and	
  I-­‐V	
  curve	
  a6er	
  each	
  cut	
  
•  Negligible	
  change	
  in	
  I-­‐V	
  curve	
  up	
  to	
  cut	
  #6	
  
•  Edge	
  area	
  can	
  be	
  safely	
  reduced	
  to	
  ~75	
  um	
  

CUTS	
  

JINST	
  7	
  (2012)	
  C01015	
  

75 µm 

Outermost	
  pixels 
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•  Slim edge studies with FEI4 sensors 

Edge Studies with FBK Sensors 



Ø  So does charge collection: which is the optimal bias voltage  
    for 3D devices? S. Grinstein (IFAE) – Vertex 2014 

Device Performance (laboratory) 

30 

Noise increase 
with bias 
voltage:  

3D p-irradiated 
devices 
(5E15neq/cm2)  

S. Grinstein, IEEE NSS, Valencia (Spain), 2011 

IFAE 
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High Eta studies with 3D Sensors 

. 

C. Nellist, 
PhD Thesis, 
Manchester 2013 


