

Vertexing and Tracking Summary and Outlook

*Franc*e*co Fo*r*i INFN and University, P*i*a*

Disclaimer and apologies

- Vertex detectors are a very active and vibrant field
- Impossible to represent everyone and everything: personal taste in choice of topics
	- Please don't get mad at me.
- Could not attend most of the conference
	- I regret not enjoying this beautiful place
	- Busy building Belle-II vertex detector !

Outline

- Yesterday and Today
- Tomorrow
- Day After Tomorrow The Future

- Granularity and resolution
- Material budget
- Device simulation
- Readout speed
- Local intelligence
- Power dissipation and cooling
- Interconnection density
- System integration

- Trigger and online tracking
- Track and Vertex Reconstruction

The Vertex conference series

We need eyes to see

Long R&D process LHC ca. 1515 A.D.

The Planar Process or the birth of semiconductor technology.

In solid state sensors, more than in other fields, detector development is heavily driven by the available (affordable) technology.

8

Nov. 13, 1962

SEMICONDUCTOR DEVICE Original Filed May 1, 1959 E16-2 E1G-5 **INVENTUR** R. Harew incorti, Ralb & H.h

J. A. HOERNI

3.064,167

A long history: Semiconductor Strip Detectors

Today's marvels

10

VERTEX 2014, 19/9/2014 F.Forti, Summary and outlook

Silicon Detectors

Nagai: VTX2014

ATLAS - PIXELS

13

- Significant (5%) number of disabled modules
- Extraction repair and reinsert done in LS1 Services are fragile

To be mentioned that few modules have been lost when the Detector was reinstalled in ATLAS, so the services are still mechanical fragile

A. La Rosa: VTX2014

Rosa

ATLAS - IBL

14

- resolution
- New sensor technology, new chip: 50x250um
	- First time of 3D sensor

A. La Rosa: VTX2014

CMS - SST

15

- **Largest silicon tracker ever built:** active area 200m2, 5 m long, 2.5 m diameter
- Very good performance in Run1(warm). S6F14 cooling
- **Extensive activity to allow cold**

Closed lines to keep leak rate low

E.Butz: VTX2014

 $E.$ Butz: V

CMS - PIXELS

Efficiency

- 66 M Pixels (100x250um)
- **Faults at the end Run1:**
	- 2.3% in BPix, 7.8% in FPix
	- » Repaired (99.9%) in LS1.

Several radiation effects: Current, voltage Threshold recalibration needed with increased current: not expected Automatic SEU detection and recovery essential for high efficiency

16

Threshold drift and recalib

Osa:

C. Elsasser: VTX2014

ALICE ITS: SPD, SDD, SSD

Pixel, Drift and Strip technologies working together. Good efficiency and performance over Run1

Issues with clogged filters (SPD) and SEU (SSD) improved in LS1

S. Senyukov: VTX2014

Sentjukov: V

STAR HFT: PXL, IST, SSD

- SSD, IST: conventional strips and pads
- PXL: First MAPS detector at collider (Ultimate-2, from Mimosa series)
- Installed in Jan 2014, run March-July 2014
- 356M Pixels 20.7x20.7 um
- Chips thinned down to 50um
- Integration time: 185.6us
- Many lessons learned mostly rom system issues:
	- Al cable production delays ∞
	- Issues in ladder assembly
	- Mechanical inteference
	- Shorts between lines
- Radiation resistance under study

19

M. Szelezniak: VTX2014

AMS02

- **Space operation poses a completely** different set of challenges and requirements
- Very long strips, slow shaping, low power (192 W total)
- Continuous thermal variations
	- Dynamic alignment
- Charge measurement
	- Difficult calibration up to 100MIP

20

P. Saouter: VTX2014

Saouter: VTX2014

VERTEX 2014, 19/9/2014 F.Forti, Summary and outlook

System and services lessons

A lot (most?) of the development work is concentrated on sensors and electronics.

Right, but…

System engineering is never enough

Sometimes improvised without good engineering practices

- Essential for operating a large detector
- Retrofitting is a terrible pain
- Knowledge is power
	- Detailed monitoring of everything and handles for adjustment are essential
	- Essential to allow time for detailed analysis and investigation of detector performance and changes

- Plan for the unexpected
	- Redundancy, extra control handles, extra monitoring

Detectors in preparation

23

LHC phase 1 upgrades (2018-19)

- **ALICE: ITS MAPS on hi-res** epi
- CMS: Pixels: mainly system integration improvements

» LHCb:

- VELO: pixel, 40MHz, sw trigger (or FPGA ?), microchannel evaporative cooling
- Upstream Tracker: large single-sided strips, SALT ASIC

NON-LHC in preparation

- BELLE-II:
	- PXD: first DEPFET application, ROI
	- SVD: DSSD Origami module concept
- NA62: GIGATRACKER: extremely fast, micro channel cooling

MAPS on hi-resistivity epi TowerJazz 0.18um with deep pwell

Chip-to-flex connections: laser soldering

VERTEX 2014, 19/9/2014 F.Forti, Summary and outlook

LHCb VELO + UT

- Triggerless 40MHz readout VELO: Pixel 55x55um , VeloPix readout chip
	- Microchannel CO2 evaporative cooling at -20C
	- **Closer to beam**
- UT: Strips, SALT chip readout, long staves

 -40 -30 -20 -10 0 10 20 30 40 x [mm]

Requirements

- · Tip of hottest sensor accumulates fluence of 8×10^{15} 1 MeV n_{eq} cm⁻² after 50 fb⁻¹.
- . Outer region of the same sensor will see by factor $10 - 20$ lower fluence.
- . Sensors must be able to withstand 1000 V bias without breakdown.

UT Stave prototype

RICH1

Vertex.

Locator

F. Lionetto : VTX2014 etto:

 $1.5₁$

 26 **C** \blacksquare Data rate [Gbit/s] for hotter, module. \blacksquare FORE, SUMMARY ANGEOUTLOOK

brass¹

H. Schindler: VTX2014

Sching

BELLE II SVD

- 4 layers of double-sided strip sensors **APV25** readout
- Origami concept ∞ .
- CO2 evaporative cooling
-

L. Vitale: VTX2014

ale: VTX201

NA62 GIGATRACKER

29

Track the beam

- Very fast pixel detector on small area
- TDCPix readout IC with time walk correction
- First micro cooling application

On beam soon

- Sustains 750 MHz hit rate with \leq 200 ps hit time resolution,
- First micro cooling application in HEP, station thickness \approx 450 µm,
- Final integration is ongoing. All sub-systems tests are going well.

First beams in three weeks !

B.Velghe: VTX2014

Welghe: VTX2014

Detectors at future accelerators

31

Wide range of requirements Different development directions

Occupancy, Speed, Radiation

N. Wermes VTX2013

 $WermesV$

HL-LHC (Phase 2 upgrades)

32

- Current devices will **not** survive
- Main technical challenges:
	- Radiation hardness
	- Occupancy
- Cost *is* an issue
- Common R&D is essential
	- Example of RD50, RD53 collaborations
- Design optimization
	- At all levels (sensors, modules, system)
	- Robustness
- Exploit common solutions
	- Scale economy, modularity

VTX2014

ONASSEN

Occupancy

Improve layout Increase granularity Faster readout Smarter readout

Local IntelligenceLocal Intelligenc

34

» Read all analog signals » Read only above threshold » Read Region of Interest » Make a local track stub Make track parameters

K. Lohwasser: VTX2014

OOWASSER VTX2014

Electronics technology node

What we gain using CMOS 65nm

- Radiation Tolerance (dose, hadrons, SEU)
	- Uses thin gate oxide
	- Verified for up to 200Mrad, better
than 130nm: to be confirmed for 1GRad
- Large amount of digital logic/ memory
	- Vital for small pixel
	- Logic density: $250nm:~1; 130nm:~4x;$
65nm:~16x
	- Speed: 250nm~1, 130nm:~2x; 65 nm: $-4x$
- Low power (digital)
	- 250nm: 1, 130nm: (1/2-1/4) ; 65nm: $(1/8-1/16)$
- Many metal(Cu) layers:
	- Power distribution, signal distribution, pixel readout busses, etc.
- Mature technology and stable

L.Demaria: CHIPIX65 pixel FE for HL_LHC - INFN Future Detector Workshop 2014

- Affordable (still...)
	- **MPW** from foundry and Europractice;
	- Masks costs a lot: ~1 M\$ for an engineering RUN
	- Production similar as 130nm

Need strong collaboration and synergy between experiments Shared runs, common IP locks, shared knowledge Long term investment in training people

6+1 metals

 $(max to 9+1)$

130nm up to

7+1

Smart detectors

- Granularity is not enough for high rates
- LHC @ 10^{34} cm-2s⁻¹: 200 events overlapping
- Build track segments or measure pt at sensor levels and use track in LVL1-2 Trigger

Each Vertical Column: All the circuitry necessary to detect one road.

Use 3D chip technology

E. Ramberg, VCI 2013

Ramberg, V

J20

36

Top detector

Bottom detector

Track triggers

- •Associative memory based trigger proven in CDF, proposed in Atlas, CMS
- •LHC-b proposes a vision-based FPGA implemented track trigger
- •Enormous potential
- •Can change the way experiments are designed
- •Can make increased luminosity fully useful for physics

37

T. Iizawa: VTX14

A.Annovi: IFD14

Annovi: 1

HL-LHC Pixels

- Pile-Up = 140
- Radiation @ 30 mm from IP: $2x10^{16}n_{eq}$ cm²
- Dose @ 30 mm from IP: 10 MGy (1Grad)

M. Musich: VTX2014

M. Musi

P. Valerio: VTX2014

- Very high radiation and occupancy Hit rate \sim 2 GHz/ cm²
- Aim at small pixels size: 50x50 $um²$
- Hybrid pixel scheme
- Radiation effects can be dramatic
- Sensor choice? Very little charge (thick and thin sensors give same amount)

ILC and CLIC

39

 20_{ms}

 0.5_{ns}

 $= 1$ train

- **Linear electron-positron collider**
	- \sqrt{s} = 3 TeV (staged construction)
- High luminosity: few x 10³⁴ cm⁻²s⁻¹
- Small bunch size: σ_{xyz} (40 nm, 1 nm, 44 µm)

Trains: \subset

BX:

Beam structure:

40

- Large low-material tracker (silicon or TPC)
- Super-thin vertex detector

System and services design determines material budget

- Mechanical support
- **Cooling**
- Power distribution

S. Redford: VTX2014

FUTURE R&D

SOI

- **DEPFET**
- CMOS MAPS
- **HV-CMOS**
- Vertical integration
- Diamonds
- Internal amplification
- Neutron PSD
- Sensor edge management
- ^{3D} Sensors
- **Smart trackers**
- Advanced materials

41

THERE IS NOTHING LIKE A DREAM TO CREATE THE FUTURE.

VICTOR HUGO LES MISÉRABLES

VERTEX 2014, 19/9/2014 F.Forti, Summary and outlook

DEPFETS

- Complex and expensive technology
- Can be extremely thin 3
- **Difficult to get speed and** extreme radiation hardness

• fully depleted sensitive volume

- fast signal rise time (~ns), small cluster size
- . In-house fabrication at MPG HLL
	- Wafer scale devices possible
	- Thinning to (almost) any desired thickness

C. Koffmane,VTX 14

... Koffmane, VTX.14

- no stitching, 100% fill factor
- no charge transfer needed
	- faster read out
	- better radiation tolerance
- Charge collection in "off" state, read out on demand
	- potentially low power device
	- internal amplification

c) process > possivation

open backside possivation

- charge-to-current conversion
- r/o cap. independent of sensor thickness
- Good S/N for thin devices $\rightarrow \sim 40$ nA/µm for mip

etal stop SrD)

d) anisotropic deep etching opens "windows"

in handle wafer

a) oxidation and back side implant \sim of top water

Ten Wat ar

- Possible for ILC
- Investigate integrated microcooling

CMOS MAPS

- Exploit commercial CMOS technology to produce cheap and performant sensors
- Already used in various fields
- Used/Planned in several experiments: STAR, MU3E, ALICE, ATLAS ?
- Growing complexity in electronics processing in the pixel
- Still issues to be solved for very high radiation, very high speed readout
- Traditional MAPS have very little charge collected HV and HR CMOS

43

VERTEX 2014, 19/9/2014 F.Forti, Summary and outlook

014

Wison:

44

VERTEX 2014, 19/9/2014 F.Forti, Summary and outlook

Sensor Edge Management

Reduction of dead area at the sensor edge

1. Slim edge: reduce the guard rings and protection to the mininum

45

- 2. Active edge: turn the physical edge into a junction (implant +passivation) allowing depletion to reach the edge
- 3. Scribe, Cleave & Passivate (SCP): post processing

Reduction of material and dead zones

In conjunction with through silicon vias: buttable modules

M.Meschini , IFD 14

M.Meschini, II

VERTEX 2014, 19/9/2014 F.Forti, Summary and outlook

Blue

3D sensors

» Proposed in 1997 (Parker, Kenney, Segal) Two types installed in ATLAS IBL

Test-beam Results

0.95

 0.8

46

Pixel efficiency map: fold efficiency to "single" pixel . S. Grinstein,VTX 14

5. Grinstein, VTX14

SCC55 CNM-3D: un-irrad $HV = 20V$, $\Phi = 0$ deg, 1500e threshold Eff.=99.4%

SCC105 FBK-3D: un-irrad $HV = 20V$, $\Phi = 0$ deg, 1500e threshold Eff.=98.77%

SCC81 CNM-3D: n-irrad (5E15 n_{eq}/cm^2) $HV = 160V$, $\Phi = 0$ deg, 1500e threshold Eff.=97.46%

Diamonds

Diamonds established for beam and radiation monitoring

- *I* Today two main manutacturers of detector grade diamond
	- **ElementSix Ltd**
		- large polycrystalline wafers
		- single crystal diamonds
	- **II-VI Semiconductors**
		- large polycrystalline wafers
		- relatively recent entry

Consistent radiation hardness constants \rightarrow

3D technology tested to reduce collection length and improve performance

47

A. Oh,VTX 14

A.Oh,VTX

Systems

Detector system design is much more than sensors. Many technologies can change qualitatively and quantitatively the way systems Face-Face Dexide-oxide are built. The future will tell.

- Vertical integration through-silicon vias
- **Advanced interconnections technologies**
- Advanced materials
- Innovative powering schemes
- » Micro cooling / integrated cooling

48

First wafer

handle wafer

BOX¹

MIT-LL

3D-IC process **FDSOI** oxide-

oxide bonding

E. Ramberg: VCI 2013

giaquie

CI 2013

N. Berger, VCI 2013

F. Bosi: PM 2012

3051: PM 2012

VERTEX 2014, 19/9/2014 F.Forti, Summary and outlook

Outlook

49

- Solid state sensors R&D make best use of advanced technological process and push technology towards new limits.
- The road from idea to running detector is long and winding.
- Many interesting and promising techniques exist, but large costs require coordinated action
- **It is essential that expert work in** synergy and collaboration to produce performant and affordable detectors for tomorrow's experiments

A great Thank you ! to the organizers for this opportunity and the perfect organization

Sources

In the slides it is indicated the presenter at the meeting (not necessarily the original author of the work)

- 2014 International Workshop on Vertex Detectors, VTX14 https://indico.cern.ch/event/300851/other-view?view=standard
- 2014 Americas Workshop on Linear Colliders 2014, AWLC14: http://agenda.linearcollider.org/conferenceOtherViews.py?view=standard&confId=6301
- 2014 INFN Workshop on Future Detectors for HL-LHC, IFD14: https://agenda.infn.it/conferenceOtherViews.py?view=standardshort&confId=7261
- 2014 9th "Trento" Workshop on Advanced Silicon Radiation Detectors, TNW14: http://indico.cern.ch/event/273880/
- ²⁰¹³ International Workshop on Vertex Detectors, VTX13
- 2013 Lepton-Photon Symposium, LP 2013: http://www-conf.slac.stanford.edu/lp13/
- 2013 Vienna conference on instrumentation, VCI 2013: http://vci.hephy.at/
- ²⁰¹² Crakow European Strategy Meeting: http://indico.cern.ch/conferenceDisplay.py?confId=175067
- 2012 Pisa Meeting on Advanced Detectors, PM 2012: http://www.pi.infn.it/pm/2012/
- ≈ 2011 Technology and Instrumention in Part. Phys., TIPP 2011 http://conferences.fnal.gov/tipp11/
- 2010 FNAL Detector R&D Workshop: https://indico.fnal.gov/conferenceDisplay.py?confId=3356