

Upgrades of the ATLAS inner detector for HL-LHC (pixels)

Jörn Grosse-Knetter University of Göttingen

on behalf of the ATLAS Collaboration

- Introduction
- Module development:
 - New FE Chip
 - Sensor developments: planar, 3D, diamond, CMOS
- Read-out:
 - Triggering aspects & data transmission
 - Possible read-out scenario
- Mechanics

- ATLAS phase2-upgrade: complete re-design of inner tracking system for HL-LHC operation
 - Most of current detector not suitable for HL-LHC
 - Goal: maintain or improve tracking efficiency and small fake rate + b-tagging capabilities
 - Several challenges:
 - Higher track density
 - Higher irradiation dose, fluence
 - Higher hit rates
 → all silicon detector
 - Re-design of triggering system

- Plans for new "inner tracker" (ITK) taking shape
- New layout: all-silicon with outer strip layers and inner pixel layers

- Plans for new "inner tracker" (ITK) taking shape
- New layout: all-silicon with outer strip layers and inner pixel layers — this talk
 - Pixel activities started to ramp up this year
 - Benefiting from 1st upgrade (insertable b-layer, IBL) that just completed:
 - Already had a re-design of the read-out (FE, off-det.)
 - Considered and used new sensor concepts:
 - 3D in outer layers of IBL (inner: planar sensors)
 - Diamond sensors in IBL-style diamond beam monitor (DBM)
 - Improved mechanics/cooling concepts

- Modules: use well-established hybrid concept
 - Sensors:
 - Planar-, 3D-silicon, diamond
 - New concept: CMOS, combined with hybrid r/o
 - FE chip: new design for all pixel layers (unclear availability of foundry that produced IBL FE)
- In any case, many improvements needed:
 - Increased radiation hardness
 - Smaller pixels
 - Efficiency improvements in sensor design
 - Low(er)-cost interconnect technology

- Expected design specifications for FE chip:
 - Format, power similar to IBL FE
 - Pixel size:
 - Hit rate estimate: 2 GHz/cm²
 - Preserve 50µm spacing between bumps
 - 2500 μm² pixel area: needs a recovery time of 200ns → larger area not feasible (squared 50x50 μm²?)
 - Trigger rate: 1MHz single level (+ safety margin)
 - This requires several Gbps output per chip
 - Many things are the same for ATLAS and CMS → collaboration via RD53

ITK Pixel FE Chip (2)

- Need improvement in digital/analog isolation (50kHz firing rate for $50x50 \mu m^2$ pixel)
- Combined with low threshold (IBL: ~1000e possible): very challenging
- Check radiation hardness of new 130nm or 65nm vendors:
 - Target: 1 GRad
 - Qualification studies with 3 vendors on-going, but much more to do
- Design changes needed for high output rate

- Planar sensors (mostly n-in-p, also n-in-n)
 - Good candidate for outer layers: larger areas
 - Usage for inner layers: radiation hardness?
 - Charge collection studies done after irrad. to $\sim 10^{16} n_{eq} cm^{-2}$

- Other aspects investigated:
 - Better efficiency with active edge sensors
 - Thin sensors (<200 μm)
 - Pixel capacitance: small enough for FE?
 - Improve biasing structures (know ineff. from past)

ITK Pixel Sensors (planar-quad)

- 2x2 FE modules built with planar sensors
 - Aim: reduce bump bond cost (scales per module)
 - Starting from IBL design: 2x 2-FE-sensor
 - Helps to build electrically functional quad-modules
 - Flexes designed for these modules, bump bond tests

- 3D-sensors: driven by IBL vendors (CNM, FBK)
- Option for inner layers: adapt IBL design for new geometry and thickness
 - Smaller pixel size requires thinner sensors to take advantage of the high pixel spatial resolution
 - Radiation hardness: smaller inter-electrode spacing
 - Slim or active edges
 - Must tune pixel capacitance to meet FE requirements

- Diamond also option for inner layers
 - Fluence >10¹⁶n_{eq}cm⁻²: acceptable signal degradation
 - Stable operation at low thresholds (1000e or lower)
 - Sensor supply for 1-2 m² should be possible
- Vendor availability? Many produce pCVD but few at sensor quality
- Debug the bump-bonding issues from DBM
- Thinner sensors,
 3D-diamond, ...

- HV/HR-CMOS: combine with hybrid concept
 - Use recent developments on CMOS "smart diodes"
 - Attach to "regular" FE chip for full read-out features
- Example: HV2FEI4 CMOS on IBL FE:
 - Combined operation possible
 - Used in src tests, testbeam
- Interconnect: bump bonds, gluing, TSV,...?

 Starting demonstrator project to evaluate if suitable for ATLAS

- HV/HR-CMOS: combine with hybrid concept
 - Use recent developments on CMOS "smart diodes"
 - Attach to "regular" FE chip for full read-out features
- Example: HV2FEI4 CMOS on IBL FE:
 - Combined operation possible
 - Used in src tests, testbeam
- Interconnect: bump bonds, gluing, TSV,...?
- Starting demonstrator project to evaluate if suitable for ATLAS

- HL-LHC will see a new L0 trigger in ATLAS partial/full read-out:
 - L0 : 1 MHz 6 μs latency
 - L1: 400 KHz 24 μs latency
 - Pixel will do full readout on L0

Data rates and bandwidths at 1MHz trigger:

Detector	Number of	Module type	Rate/module	GBT/stave	Rate/GBT	Link per
	modules per		[Mb/s]	side	[Mb/s]	side
	stave/disk					
layer 1	22	dual	5120	11	5120	176
layer 2	36	quad	5120	18	5120	288
layer 3	35	quad	2560	9	5120	288
layer 4	35	quad	1280	5	5120	260

- Data links:
 - Prefer to move opto comp. outside of det.volume: fast electrical cables
 - Then via fast optical links: GBT fast enough?

- Then, general ATLAS concept:
 - data routed via switch
- Pixels: use DAQ HW also for calibration
 - Goes beyond pure data transport needs
 - Address scan control and data decoding (histogram) apects

- Developments on support structures
 - Example: Stavelets = shorter staves

More dynamical layout, e.g. Alpine

 Stave profile changes along longitud. direction, modules attached to inclined support

- HL-LHC ATLAS-Pixel development is picking up speed with more details under investigation
- Many challenges ahead:
 - New FE design with new technology
 - Decide on best sensor technology(ies?)
 - Many new aspects beyond module design: readout, mechanics,...

Schedule: "technical design review" in 2017