

LHCb upgrade: Upstream Tracker Macha Lake, Vertex 2014

Federica Lionetto on behalf of the LHCb UT group

University of Zurich

September 15th, 2014

The current LHCb detector

The upgraded LHCb detector

2 of 22

The upgraded LHCb detector

2 of 22

Motivations

- LHCb upgrade physics case ⇒ see Heinrich's talk
- Importance of UT in HLT tracking
 - $\hfill\square$ fast estimate of momentum, 3 \times speed up
 - improved acceptance coverage at small polar angles
- Higher luminosity
 - □ finer granularity to cope with increased particle density
- From 1 to 40 MHz readout
 - $\hfill\square$ new front-end electronics
- Aim to collect 50 fb⁻¹
 - improved radiation hardness

Improved acceptance coverage

- Reduced beampipe clearance and insulating material
- Circular cut out of sensors around the beampipe
- Extrapolated track position for particles originating from beauty hadron decays

Irradiation constraints

- After 50 fb⁻¹
 - \square max fluence 5 × 10¹⁴ 1 MeV n_{eq}/cm² \rangle including safety factor
 - $\hfill\square$ max radiation dose 40 MRad
 - □ keep $T_{sensor} < -5^{\circ}C$ in order to limit the bias voltage to 300 - 500 V after irradiation

Geometry

- 4 planes inside light tight box flushed with N_2 or dry air
- Single-sided silicon microstrip sensors (strip pitch and length depending on position)
- Strips vertical on X, $\pm 5^{\circ}$ on U/V planes
- Circular cut out around the beampipe
- 68 staves,

staggered 10 mm in z to provide overlap in x

Geometry

- 4 planes inside light tight box flushed with N_2 or dry air
- Single-sided silicon microstrip sensors (strip pitch and length depending on position)
- Strips vertical on X, $\pm 5^{\circ}$ on U/V planes
- Circular cut out around the beampipe
- 68 staves,

staggered 10 mm in z to provide overlap in x

Stave

- 14/16 sensors mounted on both faces to provide overlap in y
- Data/power flex cables from top and bottom
- SALT ASIC close to sensor
 - $\hfill\square$ 128 \times preamplifier, shaper, and ADC
 - $\hfill\square$ zero suppression and serialisation to reduce data volume
- Active cooling needed
 - □ bi-phase CO₂
 - cooling pipes embedded in the staves
- Shorter strips than in TT ⇒ thinner sensors
 - \square 250 instead of 500 μm
- Total material budget similar to TT

Stave - zoomed in

8 of 22

Mechanics and cooling

9 of 22

Cooling

Requirements

- \Box $T_{sensor} < -5^{\circ}C$
- $\Box \Delta T_{sensor} < 5^{\circ}C$
- \Box $T_{\rm ASIC} < 40^{\circ} C$
- Iow material budget
- Bi-phase CO₂ cooling system
 - $\hfill\square$ thin-walled Ti cooling tubes,
 - 2 mm inner diameter and 0.1 mm wall thickness
 - stainless steel as backup solution
- Heat load mainly due to ASICs

0.77 W/chip 900 W/plane 3.6 kW in total

Pipe design

Baseline: snake pipe

- pipe running underneath each row of ASICs
- best thermal performance
- \hfill to be validated with full stave prototypes

Backup: parallel pipe

 $\hfill\square$ straight tubes combined with heat spreaders and thermal vias

Sensors

Single-sided silicon microstrip sensors

- strip pitch and length depending on position
- \square 250 μ m thickness
- $\hfill\square$ n⁺-in-p in the central region, p⁺-in-n in the rest
- Read out by 4 or 8 ASICs
- Circular cut out of innermost sensors
- Embedded pitch adapter
 - $\Box\,$ from 190 to 73 $\mu{\rm m}$ pitch
 - $\hfill\square$ reduce material budget and number of wirebonds
 - external glass pitch adapter also investigated

Туре	Pitch (μ m)	Length (mm)	Strips
А	190	97.28	512
В	95	97.28	1024
С	95	48.64	1024
D	95	48.64	1024

second metalization layer for type A sensors

Modules

- Evolving design
 - facilitate handling during production and testing
 - allow to replace individual modules in case of failure

Thermal simulation

sensor temperature

14 of 22

F. Lionetto - LHCb upgrade: Upstream Tracker - Vertex 2014

ASICs temperature

Stave prototyping

First mechanical/thermal prototype completed

- realistic stave materials (CFRP, foam core)
- snake pipe design
- Ti tube bent and epoxied into the stave
- maximum heat load mimicked by heaters
- $\hfill\square$ successfully cooled down, well below $-5^\circ C$ on sensors
- measurements ongoing, including deflection and thermal contraction

SALT ASIC

$\mathsf{SALT}=\mathsf{Silicon}\ \mathsf{ASIC}\ \mathsf{for}\ \mathsf{LHCb}\ \mathsf{Tracker}$

- 40 MHz readout
- 128 channels
- TSMC CMOS 130 nm technology
- **73** μ m pitch on input pads

16 of 22

SALT ASIC - analog block

- Peaking time ~ 25 ns
- Remainder after 2×peaking time $\sim 5\%$ \Longrightarrow minimise pile up, spill over
- Sensor capacitance 5 15 pF
- Power consumption 1 − 2 mW/channel
- Both polarities \implies n⁺-in-p and p⁺-in-n

SALT ASIC - ADC

- SAR, 6 bit resolution
- power consumption < 0.5 mW at 40 MS/s</p>

SALT ASIC - digital signal processing block

- Bad/noisy channel masking
- Pedestal subtraction
- Mean common mode subtraction
- Zero suppression
- Data compression (header and data)

SALT ASIC - serialisation

- Create and transmit data frames to peripheral electronics
- Serial links => e-links
 - $\hfill\square$ 5 e-links per ASIC but 2 5 active depending on sensor position
- SLVS I/O standard
- 320 MBit/s data rate

Flex cable

- Connect hybrids and peripheral electronics
- Run along the stave, up to 0.776 m long
- Requirements
 - Iow material budget
 - low voltage drop
 - $\Longrightarrow 0.5$ V round trip drop
 - signal integrity

- First prototype design
 - □ 2 layers
 - kapton with copper traces
 - signal
 - power
- Prototypes ready to be tested by the end of September

traces terminated with bonding pads where hybrids will be mounted

Peripheral electronics

PEPI = periphery electronics processing interface

Test beam activities

- Prototype sensors
 - $\hfill\square$ irradiated with different doses, up to 20 MRad
 - to be tested in Oct/Nov 2014 test beam at SPS
- SALT ASIC not yet ready
 - \implies Beetle-based readout system (Alibava)
 - commissioned during exploratory test beam in Jul/Aug 2014
 - synchronized with Timepix telescope offline
- Prototype sensors with circular cut out expected by end of 2014
- SALT ASIC-based readout system in 2015 test beam
- In parallel, laser test stands in Zurich and Syracuse

Planning

- R&D ⇒ 2014-2016
- Production and testing \implies 2015-2018
- Installation \implies Q₁ 2019

To err is human. To really mess up, we've got to do some planning."

Summary

- 40 MHz readout \implies importance of UT in HLT tracking
- Main design goals
 - □ finer granularity
 - $\hfill\square$ improved acceptance coverage at small polar angles
 - Iow material budget
 - $\hfill\square$ radiation hardness, n⁺-in-p sensors in the central region
- CO₂ distributed cooling system embedded in the staves
- R&D and validation of design choices underway
- TDR submitted and approved CERN-LHCC-2014-001, LHCB-TDR-015

Participating institutes

Thanks for the attention

22 of 22

Spare slides

22 of 22

Physics goal of TT/UT

- Reconstruct K_S^0 and Λ decaying after the VELO
- Improve momentum resolution by adding TT/UT hits to tracks

Material budget

Modules

L-shaped hybrid

L-shaped hybrid

4 of 19

L-shaped hybrid thermal simulation

sensor temperature

ASICs temperature

Modules

Short hybrid + stiffener

6 of 19

Short hybrid + stiffener

Short hybrid + stiffener - latest version

8 of 19

Short hybrid + stiffener thermal simulation

sensor temperature

9 of 19

F. Lionetto - LHCb upgrade: Upstream Tracker - Vertex 2014

ASICs temperature

Modules used in the thermal simulation

10 of 19

SALT ASIC - baseline digital signal processing chain

11 of 19

Flex cable

- Connect hybrids and peripheral electronics
- Run along the stave, up to 0.776 m long

Requirements

- Iow material budget
- low voltage drop
- signal integrity

First prototype design

- 2 layers on-stave, 4 layers off-stave
- rectangular shape, 97 mm wide
- central axial symmetry
- 0.5 V round trip drop

material	thickness (μ m)
copper	18
polyamide	100
copper	18
polyamide	100
copper	18
FR-4	1200
copper	18
	material copper polyamide copper polyamide copper FR-4 copper

Flex cable - first prototype design

- Design
 - Signal traces
 - Power traces
 - \square 150/100 μ m trace/space width
 - FCI MEG-Array connector
- Prototypes ready to be tested by the end of September

traces terminated with bonding pads where hybrids will be mounted

Stave power distribution

- Hybrids connected in local power groups
 - each quadrant divided in 4 power groups
 - □ 1 dedicated MARATON channel per power group
 - □ each power group with isolated ground reference

quadrant of UTa plane

quadrant of UTb plane

Occupancy

From minimum bias simulation at $\mathcal{L} = 2 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$, $\sqrt{s} = 14 \text{ TeV}$

- average #hits/event = 1000
- \Box average cluster size = 1.44
- \square average occupancy = 1.8%

Timepix telescope

8 planes

- $\hfill\square$ 4 upstream and 4 downstream of the detector under test (DUT)
- Triggerless mode, data-driven
- 1 DAQ PC per plane, recording data continuously
- Offline software (Kepler) to merge data from different planes/files

Alibava system

17 of 19

Mother board

- 1. 1 power connector
- 2. 1 flat cable connector
- 3. 2 vertical LEMO connectors

(output signal oscilloscope)

 2 switches of 3 pos (modify ADC input range of Beetle chips:

 $-1024,\ \pm 512,\ \text{or}\ 1024\ \text{mV})$

- 3 LEMO connectors (trigger input)
- 6. 1 USB connector
- 1 LEMO connector (trigger output)
- 8. 1 red LED
- 9. 1 reset button

18 of 19

5

Region around the beampipe (TT)

• 5 mm clearance between beampipe and insulation walls

